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(Dated: September 17, 2018)7

An analytical method for calculating the electromagnetic fields of a nonparaxial elegant Laguerre-
Gaussian (LG) vortex beam is presented for arbitrary pulse duration, spot size, and LG mode. This
perturbative approach provides a numerically tractable model for the calculation of arbitrarily high
radial and azimuthal LG modes in the nonparaxial regime, without requiring integral representations
of the fields. A key feature of this perturbative model is its use of a Poisson-like frequency spectrum,
which allows for the proper description of pulses of arbitrarily short duration. This model is thus
appropriate for simulating laser-matter interactions, including those involving short laser pulses.

I. INTRODUCTION8

The ability to produce vortex beams of light [1–4] or9

electrons [5–7] with well-defined orbital angular momen-10

tum allows for the study of angular momentum exchange11

processes when such beams interact with matter. Re-12

cently, optical vortex (or “structured light”) beams have13

been used to probe chiral matter [8], to study multi-14

pole excitation of atoms as a function of their location15

with respect to the beam axis [9], to improve vacuum16

acceleration of electrons [10], and to advance quantum17

information technologies [1, 11], among numerous other18

applications. Such structured light can be created in the19

extreme ultraviolet by means of high-order harmonic gen-20

eration [12–14]. For some applications of optical vortex21

beams, high intensity is required (such as, e.g., for vac-22

uum acceleration of charged particles [10]), which is usu-23

ally achieved by tightly focusing the beam. However,24

tightly-focused beams with spot sizes comparable to the25

laser wavelength cannot be correctly described within the26

paraxial approximation [15, 16].27

Perturbative solutions for the fields beyond the lowest-28

order paraxial approximation were considered as early as29

1975, in which the first few orders of nonparaxial cor-30

rections were found [16–18]. The first order correction31

introduces a longitudinal electric field, which is absent in32

the paraxial approximation. Many higher order correc-33

tions to the electromagnetic (EM) fields have since been34

found [19, 20].35

Perturbative solutions of the scalar Helmholtz equation36

(HE) (whose exact solution is termed the phasor) provide37

an alternative approach for treating nonparaxial effects.38

Solutions for the HE phasor have been obtained primar-39

ily by two different methods. One method involves solv-40

ing for the exact phasor in integral or differential form.41

This phasor is then expanded perturbatively [18, 21, 22].42
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Alternatively, the HE can be solved one perturbative or-43

der at a time, and an exact phasor built from the sum44

of these solutions [17, 23–25]. With either of these two45

methods, the HE can be solved under different sets of46

boundary conditions [26]. Common choices for bound-47

ary conditions include: (i) a purely paraxial beam in the48

focal plane [18, 24, 25] (where the exact solution is valid49

in the half space after the focus only, while the perturba-50

tive solution is valid in all space), (ii) an oscillatory far-51

field beam [17, 19], or (iii) an outgoing spherical wave in52

the far-field [21–23]. Couture and Belanger [23] showed53

that the latter, with infinitely many orders of correction,54

was equivalent to modeling the Gaussian beam with a55

so-called complex source-point.56

The complex source-point model warrants additional57

discussion. It describes the beam as an outgoing spheri-58

cal wave originating from an imaginary point on the op-59

tical axis. The phasor described by this model has a cir-60

cular singularity in the focal plane since the imaginary61

location of the point source is related to a circle in real62

space [27, 28]. A boundary condition of far-field counter-63

propagating spherical waves was implemented to remove64

the singularity in the complex source-point model [28–65

31]. This is known as the complex source-sink model,66

with the source and sink at the same imaginary location67

along the optical axis. While the singularity is removed68

in this model, the energy density diverges logarithmi-69

cally as the transverse coordinate grows large [32]. It70

has been stated, however, that this energy divergence is71

irrelevant in practice since neither experiments nor sim-72

ulations look to sufficiently large transverse distance for73

it to matter [33, 34].74

As our aim in this paper is to describe tightly-focused75

optical vortex beams carrying orbital angular momen-76

tum, we utilize henceforth Laguerre-Gaussian (LG) mod-77

els of such optical beams. In general, LG beams are clas-78

sified by two indices LGn,m, with n and m representing79

the radial and azimuthal profiles, respectively. These are80

referred to as the LG “modes,” of which the lowest or-81

der is a Gaussian beam and higher orders can describe82
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vortex beams. In particular, we utilize the so-called ele-83

gant LG (eLG) model, wherein the arguments of certain84

special functions are complex variables. Note that there85

is a physical difference between LG and eLG models, as86

discussed by Saghafi and Sheppard [35]. Bandres and87

Gutiérrez-Vega (BGV) have provided exact integral and88

differential solutions for monochromatic eLG beams of89

any LG mode (see Eqs. (16) & (21) of Ref. [22]). These90

solutions, based on the complex source-point model, con-91

tain the singularity discussed above. In Ref. [22], BGV92

presented an equally general perturbative solution which93

does not contain the singularity, since a truncated per-94

turbative model does not exactly satisfy the source-point95

boundary condition (see Eq. (24) of Ref. [22]). As an al-96

ternative approach, April employed a closed-form source-97

sink model for monochromatic eLG fields in Ref. [31] that98

is singularity-free.99

Nearly all of the analytical models discussed thus far100

entail a significant limitation: they assume a monochro-101

matic beam. Many modern experiments, particularly102

those studying high intensity laser-matter interactions,103

involve optical pulses, shaped pulses, chirped pulses,104

etc., all of which require a polychromatic description.105

While long pulses can be well approximated as the prod-106

uct of a temporal Gaussian envelope and a monochro-107

matic field, this description becomes inadequate for ul-108

trashort pulses [36]. Others have employed polychro-109

matic descriptions, but these often assume that kz is110

frequency-independent or involve non-LG models (see,111

e.g., Refs. [37–39]). April [40] generalized his source-112

sink model [31] for monochromatic eLG fields to allow113

for polychromatic descriptions by introducing a Poisson-114

like frequency spectrum [41, 42]. Application of the Hertz115

potentials [43, 44] then allowed the computation of a com-116

plete set of EM fields for an arbitrarily short pulse du-117

ration and any LG mode. These fields are free of all118

singularities [30], and can be made free of all discontinu-119

ities [45], which are present in the complex source-point120

models. While Ref. [40] presents a complete model for de-121

scribing eLG pulses in the frequency domain, the Fourier122

transform required to achieve a time-domain phasor, and123

therefore the EM fields, is nontrivial. To our knowledge,124

this integral has only been carried out for the lowest ra-125

dial order n = 0 in Ref. [45]. Due to a sum over radial126

orders in the frequency-domain phasor of Ref. [40], the127

Fourier transform for higher radial modes becomes in-128

creasingly complicated to calculate.129

In this paper we present an analytical method for cal-130

culating the time-domain phasor, and EM fields, of a131

tightly-focused, arbitrarily-short pulse for any LG mode.132

Our method generalizes the perturbative approach of133

BGV [22] by including a Poisson-like frequency spectrum134

and calculating the EM fields from the time-domain pha-135

sor. We show that our fields agree with those generated136

from the model of Refs. [40, 45] for the n = 0 case, and137

that fields for higher order LG modes can easily be pro-138

duced. The primary advantage of this method over that139

proposed in Ref. [40] is the ability to obtain an explicit140

expression for the time-domain phasor, thus enabling one141

to obtain the EM fields by a straightforward prescription.142

This paper is organized as follows. In Section II we143

derive the time-domain phasor used to calculate the EM144

fields. In Section III we derive general expressions for145

these EM fields, which are valid for any LG mode and146

for any order of perturbative correction to the phasor.147

In Section IV we present a test of the convergence of148

our perturbative results and examine the necessity of the149

temporal model we employ. In Section V we summa-150

rize our results and present our conclusions and outlook.151

In Appendices A and B we present some details of our152

derivations, and in Appendix C we determine the spatial153

radius of convergence for this perturbative model.154

II. THE PHASOR155

The derivation of our phasor (the spatiotemporal so-156

lution to the scalar HE [46]) begins with the frequency-157

domain perturbative phasor of BGV (Eq.(24) of Ref. [22])158

in cylindrical polar coordinates,159

UBGV (r, ω) = (−1)n+m22n+m exp(ikz + imφ)

× h2n+m+2vm/2 exp(−v)

×
N∑

j=0

(
h2

k2w2
0

)j

f (2j)
n,m(v)

≡ U0,BGV +
ǫ2

β
U2,BGV +

ǫ4

β2
U4,BGV + ...

(1)

where ǫ ≡ 1/(kw0) is a small dimensionless parameter,160

h = (1 + iz/zR)
−1/2, β = 1/h2, v = h2ρ2/w2

0, w0 is161

the beam waist, zR = kw2
0/2 is the Rayleigh length, and162

N is the term at which the infinite series is truncated.163

The factors f
(2j)
n,m(v) can be obtained from Eqs. (25) of164

Ref. [22] (as discussed in detail in Appendix A below).165

These factor are each linear combinations of associated166

Laguerre polynomials Lm
n (v), and can be found to any167

order using the results in Ref. [22].168

If we were to evaluate the perturbative expansion of169

the phasor in Eq. (1) to infinite order (i.e., N → ∞),170

this would be equivalent to describing wave emission from171

a complex point source (cf. Ref. [23]). The singularity172

that naturally arises from this point source, however, is173

avoided by our truncation of the perturbative expansion174

at some finite order N . This truncation is equivalent175

to approximating the source-point spherical wave, an ef-176

fect of which is that we have a singularity-free model.177

As such, the incoming spherical waves employed in other178

works are not required to cancel a source-point singular-179

ity in our model.180

Keeping terms up to order ǫ2, the sum in the phasor181

of Eq. (1) reduces to182
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1∑

j=0

(
h

kw0

)2j

f (2j)
n,m(v) = n!Lm

n (v)

+
ǫ2

β

[
2(n+ 1)!Lm

n+1(v)

− (n+ 2)!Lm
n+2(v)

]
.

(2)

In Eq. (2), the associated Laguerre polynomials Lm
n (v)183

can be expressed as finite sums [47],184

Lm
n (v) ≡

n∑

j=0

Gn,m,j vj , (3)

in which185

Gn,m,j ≡
(−1)j(n+m)!

(n− j)!(m+ j)!j!
. (4)

Since the BGV phasor was derived for the case of a186

monochromatic field, in order to describe a temporally187

finite pulse it must be generalized. We accomplish this by188

multiplying the BGV phasor by a Poisson-like frequency189

spectrum [41, 42],190

f(ω) = 2πeiφ0

(
s

ω0

)s+1
ωs exp(−sω/ω0)

Γ(s+ 1)
Θ(ω), (5)

where s is the spectral parameter controlling the pulse191

duration, ω0 is the central frequency, φ0 is the initial192

phase of the pulse, Γ(s+1) is a gamma function, and Θ(ω)193

is the unit step function. Our polychromatic frequency-194

domain phasor is then defined as,195

U(r, ω) ≡ UBGV f(ω). (6)

In the limit of a narrow spectrum, s ≫ 1, Eq. (5) reduces196

to a Gaussian spectrum with pulse duration τ =
√
2s/ω0.197

In order to Fourier transform the phasor in Eq. (6) to198

the time domain, we adopt the condition of isodiffraction,199

i.e., we assume that every frequency component has the200

same wavefront radius of curvature. For this choice of201

complex source-point location, the isodiffraction condi-202

tion ensures that zR is constant for all frequency compo-203

nents, whereas the beam waist, w0 =
√
2zR/k, depends204

on ω through the vacuum dispersion relation k = ω/c,205

where c is the speed of light [41, 42, 48].206

Owing to the introduction of a Poisson-like frequency207

spectrum to the monochromatic phasor of BGV, imple-208

mentation of the smallness parameter must be modified209

slightly. Since ǫ now varies with the frequency, we can210

use its definition to factor out its frequency dependence,211

ǫ2 =
c

2zRω
=

c

2zRω0

ω0

ω
≡ ǫ2c

ω0

ω
, (7)

where ǫc is a frequency-independent (constant) small pa-212

rameter in terms of the central pulse frequency, ω0.213

With all frequency dependencies accounted for, one214

can now Fourier transform U(r, ω) into the time domain,215

U(r, t) =
1√
2π

∫
∞

−∞

U(r, ω) exp(−iωt)dω, (8)

where the negative exponential is chosen so that the216

resulting pulse is traveling in the +ẑ-direction. Using217

the integral representation of the gamma function (cf.218

Eq. (6.1.1) of [49]),219

Γ(γ + 1) = ηγ+1

∫ ∞

0

dω ωγ exp(−ηω), Re η > 0, (9)

we obtain the time-domain phasor (by methods shown220

explicitly in Appendix B),221

U(r, t) = Λn,m




n∑

j=0

c0,0ξ
jT−(γ+1)

+
ǫ2c
β




n+1∑

j=0

c1,1ξ
jT−γ −

n+2∑

j=0

c1,2ξ
jT−γ




 .

(10)

The new variables in Eq. (10) are defined as222

ξ ≡ ρ2

2cβzR
(11a)

T ≡ 1 +
ω0

s

(
− iz

c
+ ξ + it

)
(11b)

Λn,m ≡ (−1)n+m22n+m
√
2πn! exp(iφ0) (11c)

× ξm/2β−(n+m/2+1) exp(imφ),

and the constants are defined as223

c0,0 ≡ Gn,m,j

(ω0

s

)γ−s Γ(γ + 1)

Γ(s+ 1)
(12a)

c1,1 ≡ (n+ 1)G(n+1),m,j

(ω0

s

)γ−s−1 2ω0Γ(γ)

Γ(s+ 1)
(12b)

c1,2 ≡ ω0(n+ 1)(n+ 2)G(n+2),m,j

(ω0

s

)γ−s−1

(12c)

× Γ(γ)

Γ(s+ 1)
(12d)

γ ≡ m/2 + s+ j. (12e)

Further details of this derivation can be found in Ap-224

pendix B.225
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III. THE FIELDS226

From the expression for the phasor U(r, t) in Eq. (10),227

Hertz potentials [43, 44] can be used to generate expres-228

sions for the complex EM fields. The desired polarization229

of the laser field is determined by the form of these Hertz230

potentials, and not from any property of the phasor. As231

an example, for the case of radial polarization the EM232

fields can be expressed from the phasor as simply233

E(r, t) = ∇×∇× (U(r, t)ẑ) (13a)

H(r, t) = ǫ0
∂

∂t
∇× (U(r, t)ẑ) (13b)

For different polarizations, these expressions for E and H234

would change (see Table 3 on p. 372 of Ref. [40] and the235

text at the bottom of p. 361 of Ref. [40] for more details).236

In the expressions that follow for the unnormalized EM237

fields, we have carried out calculations for all but the238

most simple partial derivatives of the phasor. By leaving239

these derivative terms in the field equations, we ensure240

that the expressions remain valid for higher perturbative241

orders in which the phasor is modified to have additional242

terms.243

Eρ = − i

ρ

{
m(n+m+ 1)

βzR
U − 2ω0ξ

szR

∂2U

∂β∂T

+
ω0

s

[
2ξ(n+m+ 2)

βzR
+m

(
ξ

βzR
+

1

c

)]
∂U

∂T

+
ξ(2n+ 3m+ 4)

βzR

∂U

∂ξ
− m

zR

∂U

∂β

+
2ξ2

βzR

∂2U

∂ξ2
+

2ω0ξ

s

(
2ξ

βzR
+

1

c

)
∂2U

∂ξ∂T

− 2ξ

zR

∂2U

∂ξ∂β
+

2ω2
0ξ

s2

(
ξ

βzR
+

1

c

)
∂2U

∂T 2

}

(14)

Eφ =
m

ρ

[
n+m+ 1

βzR
U +

ω0

s

(
ξ

βzR
+

1

c

)
∂U

∂T

+
ξ

βzR

∂U

∂ξ
− 1

zR

∂U

∂β

] (15)

Ez =
ξ

ρ2

{
−4ω0

s
(m+ 1)

∂U

∂T
− 4(m+ 1)

∂U

∂ξ

−4ω2
0ξ

s2
∂2U

∂T 2
− 4ξ

∂2U

∂ξ2
− 8ω0ξ

s

∂2U

∂ξ∂T

} (16)

Bρ = −mω0

c2sρ

∂U

∂T
(17)

Bφ = − iω0

c2sρ

{
m
∂U

∂T
+ 2ξ

(
ω0

s

∂2U

∂T 2
+

∂2U

∂ξ∂T

)}
(18)

As is the case with all radially polarized fields, Bz = 0.244

The perturbative order necessary to achieve convergence245

will be discussed in the next section.246

IV. RESULTS247

A. Test for Accuracy of Fields Obtained from the248

Perturbative Phasor249

Depending on the parameters used to describe the op-250

tical field, perturbative orders higher than ǫ2c may need251

to be included in the phasor. These higher order correc-252

tions are needed not only as the spot size is reduced, but253

also as the radial or azimuthal LG indices are increased.254

Numerical simulations show that excluding terms above255

order ǫ2c is sufficient only for the lowest LG modes.256

A simple method for checking the convergence of the257

perturbative expansion of the phasor is to verify that258

the wave equation is satisfied to within some numerical259

tolerance. Since the phasor must be a solution to the260

wave equation [40], we can write explicitly261

∇2U =
1

c2
d2

dt2
U. (19)

One can check directly that the equation is satisfied at262

any given order of perturbation. If an appropriate per-263

turbative order is used to represent the phasor, numerical264

comparison of |∇2U | and |∂2
tU/c

2| will agree, since the265

wave equation will be satisfied. Disagreement, on the266

other hand, indicates that additional terms in the per-267

turbative expansion must be included in order to achieve268

a converged phasor. We note that since all fields are269

calculated as derivatives of the phasor, use of Eq. (19)270

to check the adequacy of the perturbative expansion is271

valid for any field polarization, not just for the radially272

polarized fields calculated above as an example.273

To illustrate this technique, a comparison of the left-274

and right-hand sides of Eq. (19) is shown in Fig. 1 for275

three LG modes, calculated for two different orders of276

perturbative correction. For each of the results in Fig. 1,277

we present the root mean squared error (RMSE) between278

|∇2U | and |∂2
tU/c

2| calculated using 200 plot points279

across the range of ρ/λ shown. Convergence of the per-280

turbative expansion can be claimed if the RMSE is suf-281

ficiently small (the exact definition of which depends on282

the application). The results in Figs. 1(d) - 1(f) show im-283

proved agreement between the left- and right-hand sides284

of the wave equation over those in Figs. 1(a) - 1(c), re-285

spectively, as the order of perturbation increases from286

O(ǫ2c) to O(ǫ4c). However, agreement between these terms287

becomes worse as the LG mode increases from n = 2 to288

n = 3 for both the phasors of O(ǫ2c) and those of O(ǫ4c),289

thus illustrating the need to check for convergence. Cal-290

culations for other LG modes having indices n +m ≤ 3291

(not shown) have RMSE values similar to those for the292

LG modes shown in Fig. 1 when corrections to similar293

perturbative orders are included.294

We emphasize that the addition of higher order correc-295

tions to the phasor does not change the EM field equa-296

tions that have been derived in Section III. The expres-297

sions for the EM fields given in Eqs. (14)-(18) remain298
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FIG. 1. Comparison of both sides of the wave equation [Eq. (19)] for the phasor, |∇2U | and |∂2
tU/c

2|, for three LG modes,
calculated for two different orders of perturbative correction. Panels [(a),(d)] show LG mode m = 2, n = 0, panels [(b),(e)]
show m = 0, n = 2, and panels [(c),(f)] show m = 0, n = 3. The phasor contains perturbation terms to order ǫ2c in [(a)-(c)] and
to order ǫ4c in [(d)-(f)]. The RMS error decreases when the higher order term is included in the phasor. These plots were made
near the beam waist using s = 70 and w0 = λ = 800 nm (ǫ2c ≈ 0.0253).

valid as the phasor is modified, since these field expres-299

sions are written in terms of partial derivatives of the300

phasor. Thus, use of our field equations for higher per-301

turbative orders is relatively straightforward, requiring302

only the addition of higher order corrections to the pha-303

sor. Appendix B provides an example in which the per-304

turbative correction of order ǫ4c is calculated in detail.305

In Fig. 2 we compare our converged fields from306

Eqs. (14) and (16) with those obtained from the closed-307

form phasor of April [40]. The normalized electric field308

intensities in the ρ̂− and ẑ−directions are shown for each309

model, for both long and short pulse durations. Excellent310

agreement is seen between the fields of our model (sub-311

script “pert” in the figure) and those of April (subscript312

“A”), for both long (Fig. 2a) and short (Fig. 2b) pulses.313

The spatial radius of convergence of the perturbative ex-314

pansion is discussed in Appendix C.315

B. Sensitivity of the Fields to the Spectral Profile316

The EM fields are calculated using the time-domain317

phasor U(t), which may be obtained in one of two ways.318

The exact way, as done in Sec. II, is to Fourier transform319

the frequency-domain phasor to the time domain accord-320

ing to Eq. (8). An approximate approach is to multiply321

the monochromatic phasor by a temporal Gaussian en-322

velope, as follows:323

U(r, t) = UBGV (r, ω0) exp

[
−iω0t−

(t− z/c)2

τ2

]
. (20)

While these two methods may agree for longer pulse du-324

rations, it is known that use of a Gaussian temporal en-325

velope as in Eq. (20) fails to correctly model the behavior326

of ultrashort pulses [36].327

The problem may be understood by considering the328

time-frequency uncertainty relation, i.e., that the spec-329

tral bandwidth grows as the pulse length decreases. For330

sufficiently short pulses, the bandwidth becomes so large331

that negative frequency components enter with apprecia-332

ble weight. These nonphysical frequencies may cause the333

electric fields to grow with transverse distance from the334

optical axis instead of decay, as required for a physically335

correct model [41].336

A Poisson-like frequency spectrum was used in the337

derivation of our phasor in Sec. II to correctly model338

the behavior of ultrashort pulses. Owing to its inher-339

ent unit step function Θ(ω), a Poisson-like spectrum re-340

moves unphysical negative frequency components from341

the frequency-domain phasor. Thus, upon Fourier trans-342

formation into the time domain, one eliminates the pos-343

sibility of nonphysical temporal fields.344

A comparison of the fields calculated from the time-345

domain phasors defined in Eqs. (8) and (20) for two346

different pulse durations is given in Fig. 3. As shown347

in Fig. 3(b) for short pulses, the fields generated from348

Eq. (20) (subscript “TG”) clearly differ from those gener-349

ated from the Poisson spectrum phasor (subscript “PS”).350

In contrast, for long pulses, Fig. 3(a) shows much better351

agreement between the fields generated by the two dif-352

ferent methods. This better agreement occurs since the353

frequency bandwidth of the temporal Gaussian doesn’t354

extend to negative values in the case of a long pulse.355

Note that the “PS” fields in Fig. 3 are the same as the356

“pert” fields in Fig. 2.357



6

FIG. 2. Comparison of numerical values of the relative inten-
sities of fields Eρ and Ez near the beam waist for the LG0,0

mode for two different spectral parameters: (a) s=2848 (∼20-
cycle FWHM, 53.4 fs) or (b) s=7 (∼1-cycle FWHM, 2.65 fs).
Solid dark (blue) and light (gray) curves are calculated using
fields derived from April’s phasor [40] (“A”), while the dashed
and dash-dot curves are calculated from the fields given in
Eqs. (14) and (16) of this paper with the phasor to pertur-
bative order ǫ2c (“pert”), all with w0 = 1.5λ and λ = 800 nm
(ǫ2c ≈ 0.0113).

V. SUMMARY AND CONCLUSIONS358

In this paper we have presented an analytic method for359

calculating the EM fields of a tightly focused, arbitrarily-360

short laser pulse of any radial and azimuthal LG mode.361

In brief, the EM fields are obtained from the time-domain362

phasor, whose analytic expression to the ǫ2c perturbative363

order is given in Eq. (10). An example for obtaining the364

phasor to higher orders in ǫ2c is given in Appendix B. For365

the case of radially-polarized EM fields, Eqs. (13) - (18)366

show how to obtain the EM fields from the phasor of any367

perturbative order. With only lowest order perturbative368

corrections included, these fields are consistent with the369

field model of April [40] for the Gaussian mode over a370

wide range of pulse durations. Use of a Poisson-like fre-371

quency spectrum was essential to obtain this agreement,372

as this spectrum eliminates the possibility of negative fre-373

quency modes that lead to unphysical fields for ultrashort374

pulses.375

Invoking the condition of isodiffraction is necessary for376

FIG. 3. Comparison of numerical values of the relative inten-
sities of fields Eρ and Ez near the beam waist for the LG0,0

mode for two different spectral parameters: (a) s=2848 (∼20-
cycle FWHM, 53.4 fs) or (b) s=7 (∼1-cycle FWHM, 2.65 fs).
Solid dark (blue) and light (gray) curves are calculated us-
ing the temporal Gaussian (“TG”) model of Eq. (20) with
the indicated pulse durations, while the dashed and dash-dot
curves are calculated using the Fourier transformed Poisson
spectrum (“PS”) of Eq. (8) to order ǫ2c , all with w0 = 1.5λ
and λ = 800 nm (ǫ2c ≈ 0.0113).

solving the Fourier integral of the phasor when trans-377

forming it into the time domain. The phasor for a com-378

pletely general nonparaxial eLG beam, valid for arbitrar-379

ily short pulses, has never to our knowledge been ex-380

pressed in the time domain without use of the isodiffrac-381

tion condition, as otherwise the necessary Fourier inte-382

gral becomes prohibitively complicated. For nonparaxial383

complex source-point models, this condition of isodiffrac-384

tion requires that the imaginary distance to the source385

point, zR in this case, remains frequency-independent.386

A major benefit of our perturbative model is its scala-387

bility to higher radial and orbital LG modes. Expressions388

for the time-domain EM fields for these higher LG modes389

using other models usually requires the calculation of in-390

finite sums or the evaluation of integrals involving spe-391

cial functions of complex variables. The integrals over392

these complex special functions, for arbitrary LG modes,393

are difficult to evaluate. In our model, all EM fields are394

written simply in terms of the phasor and its elementary395

derivatives.396



7

VI. ACKNOWLEDGMENTS397

We gratefully acknowledge informative discussions398

with E. Heyman regarding the nature of isodiffraction.399

This research is supported in part by the U.S. Depart-400

ment of Energy, Office of Science, Basic Energy Sci-401

ences, Division of Chemical Sciences, Geosciences, and402

Biosciences, under Award No. DE-FG02-96ER14646. It403

was carried out utilizing the Holland Computing Cen-404

ter of the University of Nebraska, which receives support405

from the Nebraska Research Initiative.406

Appendix A: Derivation of the Factors f (2j)(v)407

We begin with the frequency-domain phasor, for any408

LG mode, of BGV in integral form (Eq. (16) of Ref. [22]),409

Un,m =

∫ ∞

0

(−α)2n+m(−1)n exp(±imφ)w2n+m
0

×
[
zR
kz

exp (ikz(z − izR)− kzR)

]

× Jm(αρ)α dα.

(A1)

An intermediate result of Ref. [22] is that the phasor of410

Eq. (A1) above is equivalent to an infinite series repre-411

sentation given by Eq.(22) of Ref. [22],412

Un,m =

∫ ∞

0

(−α)2n+m(−1)n exp(±imφ)w2n+m
0

×
[
w2

0

2
exp(ikz) exp

(
− iα2

2k
(z − izR)

)

∞∑

j=0

G(2j)

(kw0)(2j)


Jm(αρ)α dα.

(A2)

Comparing these two equations, it is clear that the413

terms inside the square brackets of each expression414

must be equal. Making use of the relation zR = kw2
0/2415

and our previous definition of β from Eq. (1), and416

defining Ω ≡ w2
0k

2
⊥
, the terms in square brackets of417

Eqs. (A1) and (A2) can be equated and solved for the418

infinite sum, yielding419

∞∑

j=0

ǫ(2j)G(2j) =
1√

1− ǫ2Ω
exp

(√
1− ǫ2Ω− 1

2ǫ2β
+

Ω

4β

)

(A3)
In the above expression, we again define ǫ ≡ 1/(kw0)420

since the description at this point is monochromatic. The421

RHS can then be expanded in a Taylor series about ǫ2 =422

0. Collecting powers of ǫ2 in this expansion yields the423

perturbative terms G(2j),424

∞∑

j=0

ǫ(2j)G(2j) = O
(
ǫ8
)
+ 1 + ǫ2

(
Ω

2
− Ω2

16β

)
+

ǫ4
(
3Ω2

8
− Ω3

16β
+

Ω4

512β2

)
+

ǫ6
(
5Ω3

16
− 15Ω4

256β
+

3Ω5

1024β2
− Ω6

24576β3

)
.

(A4)

These results confirm Eq. (23) of Ref. [22], and elucidate425

how to extend the method to arbitrarily large j. These426

terms G(2j) are then used in Eq. (A2) along with the427

integral428

∫ ∞

0

α2n+m exp
(
−p2α2

)
Jm(αρ)α dα

=
n!

2
p−(2n+m+2)

(
ρ

2p

)m

Lm
n

(
ρ2

4p2

)
exp

(
− ρ2

4p2

)

(A5)
to produce the factors f (2j)(v) given by BGV in Ref. [22].429

Appendix B: The Phasor to order ǫ4c430

In this Appendix we derive the O(ǫ4c) correction to the431

time-domain phasor, starting with the frequency-domain432

phasor in Eq. (1). Considering only the term of order433

ǫ4 in Eq. (1), we make the replacements w0 →
√
2zR/k434

and k → ω/c and invoke the condition of isodiffraction,435

which requires that zR is constant. We obtain436

ǫ4c
β2

U4,BGV = (−1)n+m22n+m exp(iωz/c+ imφ)

× h2n+m+2vm/2 exp(−v)

[(
c

2ωβzR

)2

×
{
6(n+ 2)!Lm

n+2(v)− 4(n+ 3)!Lm
n+3(v)

+
1

2
(n+ 4)!Lm

n+4(v)

}]
.

(B1)

Multiplying this result by the Poisson-like frequency437

spectrum in Eq. (5), expressing the associated Laguerre438

polynomials as sums [see Eqs. (3) and (4)], and extracting439

powers of ω within the sums, we obtain440

U4(ω) =
Λn,m

Γ(s+ 1)
exp

{
−ω

(
− iz

c
+ ξ +

s

ω0

)}

×
(

s

ω0

)s+1
θ(ω)

√
2πǫ4c

β2



n+2∑

j=0

c̃2,2 ξjωγ−2

−
n+3∑

j=0

c̃2,3 ξjωγ−2 +

n+4∑

j=0

c̃2,4 ξjωγ−2


 ,

(B2)
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where some variables defined in Eq. (11) have been used,441

and new constants are defined as follows:442

c̃2,2 ≡ 6ω2
0(n+ 2)(n+ 1)G(n+2),m,j (B3a)

c̃2,3 ≡ 4ω2
0(n+ 3)(n+ 2)(n+ 1)G(n+3),m,j (B3b)

c̃2,4 ≡ ω2
0

2
(n+ 4)(n+ 3)(n+ 2)(n+ 1) (B3c)

× G(n+4),m,j. (B3d)

We now Fourier transform U4(ω) to the time domain443

as in Eq. (8) to obtain U4(t),444

U4(t) =
Λn,m

Γ(s+ 1)

(
s

ω0

)s+1
ǫ4c
β2

∫ ∞

0

exp(−ωη)



n+2∑

j=0

c̃2,2 ξjωγ−2 −
n+3∑

j=0

c̃2,3 ξjωγ−2

+

n+4∑

j=0

c̃2,4 ξjωγ−2


dω ,

(B4)

where η = −iz/c+ ξ + s/ω0 + it. Using the integral rep-445

resentation of the gamma function in Eq. (9), we obtain446

U4 = Λn,m

(
s

ω0

)s+1
ǫ4c
β2



n+2∑

j=0

c2,2 ξjη−(γ−1)

−
n+3∑

j=0

c2,3 ξjη−(γ−1) +

n+4∑

j=0

c2,4 ξjη−(γ−1)


 ,

(B5)

where c2,δ ≡ c̃2,δΓ(γ − 1)/Γ(s+ 1) for δ = 2, 3, 4.447

Taking now the overall prefactor (s/ω0)
s+1 in Eq. (B5)448

inside each of the sums and using the definition of T in449

Eq. (11)(b), we can write for any power q,450

(
s

ω0

)s+1

η−q =

(
s

ω0

)s+1−q

T−q. (B6)

Defining the coefficients c2,δ ≡ c2,δ(s/ω0)
(s+2−γ) for451

δ = 2, 3, 4, the final result for the O(ǫ4c) term U4(t) is:452

U4 = Λn,m
ǫ4c
β2



n+2∑

j=0

c2,2 ξjT−(γ−1)

−
n+3∑

j=0

c2,3 ξjT−(γ−1) +

n+4∑

j=0

c2,4 ξjT−(γ−1)


 .

(B7)

Adding this result to the O(ǫ2c) phasor U
(2) in Eq. (10),453

the complete O(ǫ4c) time-domain phasor U (4)(t) is:454

U (4) = Λn,m




n∑

j=0

c0,0ξ
jT−(γ+1)

+
ǫ2c
β




n+1∑

j=0

c1,1ξ
jT−γ −

n+2∑

j=0

c1,2ξ
jT−γ




+
ǫ4c
β2




n+2∑

j=0

c2,2 ξjT 1−γ −
n+3∑

j=0

c2,3 ξjT 1−γ

+

n+4∑

j=0

c2,4 ξjT 1−γ




 .

(B8)

The calculation of higher order terms would proceed455

similarly. The upper limits of the sums, their interior co-456

efficients, the leading powers of ǫ2c/β, and the integrated457

powers of ω would change, but otherwise the process458

would be identical to that demonstrated above.459

Appendix C: Radius of Convergence of the460

Perturbative Phasor461

Perturbative models require that higher-order terms462

in the perturbative expansion have smaller magnitude463

than lower-order terms, so that the infinite series con-464

verges. However, the series expansions upon which such465

perturbations are based often do not have this behav-466

ior in all space. For example, the one-dimensional func-467

tion 1/(x2 + 1) is well-defined at all values on the real468

axis. Expanding this function in a Maclaurin series gives469

1− x2 + x4 + ... which only converges in the finite region470

|x| < 1, rendering the series expansion useless outside471

this radius of convergence. In this appendix, we estimate472

the radius of convergence for the perturbative phasor in473

Eq. (1) of this paper.474

We begin by considering the magnitude of the475

frequency-domain phasor in Eq. (1). Each term in the476

perturbative sum contains a factor f
(2j)
n,m(v), derived in477

Appendix A, which is a sum of associated Laguerre poly-478

nomials. At some perturbative order j, the dominant479

contribution to f
(2j)
n,m(v) is480

f (2j)
n,m(v) ≈ (n+ 2j)!

j!
Lm
n+2j(v), (C1)

since Lm
n+2j(v) has the highest power of v amongst all481

associated Laguerre polynomials contributing to f
(2j)
n,m(v)482

[cf. Eqs. (2) and (3)]. The term in Lm
n+2j(v) hav-483

ing the highest power of v is G(n+2j,m,n+2j)v
n+2j [cf.484

Eq. (3)]. Making use of Eq. (4), and noting that |h| =485

(1+z2/z2R)
−1/4, one can write the magnitude of the dom-486

inant contribution to the jth-order term of Eq. (1) as487
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|U (2j)| ≈ 22n+mǫ2j

j!

(
1 +

z2

z2R

)−
1

2
(2n+3j+m+1)

× exp

[
− ρ2

w2
0 (1 + z2/z2R)

](
ρ

w0

)2n+4j+m

.

(C2)

As noted above, the radius of convergence is defined by488

the spatial region in which the term of order j is smaller489

than the term of order j−1. To find such a region, we cal-490

culate the difference |U (2j)| − |U (2j−2)| < 0. Given that491

ρ ≥ 0 and z2 ≥ 0, this inequality can only be satisfied for492

ρ <

[
j

(
1 +

z2

z2R

)3/2
w4

0

ǫ2

]1/4
. (C3)

This condition must be satisfied for all j, and the max-493

imum allowed value of ρ increases with larger j. There-494

fore, the radius of convergence ρc is determined by the495

minimal case of j = 1,496

ρ <

[(
1 +

z2

z2R

)3/2
w4

0

ǫ2

]1/4
≡ ρc. (C4)

Note that ρc is defined for any z and is independent of497

the LG modes n and m.498

FIG. 4. Illustration of the radius of convergence for the phasor
in Eq. (1), demonstrated by the dominant perturbative order
j as a function of spatial location. Each region is labelled
by the perturbative order j ∈ [0, 3] that is largest therein.
The region in which the j = 0 term dominates is the region
in which the perturbation is converged. This plot was made
using w0 = λ = 800 nm [ǫ = 1/(2π)].

This radius of convergence is demonstrated in Fig. 4,499

wherein the magnitude of the perturbative phasor given500

in Eq. (C2) is plotted as a function of ρ and z for up to501

three orders of perturbative correction. The minimum502

radius of convergence ρc is given in Eq. (C4), which cor-503

responds to the line between regions 0 and 1 in Fig. 4.504

The space with ρ-values below this line corresponds to505

the region of perturbative convergence, or the region in506

which the 0th-order phasor is dominant.507
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