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An analytical method for calculating the electromagnetic fields of a nonparaxial elegant Laguerre-
Gaussian (LG) vortex beam is presented for arbitrary pulse duration, spot size, and LG mode. This
perturbative approach provides a numerically tractable model for the calculation of arbitrarily high
radial and azimuthal LG modes in the nonparaxial regime, without requiring integral representations
of the fields. A key feature of this perturbative model is its use of a Poisson-like frequency spectrum,
which allows for the proper description of pulses of arbitrarily short duration. This model is thus
appropriate for simulating laser-matter interactions, including those involving short laser pulses.

8 I. INTRODUCTION

o The ability to produce vortex beams of light [1-4] or
1 electrons [5-7] with well-defined orbital angular momen-
1 tum allows for the study of angular momentum exchange
12 processes when such beams interact with matter. Re-
13 cently, optical vortex (or “structured light”) beams have
11 been used to probe chiral matter [8], to study multi-
15 pole excitation of atoms as a function of their location
with respect to the beam axis [9], to improve vacuum
acceleration of electrons [10], and to advance quantum
18 information technologies [1, 11], among numerous other
19 applications. Such structured light can be created in the
20 extreme ultraviolet by means of high-order harmonic gen-
eration [12-14]. For some applications of optical vortex
» beams, high intensity is required (such as, e.g., for vac-
23 uum acceleration of charged particles [10]), which is usu-
2 ally achieved by tightly focusing the beam. However,
25 tightly-focused beams with spot sizes comparable to the
»% laser wavelength cannot be correctly described within the
paraxial approximation [15, 16].

s Perturbative solutions for the fields beyond the lowest-
20 order paraxial approximation were considered as early as
s 1975, in which the first few orders of nonparaxial cor-
rections were found [16-18]. The first order correction
» introduces a longitudinal electric field, which is absent in
13 the paraxial approximation. Many higher order correc-
tions to the electromagnetic (EM) fields have since been
found [19, 20].

s Perturbative solutions of the scalar Helmholtz equation
w (HE) (whose exact solution is termed the phasor) provide
3 an alternative approach for treating nonparaxial effects.
Solutions for the HE phasor have been obtained primar-
w0 ily by two different methods. One method involves solv-
a1 ing for the exact phasor in integral or differential form.
» This phasor is then expanded perturbatively [18, 21, 22].
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Alternatively, the HE can be solved one perturbative or-
der at a time, and an exact phasor built from the sum
of these solutions [17, 23-25]. With either of these two
methods, the HE can be solved under different sets of
boundary conditions [26]. Common choices for bound-
ary conditions include: (i) a purely paraxial beam in the
focal plane [18, 24, 25] (where the exact solution is valid
in the half space after the focus only, while the perturba-
tive solution is valid in all space), (ii) an oscillatory far-
field beam [17, 19], or (iii) an outgoing spherical wave in
the far-field [21-23]. Couture and Belanger [23] showed
that the latter, with infinitely many orders of correction,
was equivalent to modeling the Gaussian beam with a
so-called complex source-point.

The complex source-point model warrants additional
discussion. It describes the beam as an outgoing spheri-
cal wave originating from an imaginary point on the op-
tical axis. The phasor described by this model has a cir-
cular singularity in the focal plane since the imaginary
location of the point source is related to a circle in real
space [27, 28]. A boundary condition of far-field counter-
propagating spherical waves was implemented to remove
the singularity in the complex source-point model [28-
31]. This is known as the complex source-sink model,
with the source and sink at the same imaginary location
along the optical axis. While the singularity is removed
in this model, the energy density diverges logarithmi-
cally as the transverse coordinate grows large [32]. Tt
has been stated, however, that this energy divergence is
irrelevant in practice since neither experiments nor sim-
ulations look to sufficiently large transverse distance for
it to matter [33, 34].

As our aim in this paper is to describe tightly-focused

% optical vortex beams carrying orbital angular momen-

tum, we utilize henceforth Laguerre-Gaussian (LG) mod-

7 els of such optical beams. In general, LG beams are clas-
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sified by two indices LG, ,,, with n and m representing
the radial and azimuthal profiles, respectively. These are
referred to as the LG “modes,” of which the lowest or-
der is a Gaussian beam and higher orders can describe
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vortex beams. In particular, we utilize the so-called ele-
gant LG (eLG) model, wherein the arguments of certain
special functions are complex variables. Note that there
is a physical difference between LG and eLG models, as
discussed by Saghafi and Sheppard [35]. Bandres and
Gutiérrez-Vega (BGV) have provided exact integral and
differential solutions for monochromatic eLG beams of
any LG mode (see Egs. (16) & (21) of Ref. [22]). These
solutions, based on the complex source-point model, con-
tain the singularity discussed above. In Ref. [22], BGV
presented an equally general perturbative solution which
does not contain the singularity, since a truncated per-
turbative model does not exactly satisfy the source-point
boundary condition (see Eq. (24) of Ref. [22]). As an al-
ternative approach, April employed a closed-form source-
sink model for monochromatic eLG fields in Ref. [31] that
is singularity-free.

Nearly all of the analytical models discussed thus far
entail a significant limitation: they assume a monochro-
matic beam. Many modern experiments, particularly
those studying high intensity laser-matter interactions,
involve optical pulses, shaped pulses, chirped pulses,
etc., all of which require a polychromatic description.
While long pulses can be well approximated as the prod-
uct of a temporal Gaussian envelope and a monochro-
matic field, this description becomes inadequate for ul-
trashort pulses [36]. Others have employed polychro-
matic descriptions, but these often assume that k. is
frequency-independent or involve non-LG models (see,
e.g., Refs. [37-39]). April [40] generalized his source-
sink model [31] for monochromatic eLG fields to allow
for polychromatic descriptions by introducing a Poisson-
like frequency spectrum [41, 42]. Application of the Hertz
potentials [43, 44] then allowed the computation of a com-
plete set of EM fields for an arbitrarily short pulse du-
ration and any LG mode. These fields are free of all
singularities [30], and can be made free of all discontinu-
ities [45], which are present in the complex source-point
models. While Ref. [40] presents a complete model for de-
scribing eLLG pulses in the frequency domain, the Fourier
transform required to achieve a time-domain phasor, and
therefore the EM fields, is nontrivial. To our knowledge,
this integral has only been carried out for the lowest ra-
dial order n = 0 in Ref. [45]. Due to a sum over radial
orders in the frequency-domain phasor of Ref. [40], the
Fourier transform for higher radial modes becomes in-
creasingly complicated to calculate.

In this paper we present an analytical method for cal-
culating the time-domain phasor, and EM fields, of a
tightly-focused, arbitrarily-short pulse for any LG mode.
Our method generalizes the perturbative approach of
BGV [22] by including a Poisson-like frequency spectrum
and calculating the EM fields from the time-domain pha-
sor. We show that our fields agree with those generated
from the model of Refs. [40, 45] for the n = 0 case, and
that fields for higher order LG modes can easily be pro-
duced. The primary advantage of this method over that
proposed in Ref. [40] is the ability to obtain an explicit

expression for the time-domain phasor, thus enabling one
to obtain the EM fields by a straightforward prescription.

This paper is organized as follows. In Section II we
derive the time-domain phasor used to calculate the EM
fields. In Section III we derive general expressions for
these EM fields, which are valid for any LG mode and
for any order of perturbative correction to the phasor.
In Section IV we present a test of the convergence of
our perturbative results and examine the necessity of the
temporal model we employ. In Section V we summa-
rize our results and present our conclusions and outlook.
In Appendices A and B we present some details of our
derivations, and in Appendix C we determine the spatial
radius of convergence for this perturbative model.

II. THE PHASOR

The derivation of our phasor (the spatiotemporal so-
lution to the scalar HE [46]) begins with the frequency-
domain perturbative phasor of BGV (Eq.(24) of Ref. [22])
in cylindrical polar coordinates,

Upgv (r,w) = (=1)"Fm224 exp(ikz + im)

% h2n+m+2vm/2 exp(—v)

N h2 J
X Z <—k2w2> (v)
=0 0
2 4
— Uz pgv +

B

f(2j)

n,m

52

= Uy, av + UsBov + -

where € = 1/(kwp) is a small dimensionless parameter,
h = (1 +iz/zg)"Y2, B = 1/h%, v = h2p?/wi, wo is
the beam waist, zr = kw2 /2 is the Rayleigh length, and
N is the term at which the infinite series is truncated.
The factors f,(ffn) (v) can be obtained from Eqgs. (25) of
Ref. [22] (as discussed in detail in Appendix A below).
These factor are each linear combinations of associated
Laguerre polynomials L (v), and can be found to any
order using the results in Ref. [22].

If we were to evaluate the perturbative expansion of
the phasor in Eq. (1) to infinite order (i.e., N — o0),
this would be equivalent to describing wave emission from
a complex point source (cf. Ref. [23]). The singularity
that naturally arises from this point source, however, is
avoided by our truncation of the perturbative expansion
at some finite order N. This truncation is equivalent
to approximating the source-point spherical wave, an ef-
fect of which is that we have a singularity-free model.
As such, the incoming spherical waves employed in other
works are not required to cancel a source-point singular-
ity in our model.

Keeping terms up to order €2, the sum in the phasor
of Eq. (1) reduces to
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In Eq. (2), the associated Laguerre polynomials L!"(v)
can be expressed as finite sums [47],

(3)
in which

(—=1)(n +m)!
(0= 3hm + )7

Since the BGV phasor was derived for the case of a
monochromatic field, in order to describe a temporally
finite pulse it must be generalized. We accomplish this by
multiplying the BGV phasor by a Poisson-like frequency
spectrum [41, 42],

s+1
f(w) = 2mei®o (i>

wo

(4)

Gn m,j =

w® exp(—sw/wp)

T(s+1) Ow),

()
where s is the spectral parameter controlling the pulse
duration, wp is the central frequency, ¢¢ is the initial
phase of the pulse, I'(s+1) is a gamma function, and O (w)
is the unit step function. Our polychromatic frequency-
domain phasor is then defined as,

U(r,w) = UBgvf(w). (6)

In the limit of a narrow spectrum, s > 1, Eq. (5) reduces
to a Gaussian spectrum with pulse duration 7 = /25 /wy.

In order to Fourier transform the phasor in Eq. (6) to
the time domain, we adopt the condition of isodiffraction,
i.e., we assume that every frequency component has the
same wavefront radius of curvature. For this choice of
complex source-point location, the isodiffraction condi-
tion ensures that zg is constant for all frequency compo-
nents, whereas the beam waist, wo = \/2zr/k, depends
on w through the vacuum dispersion relation k& = w/c,
where ¢ is the speed of light [41, 42, 48].

Owing to the introduction of a Poisson-like frequency
spectrum to the monochromatic phasor of BGV, imple-
mentation of the smallness parameter must be modified
slightly. Since € now varies with the frequency, we can
use its definition to factor out its frequency dependence,
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where €. is a frequency-independent (constant) small pa-
rameter in terms of the central pulse frequency, wy.

With all frequency dependencies accounted for, one
can now Fourier transform U (r,w) into the time domain,

U(r, ) = \/% L T Ur, w) exp(—iwt)dw,  (8)

where the negative exponential is chosen so that the
resulting pulse is traveling in the +2z-direction. Using
the integral representation of the gamma function (cf.
Eq. (6.1.1) of [49]),

'v+1) = 177*1/ dww” exp(—nw), Ren>0, (9)
0

we obtain the time-domain phasor (by methods shown
explicitly in Appendix B),

n

U(r,t) = Apm | oo T~OHD
j=0
62 n+1 ) n+2 )
4+ < Z 8T — Z 1280 T
A §=0 §=0
(10)
The new variables in Eq. (10) are defined as
2
p
= 11
$= % (11a)
T51+ﬂ(—5+§+z’t> (11b)
s c
Ay = (—=1)"T227 ™2 n) exp(icy ) (11c)
x £m2 g Em 2D exp (img),
and the constants are defined as
wo\ 7= Ty + 1)
Gy () EOED 1
0.0 s I(s+1) (12a)
wo\ 7751 2wl ()
- DGiig) s (—) 20l o
11 = (0 DGsnm; s I'(s+1) (12b)
wo\Y—s—1
c12 = wo(n + 1)(n + 2)G (n42),m,j (?O) (12¢)
')
— 12d
I'(s+1) (12d)
y=m/2+ s+ . (12e)

Further details of this derivation can be found in Ap-
pendix B.



III. THE FIELDS

226

From the expression for the phasor U(r,t) in Eq. (10),
»s Hertz potentials [43, 44] can be used to generate expres-
229 sions for the complex EM fields. The desired polarization
230 of the laser field is determined by the form of these Hertz
an potentials, and not from any property of the phasor. As
22 an example, for the case of radial polarization the EM
233 fields can be expressed from the phasor as simply

227

E(r,t) =V xV x (U(r,t)z) (13a)

H(r,t) = EO%V x (U(r,t)z) (13b)
21 For different polarizations, these expressions for E and H
235 would change (see Table 3 on p. 372 of Ref. [40] and the
23 text at the bottom of p. 361 of Ref. [40] for more details).
In the expressions that follow for the unnormalized EM
238 fields, we have carried out calculations for all but the
239 most simple partial derivatives of the phasor. By leaving
20 these derivative terms in the field equations, we ensure
2n that the expressions remain valid for higher perturbative
22 orders in which the phasor is modified to have additional
23 terms.

237
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B,=-1 U
p Bzr szr 0BOT
wo [26(n+m +2) & 1\JoUu
+ S [ Bzr m BZR+C oT
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genTomr Yoy Mmooy 14
Bzr 06 zr 0P a4
2¢2 92 2
L 220U g (26 1) OU
Bzr 0&? s \Bzr c) 00T
HPU i€ 1\ U
zp 0603 s \Bzr c¢) OT?
_mntmAl, e (& 1)U
Es = p [ Bzr * s <ﬁzR + c> oT (15)
Lo o)
Bzr O zr 0P
_ 8] A ou _ ou
Ez_pQ{ . (m+1)8T 4(m+1)8§ )
4w OPU | 0PU Bwot U
s 9T? €2 s 0&0T
B _mwoa_U
P 2sp OT (17)
- iWQ oU wo 62U 62U
Bs = -5, {ma_T 2 (?W *oeor )| 1Y)

s As is the case with all radially polarized fields, B, = 0.
25 The perturbative order necessary to achieve convergence
26 will be discussed in the next section.

IV. RESULTS

247

A. Test for Accuracy of Fields Obtained from the
Perturbative Phasor

248
249

0 Depending on the parameters used to describe the op-
x1 tical field, perturbative orders higher than €2 may need
22 to be included in the phasor. These higher order correc-
253 tions are needed not only as the spot size is reduced, but
also as the radial or azimuthal LG indices are increased.
Numerical simulations show that excluding terms above
order €2 is sufficient only for the lowest LG modes.

A simple method for checking the convergence of the
perturbative expansion of the phasor is to verify that
the wave equation is satisfied to within some numerical
tolerance. Since the phasor must be a solution to the
wave equation [40], we can write explicitly

254
255
256
257
258
259
260

261

1 d?

2
v=-2u
v c? dt?

(19)
One can check directly that the equation is satisfied at
any given order of perturbation. If an appropriate per-
turbative order is used to represent the phasor, numerical
comparison of |V2U| and |02U/c?| will agree, since the
wave equation will be satisfied. Disagreement, on the
other hand, indicates that additional terms in the per-
turbative expansion must be included in order to achieve
a converged phasor. We note that since all fields are
calculated as derivatives of the phasor, use of Eq. (19)
to check the adequacy of the perturbative expansion is
valid for any field polarization, not just for the radially
polarized fields calculated above as an example.

To illustrate this technique, a comparison of the left-
and right-hand sides of Eq. (19) is shown in Fig. 1 for
three LG modes, calculated for two different orders of
perturbative correction. For each of the results in Fig. 1,
we present the root mean squared error (RMSE) between
|V2U| and |9?U/c?| calculated using 200 plot points
across the range of p/\ shown. Convergence of the per-
turbative expansion can be claimed if the RMSE is suf-
ficiently small (the exact definition of which depends on
the application). The results in Figs. 1(d) - 1(f) show im-
proved agreement between the left- and right-hand sides
of the wave equation over those in Figs. 1(a) - 1(c), re-
spectively, as the order of perturbation increases from
O(€2) to O(e?). However, agreement between these terms
becomes worse as the LG mode increases from n = 2 to
n = 3 for both the phasors of O(e2?) and those of O(el),
thus illustrating the need to check for convergence. Cal-
culations for other LG modes having indices n + m < 3
(not shown) have RMSE values similar to those for the
LG modes shown in Fig. 1 when corrections to similar
perturbative orders are included.

We emphasize that the addition of higher order correc-
tions to the phasor does not change the EM field equa-
tions that have been derived in Section III. The expres-
sions for the EM fields given in Egs. (14)-(18) remain
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FIG. 1. Comparison of both sides of the wave equation [Eq. (19)] for the phasor, |V2U| and |8}U/c?|, for three LG modes,
calculated for two different orders of perturbative correction. Panels [(a),(d)] show LG mode m = 2,n = 0, panels [(b),(e)]
show m = 0,n = 2, and panels [(c),(f)] show m = 0,n = 3. The phasor contains perturbation terms to order €2 in [(a)-(c)] and
to order €2 in [(d)-(f)]. The RMS error decreases when the higher order term is included in the phasor. These plots were made
near the beam waist using s = 70 and wo = A = 800 nm (2 ~ 0.0253).

valid as the phasor is modified, since these field expres-
sions are written in terms of partial derivatives of the
phasor. Thus, use of our field equations for higher per-
turbative orders is relatively straightforward, requiring
only the addition of higher order corrections to the pha-
sor. Appendix B provides an example in which the per-
turbative correction of order €? is calculated in detail.

In Fig. 2 we compare our converged fields from
Egs. (14) and (16) with those obtained from the closed-
form phasor of April [40]. The normalized electric field
intensities in the p— and z—directions are shown for each
model, for both long and short pulse durations. Excellent
agreement is seen between the fields of our model (sub-
script “pert” in the figure) and those of April (subscript
“A”), for both long (Fig. 2a) and short (Fig. 2b) pulses.
The spatial radius of convergence of the perturbative ex-
a5 pansion is discussed in Appendix C.
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316 B. Sensitivity of the Fields to the Spectral Profile

sz The EM fields are calculated using the time-domain
sis phasor U(t), which may be obtained in one of two ways.
310 The exact way, as done in Sec. I, is to Fourier transform
30 the frequency-domain phasor to the time domain accord-
a1 ing to Eq. (8). An approximate approach is to multiply
s2 the monochromatic phasor by a temporal Gaussian en-

33 velope, as follows:

(t—2/c)?

U(r,t) = Upgy(r,wo) exp | —iwot — = (20)

324 While these two methods may agree for longer pulse du-
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rations, it is known that use of a Gaussian temporal en-
velope as in Eq. (20) fails to correctly model the behavior
of ultrashort pulses [36].

The problem may be understood by considering the
time-frequency uncertainty relation, i.e., that the spec-
tral bandwidth grows as the pulse length decreases. For
sufficiently short pulses, the bandwidth becomes so large
that negative frequency components enter with apprecia-
ble weight. These nonphysical frequencies may cause the
electric fields to grow with transverse distance from the
optical axis instead of decay, as required for a physically
correct model [41].

A Poisson-like frequency spectrum was used in the
derivation of our phasor in Sec. II to correctly model
the behavior of ultrashort pulses. Owing to its inher-
ent unit step function ©(w), a Poisson-like spectrum re-
moves unphysical negative frequency components from
the frequency-domain phasor. Thus, upon Fourier trans-
formation into the time domain, one eliminates the pos-
sibility of nonphysical temporal fields.

A comparison of the fields calculated from the time-
domain phasors defined in Egs. (8) and (20) for two
different pulse durations is given in Fig. 3. As shown
in Fig. 3(b) for short pulses, the fields generated from
Eq. (20) (subscript “TG”) clearly differ from those gener-
ated from the Poisson spectrum phasor (subscript “PS”).
In contrast, for long pulses, Fig. 3(a) shows much better
agreement between the fields generated by the two dif-
ferent methods. This better agreement occurs since the
frequency bandwidth of the temporal Gaussian doesn’t
extend to negative values in the case of a long pulse.
Note that the “PS” fields in Fig. 3 are the same as the
“pert” fields in Fig. 2.
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FIG. 2. Comparison of numerical values of the relative inten-
sities of fields E, and E. near the beam waist for the LGo,o
mode for two different spectral parameters: (a) s=2848 (~20-
cycle FWHM, 53.4 fs) or (b) s=7 (~1-cycle FWHM, 2.65 fs).
Solid dark (blue) and light (gray) curves are calculated using
fields derived from April’s phasor [40] (“A”), while the dashed
and dash-dot curves are calculated from the fields given in
Eqgs. (14) and (16) of this paper with the phasor to pertur-
bative order €2 (“pert”), all with wo = 1.5\ and A = 800 nm
(€2 =~ 0.0113).

V. SUMMARY AND CONCLUSIONS

358

In this paper we have presented an analytic method for
calculating the EM fields of a tightly focused, arbitrarily-
short laser pulse of any radial and azimuthal LG mode.
In brief, the EM fields are obtained from the time-domain
%3 phasor, whose analytic expression to the €2 perturbative
se order is given in Eq. (10). An example for obtaining the
ses phasor to higher orders in €2 is given in Appendix B. For
6 the case of radially-polarized EM fields, Eqs. (13) - (18)
37 show how to obtain the EM fields from the phasor of any
38 perturbative order. With only lowest order perturbative
30 corrections included, these fields are consistent with the
s field model of April [40] for the Gaussian mode over a
sn wide range of pulse durations. Use of a Poisson-like fre-
32 quency spectrum was essential to obtain this agreement,
33 as this spectrum eliminates the possibility of negative fre-
s quency modes that lead to unphysical fields for ultrashort
375 pulses.
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s Invoking the condition of isodiffraction is necessary for

plA

FIG. 3. Comparison of numerical values of the relative inten-
sities of fields E, and E. near the beam waist for the LGo,o
mode for two different spectral parameters: (a) s=2848 (~20-
cycle FWHM, 53.4 fs) or (b) s=7 (~1-cycle FWHM, 2.65 fs).
Solid dark (blue) and light (gray) curves are calculated us-
ing the temporal Gaussian (“T'G”) model of Eq. (20) with
the indicated pulse durations, while the dashed and dash-dot
curves are calculated using the Fourier transformed Poisson
spectrum (“PS”) of Eq. (8) to order €2, all with wo = 1.5\
and A = 800 nm (¢2 ~ 0.0113).

s solving the Fourier integral of the phasor when trans-
s forming it into the time domain. The phasor for a com-
a9 pletely general nonparaxial eLG beam, valid for arbitrar-
ss0 ily short pulses, has never to our knowledge been ex-
s pressed in the time domain without use of the isodiffrac-
s tion condition, as otherwise the necessary Fourier inte-
33 gral becomes prohibitively complicated. For nonparaxial
sa complex source-point models, this condition of isodiffrac-
sss tion requires that the imaginary distance to the source
w6 point, zg in this case, remains frequency-independent.

A major benefit of our perturbative model is its scala-
ss bility to higher radial and orbital LG modes. Expressions
80 for the time-domain EM fields for these higher LG modes
s using other models usually requires the calculation of in-
sa finite sums or the evaluation of integrals involving spe-
cial functions of complex variables. The integrals over
these complex special functions, for arbitrary LG modes,
are difficult to evaluate. In our model, all EM fields are
written simply in terms of the phasor and its elementary
306 derivatives.
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Appendix A: Derivation of the Factors f(Zj)(v)

407

ws  We begin with the frequency-domain phasor, for any
w0 LG mode, of BGV in integral form (Eq. (16) of Ref. [22]),

Un,m _ /w(_a)2n+m(_1) eXp(:thgf)) 2n+m
0

(A1)

X [Z—R exp (ik,(z — izg) — kzR)

X I (ap)a dov.

a0 An intermediate result of Ref. [22] is that the phasor of
i Eq. (Al) above is equivalent to an infinite series repre-
a2 sentation given by Eq.(22) of Ref. [22],

mm:/mem“menem&mwQMm
0

2 ;2
X {% exp(ikz) exp (—%(z — izR)) (A2)
< G20
Z (o) @) Im(ap)a da.

Jj=

Comparing these two equations, it is clear that the
as terms inside the square brackets of each expression
as must be equal. Making use of the relation zp = kw3 /2
a6 and our previous definition of 8 from Eq. (1), and
a7 defining Q) = W%ki, the terms in square brackets of
as Egs. (A1) and (A2) can be equated and solved for the
a9 infinite sum, yielding

413

Y gt = ! exp | Y 1-e0-1 0

= V1—e2Q 2¢23 4p
(A3)
20 In the above expression, we again define ¢ = 1/(kwy)

a1 since the description at this point is monochromatic. The
2 RHS can then be expanded in a Taylor series about €2 =
23 0. Collecting powers of € in this expansion yields the
w24 perturbative terms G(27)

> . . Q 02
(27) (2(27) — 8 2 (20 _
;06 G O(e)—i—l—i—e (2 165>+

Q4

2 3
a(300 2 @ (A4)
8 168 ' 51252
6 (5% 1501 300 Qf
16 2568 ' 10248%  245763° )
s These results confirm Eq. (23) of Ref. [22], and elucidate

26 how to extend the method to arbitrarily large j. These
o7 terms G?7) are then used in Eq. (A2) along with the
a8 integral

/ "M exp (—p2a2) Im(ap)a da
0
n

| m 2 2
o —@nmt2) (P pm (P _r
2P (2p) " (4p2 CP Ty

_ (Ab)
0 to produce the factors f(2/)(v) given by BGV in Ref. [22].
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Appendix B: The Phasor to order ¢*

In this Appendix we derive the O(e?) correction to the
2 time-domain phasor, starting with the frequency-domain
phasor in Eq. (1). Counsidering only the term of order
¢* in Eq. (1), we make the replacements wo — /2zr/k
and k£ — w/c and invoke the condition of isodiffraction,
which requires that zr is constant. We obtain

431

433
434
435

436

et

B_CQU&'BGV = (—1)”+m22”+m exp(iwz/c+ imao)

2
2w623>
4(n + 3)IL" 5(v)

X h2n+m+2vm/2 GXp(—’U) [< c
(B1)

x { 6(n + 2)ILT", o (v) —

+;n+®wmawﬂ-

Multiplying this result by the Poisson-like frequency
s spectrum in Eq. (5), expressing the associated Laguerre
s polynomials as sums [see Egs. (3) and (4)], and extracting
w0 powers of w within the sums, we obtain
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i) = e e (S rer 1)
s+1 4 |nt2
s O(w)V2me S
i —_c Coo W7
<wo) B2 j:ZO 2725
n+3 n+4

—~— ej =2 —~— ej =2
_ E oz w24 E :0274 Fuw? ,
j=0 Jj=0

(B2)



w1 where some variables defined in Eq. (11) have been used,
w2 and new constants are defined as follows:

22 = 6wi(n +2)(n+ 1)G(ni2)m,j (B3a)

Cos =4dwi(n+3)(n+2)(n+1)Gnyaym;  (B3D)
2

G = %(n+4)(n+3)(n+2)(n+1) (B3c)

X G(nta),mj- (B3d)

w3 We now Fourier transform Uy(w) to the time domain
s as in Eq. (8) to obtain Uy(t),

A s\ er [
Us(t) = m (w—()) @/0 exp(—wn)

n+2 n+3
DT g™ gy
j=0 j=0
n+4

+ ZE{Z w2 dw,
j=0

ws where n = —iz/c+ & + s/wp + it. Using the integral rep-
us resentation of the gamma function in Eq. (9), we obtain

s s+1 64 n+2
Ui =Ny | — < &5 ==
()5 2 e
(B5)
n+3 n—+4

_ Zm g~ 4 Zm gig=O=D 1
Jj=0 j=0

where ¢35 = co50(y — 1)/T'(s + 1) for 6 =2,3,4.

Taking now the overall prefactor (s/wp)**! in Eq. (B5)
o inside each of the sums and using the definition of 7" in
o Eq. (11)(b), we can write for any power ¢,

s s+1 s s+1—q
N —-q _— ( T4,
&) )

s Defining the coefficients co 5 = Gag(s/wp) 27 for
s & = 2,3, 4, the final result for the O(e?) term Uy(t) is:
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U4 = Anvmﬁ_(; Z 6272 ngi('yil)
) =0
’ (B7)
n+3 ) n+4 )
_ Z Cos gaT*(vfl) + Z Coa §JT*(’Y*1)
§=0 §=0

3 Adding this result to the O(e?) phasor U2 in Eq. (10),
s the complete O(e?) time-domain phasor U™ (¢) is:
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The calculation of higher order terms would proceed
similarly. The upper limits of the sums, their interior co-
efficients, the leading powers of €2/f3, and the integrated
powers of w would change, but otherwise the process
would be identical to that demonstrated above.

Appendix C: Radius of Convergence of the
Perturbative Phasor

Perturbative models require that higher-order terms
in the perturbative expansion have smaller magnitude
than lower-order terms, so that the infinite series con-
verges. However, the series expansions upon which such
perturbations are based often do not have this behav-
ior in all space. For example, the one-dimensional func-
tion 1/(2% + 1) is well-defined at all values on the real
axis. Expanding this function in a Maclaurin series gives
1 — 22 + 2% + ... which only converges in the finite region
|z| < 1, rendering the series expansion useless outside
this radius of convergence. In this appendix, we estimate
the radius of convergence for the perturbative phasor in
Eq. (1) of this paper.

We begin by considering the magnitude of the
frequency-domain phasor in Eq. (1). Each term in the
perturbative sum contains a factor ,(12%2 (v), derived in
Appendix A, which is a sum of associated Laguerre poly-
nomials. At some perturbative order j, the dominant

contribution to f,(ffn) (v) is

(n+29)!

£ ~ T L), (1)

since L?Hj(v) has the highest power of v amongst all

associated Laguerre polynomials contributing to f,(lzfyz (v)
[cf. Egs. (2) and (3)]. The term in L} ,;(v) hav-
ing the highest power of v is G(n+2j1m7n+2j)vn+2j [cf.
Eq. (3)]. Making use of Eq. (4), and noting that |h| =
(1422/2%)71/4, one can write the magnitude of the dom-
inant contribution to the j*"-order term of Eq. (1) as



) )
2n+m 25 2\ —3(2n+3j+m+1)
U@~ e A
5! 2%
2n+4j+m
X exp IR o
W(2) (1+ zz/zlz{) wo

(€2)
s As noted above, the radius of convergence is defined by
a0 the spatial region in which the term of order j is smaller
w0 than the term of order j—1. To find such a region, we cal-
w culate the difference |U7)| —|U21=2)| < 0. Given that
w2 p > 0and 22 > 0, this inequality can only be satisfied for

203 This condition must be satisfied for all j, and the max-
w0 imum allowed value of p increases with larger j. There-
ws fore, the radius of convergence p. is determined by the
w6 minimal case of j =1,

1/4

2\ wi]"
I+=) =
ZR €

w7 Note that p. is defined for any z and is independent of
ws the LG modes n and m.

p<

Pe- (C4)
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FIG. 4. Hlustration of the radius of convergence for the phasor
in Eq. (1), demonstrated by the dominant perturbative order
j as a function of spatial location. Each region is labelled
by the perturbative order j € [0,3] that is largest therein.
The region in which the j = 0 term dominates is the region
in which the perturbation is converged. This plot was made
using wo = A = 800 nm [e = 1/(27)].

This radius of convergence is demonstrated in Fig. 4,
wherein the magnitude of the perturbative phasor given
in Eq. (C2) is plotted as a function of p and z for up to
three orders of perturbative correction. The minimum
radius of convergence p,. is given in Eq. (C4), which cor-
responds to the line between regions 0 and 1 in Fig. 4.
The space with p-values below this line corresponds to
the region of perturbative convergence, or the region in
which the 0**-order phasor is dominant.
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