Perturbative representation of ultrashort nonparaxial elegant Laguerre-Gaussian fields
Andrew Vikartofsky, Anthony F. Starace, and Liang-Wen Pi
Phys. Rev. A 98, 043820 — Published 10 October 2018
DOI: 10.1103/PhysRevA.98.043820
Perturbative Representation of Ultrashort Nonparaxial Elegant Laguerre-Gaussian Fields

Andrew Vikartofsky and Anthony F. Starace

Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0299, USA

Liang-Wen Pi*

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany

(Dated: September 17, 2018)

An analytical method for calculating the electromagnetic fields of a nonparaxial elegant Laguerre-Gaussian (LG) vortex beam is presented for arbitrary pulse duration, spot size, and LG mode. This perturbative approach provides a numerically tractable model for the calculation of arbitrarily high radial and azimuthal LG modes in the nonparaxial regime, without requiring integral representations of the fields. A key feature of this perturbative model is its use of a Poisson-like frequency spectrum, which allows for the proper description of pulses of arbitrarily short duration. This model is thus appropriate for simulating laser-matter interactions, including those involving short laser pulses.

I. INTRODUCTION

The ability to produce vortex beams of light [1–4] or electrons [5–7] with well-defined orbital angular momentum allows for the study of angular momentum exchange processes when such beams interact with matter. Recently, optical vortex (or “structured light”) beams have been used to probe chiral matter [8], to study multipole excitation of atoms as a function of their location with respect to the beam axis [9], to improve vacuum acceleration of electrons [10], and to advance quantum information technologies [1, 11], among numerous other applications. Such structured light can be created in the extreme ultraviolet by means of high-order harmonic generation [12–14]. For some applications of optical vortex beams, high intensity is required (such as, e.g., for vacuum acceleration of charged particles [10]), which is usually achieved by tightly focusing the beam. However, tightly-focused beams with spot sizes comparable to the laser wavelength cannot be correctly described within the paraxial approximation [15, 16]. Perturbative solutions for the fields beyond the lowest-order paraxial approximation were considered as early as 1975, in which the first few orders of nonparaxial corrections were found [16–18]. The first order correction introduces a longitudinal electric field, which is absent in the paraxial approximation. Many higher order corrections to the electromagnetic (EM) fields have since been found [19, 20].

Perturbative solutions of the scalar Helmholtz equation (HE) (whose exact solution is termed the phasor) provide an alternative approach for treating nonparaxial effects. Solutions for the HE phasor have been obtained primarily by two different methods. One method involves solving for the exact phasor in integral or differential form. This phasor is then expanded perturbatively [18, 21, 22]. Alternatively, the HE can be solved one perturbative order at a time, and an exact phasor built from the sum of these solutions [17, 23–25]. With either of these two methods, the HE can be solved under different sets of boundary conditions [26]. Common choices for boundary conditions include: (i) a purely paraxial beam in the focal plane [18, 24, 25] (where the exact solution is valid in the half space after the focus only, while the perturbative solution is valid in all space), (ii) an oscillatory far-field beam [17, 19], or (iii) an outgoing spherical wave in the far-field [21–23]. Couture and Belanger [23] showed that the latter, with infinitely many orders of correction, was equivalent to modeling the Gaussian beam with a so-called complex source-point.

The complex source-point model warrants additional discussion. It describes the beam as an outgoing spherical wave originating from an imaginary point on the optical axis. The phasor described by this model has a circular singularity in the focal plane since the imaginary location of the point source is related to a circle in real space [27, 28]. A boundary condition of far-field counter-propagating spherical waves was implemented to remove the singularity in the complex source-point model [28–31]. This is known as the complex source-sink model, with the source and sink at the same imaginary location along the optical axis. While the singularity is removed in this model, the energy density diverges logarithmically as the transverse coordinate grows large [32]. It has been stated, however, that this energy divergence is irrelevant in practice since neither experiments nor simulations look to sufficiently large transverse distance for it to matter [33, 34].

As our aim in this paper is to describe tightly-focused optical vortex beams carrying orbital angular momentum, we utilize henceforth Laguerre-Gaussian (LG) modes of such optical beams. In general, LG beams are classified by two indices $LG_{n,m}$, with n and m representing the radial and azimuthal profiles, respectively. These are referred to as the LG “modes,” of which the lowest order is a Gaussian beam and higher orders can describe

* lwpi@pks.mpg.de
vortex beams. In particular, we utilize the so-called
elegant LG (eLG) model, wherein the arguments of certain
special functions are complex variables. Note that there
is a physical difference between LG and eLG models, as
discussed by Saghaﬁ and Sheppard [35]. Bandres and
Gutiérrez-Vega (BGV) have provided exact integral and
differential solutions for monochromatic eLG beams of
any LG mode (see Eqs. (16) & (21) of Ref. [22]). These
solutions, based on the complex source-point model, con-
tain the singularity discussed above. In Ref. [22], BGV
presented an equally general perturbative solution which
does not contain the singularity, since a truncated per-
turbative model does not exactly satisfy the source-point
boundary condition (see Eq. (24) of Ref. [22]). As an al-
ternative approach, April employed a closed-form source-
sink model for monochromatic eLG fields in Ref. [31] that
is singularity-free.

Nearly all of the analytical models discussed thus far
tell a significant limitation: they assume a monochro-
matic beam. Many modern experiments, particularly
those studying high intensity laser-matter interactions,
involve optical pulses, shaped pulses, chirped pulses,
etc., all of which require a polychromatic description.
While long pulses can be well approximated as the prod-
tected by a temporal Gaussian envelope and a monochro-
matic field, this description becomes inadequate for ultra-
short pulses [36]. Others have employed polychro-
matic descriptions, but these often assume that k_g is
frequency-independent or non-LG models (see,
e.g., Refs. [37–39]). April [40] generalized his source-
sink model [31] for monochromatic eLG fields to allow
for polychromatic descriptions by introducing a Poisson-
like frequency spectrum [41, 42]. Application of the Hertz
potentials [43, 44] then allowed the computation of a com-
plete set of EM fields for an arbitrarily short pulse du-
rating and any LG mode. These fields are free of all
singularities [30], and can be made free of all discontinu-
ities [45], which are present in the complex source-point
models. While Ref. [40] presents a complete model for de-
scribing eLG pulses in the frequency domain, the Fourier
transform required to achieve a time-domain phasor, and
therefore the EM fields, is nontrivial. To our knowledge,
this integral has only been carried out for the lowest ra-
dial order n = 0 in Ref. [45]. Due to a sum over radial
orders in the frequency-domain phasor of Ref. [40], the
Fourier transform for higher radial modes becomes in-
creasingly complicated to calculate.

In this paper we present an analytical method for cal-
culating the time-domain phasor, and EM fields, of a
tightly-focused, arbitrarily-short pulse for any LG mode.
Our method generalizes the perturbative approach of
BGV [22] by including a Poisson-like frequency spectrum
and calculating the EM fields from the time-domain pha-
sor. We show that our fields agree with those generated
from the model of Refs. [40, 45] for the n = 0 case, and
that fields for higher order LG modes can easily be pro-
duced. The primary advantage of this method over that
proposed in Ref. [40] is the ability to obtain an explicit
expression for the time-domain phasor, thus enabling one
to obtain the EM fields by a straightforward prescription.

This paper is organized as follows. In Section II we
derive the time-domain phasor used to calculate the EM
fields. In Section III we derive general expressions for
these EM fields, which are valid for any LG mode and
for any order of perturbative correction to the phasor.
In Section IV we present a test of the convergence of
our perturbative results and examine the necessity of the
temporal model we employ. In Section V we summar-
ize our results and present our conclusions and outlook.
In Appendices A and B we present some details of our
derivations, and in Appendix C we determine the spatial
radius of convergence for this perturbative model.

II. THE PHASOR

The derivation of our phasor (the spatiotemporal so-
lution to the scalar HE [46]) begins with the frequency-
domain perturbative phasor of BGV (Eq.(24) of Ref. [22])
in cylindrical polar coordinates,

\[
U_{BGV}(\mathbf{r}, \omega) = (-1)^n + m 2^{2n+m} \exp(ikz + im\phi) \\
\times h^{2n+m+2}\nu^{m/2} \exp(-v) \\
\times \sum_{j=0}^{N} \left(\frac{h^2}{k^2w_0^2} \right)^j f_n^{(2)}(v) (1)
\]

\[
eq U_{0,BGV} + \epsilon^2 \beta U_{2,BGV} + \epsilon^4 \beta^2 U_{4,BGV} + ...
\]

where \(\epsilon \equiv 1/(kw_0)\) is a small dimensionless parameter,
\(h = (1 + iz/z_R)^{-1/2}\), \(\beta = 1/h\), \(v = h^2\rho^2/w_0^2\), \(w_0\) is
the beam waist, \(z_R = kw_0^2/2\) is the Rayleigh length, and
\(N\) is the term at which the infinite series is truncated.
The factors \(f_n^{(2)}(v)\) can be obtained from Eqs. (25) of
Ref. [22] (as discussed in detail in Appendix A below).
These factors are each linear combinations of associated
Laguerre polynomials \(L_n^m(v)\), and can be found to any
order using the results in Ref. [22].

If we were to evaluate the perturbative expansion of
the phasor in Eq. (1) to infinite order (i.e., \(N \rightarrow \infty\)),
this would be equivalent to describing wave emission from
a complex point source (cf. Ref. [23]). The singularity
that naturally arises from this point source, however, is
avoided by our truncation of the perturbative expansion
at some finite order \(N\). This truncation is equivalent
to approximating the source-point spherical wave, an ef-
flect of which is that we have a singularity-free model.
As such, the incoming spherical waves employed in other
works are not required to cancel a source-point singular-
arity in our model.

Keeping terms up to order \(\epsilon^2\), the sum in the phasor
of Eq. (1) reduces to
In the limit of a narrow spectrum, where \(\omega \) is the spectral parameter controlling the pulse duration, \(\omega_0 \) is the central frequency, \(\phi_0 \) is the initial phase of the pulse, \(\Gamma(s+1) \) is a gamma function, and \(\Theta(\omega) \) is the unit step function. Our polychromatic frequency-domain phasor is then defined as,

\[U(r, \omega) = \Lambda_{n,m} \left[\sum_{j=0}^{n} c_{0,j} \xi^{j} T^{-(\gamma+1)} + \frac{\epsilon^2}{\beta} \sum_{j=0}^{n+1} c_{1,j} \xi^{j} T^{-\gamma} - \sum_{j=0}^{n+2} c_{1,2} \xi^{j} T^{-\gamma} \right]. \]

(10)

The new variables in Eq. (10) are defined as

\[\xi = \frac{\rho^2}{2c^2 \beta z_R} \]

(11a)

\[T = 1 + \frac{\omega_0}{s} \left(-\frac{i z}{c} + \xi + it \right) \]

(11b)

\[\Lambda_{n,m} = (-1)^{n+m} 2^{n+m} \sqrt{2\pi n!} \exp(i\phi_0) \times \xi^{m/2} \beta^{-(n+m/2+1)} \exp(im\phi), \]

(11c)

and the constants are defined as

\[c_{0,0} \equiv G_{n,m,j} \left(\frac{\omega_0}{s} \right)^{\gamma-s} \frac{\Gamma(\gamma+1)}{\Gamma(s+1)} \]

(12a)

\[c_{1,1} \equiv (n+1)G_{(n+1),m,j} \left(\frac{\omega_0}{s} \right)^{\gamma-s-1} \frac{2c^2 \omega_0 \Gamma(\gamma)}{\Gamma(s+1)} \]

(12b)

\[c_{1,2} \equiv \omega_0 (n+1)(n+2)G_{(n+2),m,j} \left(\frac{\omega_0}{s} \right)^{\gamma-s-1} \frac{\Gamma(\gamma)}{\Gamma(s+1)} \]

(12c)

\[\gamma \equiv m/2 + s + j. \]

(12d)

Further details of this derivation can be found in Appendix B.

\[E \frac{e^2}{2z_R^3} = \frac{E \omega_0}{2z_R \omega_0} \frac{\omega}{\omega} = \frac{c^2 \omega_0}{\omega}, \]

(7)

where \(\epsilon_c \) is a frequency-independent (constant) small parameter in terms of the central pulse frequency, \(\omega_0 \).

With all frequency dependencies accounted for, one can now Fourier transform \(U(r, \omega) \) into the time domain,

\[U(r, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} U(r, \omega) \exp(-i\omega t) d\omega, \]

(8)

where the negative exponential is chosen so that the resulting pulse is traveling in the +\(\hat{z} \)-direction. Using the integral representation of the gamma function (cf. Eq. (6.1.1) of [49]),

\[\Gamma(\gamma+1) = \eta^{\gamma+1} \int_{0}^{\infty} d\omega \omega^{\gamma} \exp(-\eta \omega), \quad \text{Re} \eta > 0, \]

(9)

we obtain the time-domain phasor (by methods shown explicitly in Appendix B),

\[f(\omega) = 2\pi e^{i\phi_0} \left(\frac{s}{\omega_0} \right)^{s+1} \omega^2 \exp(-s\omega/\omega_0) \Theta(\omega), \]

(5)

where \(s \) is the spectral parameter controlling the pulse duration, \(\omega_0 \) is the central frequency, \(\phi_0 \) is the initial phase of the pulse, \(\Gamma(s+1) \) is a gamma function, and \(\Theta(\omega) \) is the unit step function. Our polychromatic frequency-domain phasor is then defined as,

\[U(r, \omega) \equiv U_{BGV} f(\omega), \]

(6)

In the limit of a narrow spectrum, \(s \gg 1 \), Eq. (5) reduces to a Gaussian spectrum with pulse duration \(\tau = \sqrt{2s/\omega_0} \).

In order to Fourier transform the phasor in Eq. (6) to the time domain, we adopt the condition of isodiffraction, i.e., we assume that every frequency component has the same wavefront radius of curvature. For this choice of complex source-point location, the isodiffraction condition ensures that \(z_R \) is constant for all frequency components, whereas the beam waist, \(w_0 = \sqrt{2z_R/k} \), depends on \(\omega \) through the vacuum dispersion relation \(k = \omega/c \), where \(c \) is the speed of light [41, 42, 48].

Owing to the introduction of a Poisson-like frequency spectrum to the monochromatic phasor of BGV, implementation of the smallness parameter must be modified slightly. Since \(\epsilon \) now varies with the frequency, we can use its definition to factor out its frequency dependence,

\[\frac{1}{k \omega_0} \sum_{j=0}^{(2j)} f_{n,m}^{(2j)}(v) = n! L_n^m(v) + \frac{\epsilon^2}{\beta} \left[2(n+1)! L_{n+1}^m(v) - (n+2)! L_{n+2}^m(v) \right]. \]

(2)

In Eq. (2), the associated Laguerre polynomials \(L_n^m(v) \) can be expressed as finite sums [47],

\[L_n^m(v) \equiv \sum_{j=0}^{n} G_{n,m,j} v^j, \]

(3)

in which

\[G_{n,m,j} \equiv \frac{(-1)^j(n+m)!}{(n-j)!(m+j)!j!}. \]

(4)

Since the BGV phasor was derived for the case of a monochromatic field, in order to describe a temporally finite pulse it must be generalized. We accomplish this by multiplying the BGV phasor by a Poisson-like frequency spectrum [41, 42],

\[U(r, t) = \Lambda_{n,m} \left[\sum_{j=0}^{n} c_{0,j} \xi^{j} T^{-(\gamma+1)} + \frac{\epsilon^2}{\beta} \sum_{j=0}^{n+1} c_{1,j} \xi^{j} T^{-\gamma} - \sum_{j=0}^{n+2} c_{1,2} \xi^{j} T^{-\gamma} \right]. \]

(10)
III. THE FIELDS

From the expression for the phasor \(\mathbf{U}(\mathbf{r}, t) \) in Eq. (10), Hertz potentials \([43, 44] \) can be used to generate expressions for the complex EM fields. The desired polarization of the laser field is determined by the form of these Hertz potentials, and not from any property of the phasor. As an example, for the case of radial polarization the EM fields can be expressed from the phasor as simply

\[
\mathbf{E}(\mathbf{r}, t) = \nabla \times \nabla \times \left(\mathbf{U}(\mathbf{r}, t) \hat{z} \right) \tag{13a}
\]

\[
\mathbf{H}(\mathbf{r}, t) = \varepsilon_0 \frac{\partial}{\partial t} \nabla \times \left(\mathbf{U}(\mathbf{r}, t) \hat{z} \right) \tag{13b}
\]

For different polarizations, these expressions for \(\mathbf{E} \) and \(\mathbf{H} \) would change (see Table 3 on p. 372 of Ref. [40] and the text at the bottom of p. 361 of Ref. [40] for more details). In the expressions that follow for the unnormalized EM fields, we have carried out calculations for all but the most simple partial derivatives of the phasor. By leaving these derivative terms in the field equations, we ensure that the expressions remain valid for higher perturbative orders in which the phasor is modified to have additional terms.

\[
E_\rho = -\frac{i}{\rho} \left\{ \frac{m(n + m + 1)}{s} \frac{\partial^2 \mathbf{U}}{\partial \xi^2} + \frac{2\omega_\xi}{s} \frac{\partial \mathbf{U}}{\partial \beta} - \frac{2\omega_\xi}{s} \frac{\partial \mathbf{U}}{\partial t} \right\} + \frac{\omega_\xi}{s} \left\{ \frac{\partial \mathbf{U}}{\partial \rho} \right\}
\]

\[
E_\phi = \frac{m}{\rho} \left\{ \frac{n + m + 1}{s} \frac{\partial \mathbf{U}}{\partial \rho} + \frac{\omega_\xi}{s} \frac{\partial \mathbf{U}}{\partial \beta} \right\}
\]

\[
E_z = \frac{\xi}{\rho^2} \left\{ \frac{4\omega_\xi}{s} \left(\xi + 1 \right) \frac{\partial \mathbf{U}}{\partial \rho} - 4\omega_\xi \frac{\partial \mathbf{U}}{\partial \xi} \right\}
\]

\[
B_\rho = -\frac{m\omega_\xi}{c^2 \rho \frac{\partial \mathbf{U}}{\partial t}}
\]

\[
B_\phi = -\frac{\omega_\xi}{c^2 \rho} \left\{ \frac{\partial \mathbf{U}}{\partial t} + 2\xi \left(\frac{\omega_\xi}{s} \frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{U}}{\partial \xi} \right) \right\}
\]

As is the case with all radially polarized fields, \(B_z = 0 \). The perturbative order necessary to achieve convergence will be discussed in the next section.

IV. RESULTS

A. Test for Accuracy of Fields Obtained from the Perturbative Phasor

Depending on the parameters used to describe the optical field, perturbative orders higher than \(c^2 \xi^2 \) may need to be included in the phasor. These higher order corrections are needed not only as the spot size is reduced, but also as the radial or azimuthal LG indices are increased. Numerical simulations show that excluding terms above order \(c^2 \xi^2 \) is sufficient only for the lowest LG modes.

A simple method for checking the convergence of the perturbative expansion of the phasor is to verify that the wave equation is satisfied to within some numerical tolerance. Since the phasor must be a solution to the wave equation [40], we can write explicitly

\[
\nabla^2 \mathbf{U} = \frac{1}{c^2} \frac{d^2 \mathbf{U}}{dt^2}
\]

One can check directly that the equation is satisfied at any given order of perturbation. If an appropriate perturbative order is used to represent the phasor, numerical comparison of \(\nabla^2 \mathbf{U} \) and \(\frac{d^2 \mathbf{U}}{dt^2} \) will agree, since the wave equation will be satisfied. Disagreement, on the other hand, indicates that additional terms in the perturbative expansion must be included in order to achieve a converged phasor. We note that since all fields are calculated as derivatives of the phasor, use of Eq. (19) to check the adequacy of the perturbative expansion is valid for any field polarization, not just for the radially polarized fields calculated above as an example.

To illustrate this technique, a comparison of the left- and right-hand sides of Eq. (19) is shown in Fig. 1 for three LG modes, calculated for two different orders of perturbative correction. For each of the results in Fig. 1, we present the root mean squared error (RMSE) between \(\nabla^2 \mathbf{U} \) and \(\frac{d^2 \mathbf{U}}{dt^2} \) calculated using 200 plot points across the range of \(\rho/\lambda \) shown. Convergence of the perturbative expansion can be claimed if the RMSE is sufficiently small (the exact definition of which depends on the application). The results in Figs. 1(d) - 1(f) show improved agreement between the left- and right-hand sides of the wave equation over those in Figs. 1(a) - 1(c), respectively, as the order of perturbation increases from \(O(c^2 \xi^2) \) to \(O(c^4 \xi^4) \). However, agreement between these terms becomes worse as the LG mode increases from \(n = 2 \) to \(n = 3 \) for both the phasors of \(O(c^2 \xi^2) \) and those of \(O(c^4 \xi^4) \), thus illustrating the need to check for convergence. Calculations for other LG modes having indices \(n + m \leq 3 \) (not shown) have RMSE values similar to those for the LG modes shown in Fig. 1 when corrections to similar perturbative orders are included.

We emphasize that the addition of higher order corrections to the phasor does not change the EM field equations that have been derived in Section III. The expressions for the EM fields given in Eqs. (14)-(18) remain
valid as the phasor is modified, since these field expressions are written in terms of partial derivatives of the phasor. Thus, use of our field equations for higher perturbative orders is relatively straightforward, requiring only the addition of higher order corrections to the phasor. Appendix B provides an example in which the perturbative correction of order ϵ^3 is calculated in detail.

In Fig. 2 we compare our converged fields from Eqs. (14) and (16) with those obtained from the closed-form phasor of April [40]. The normalized electric field intensities in the $\rho-$ and $z-$directions are shown for each model, for both long and short pulse durations. Excellent agreement is seen between the fields of our model (subscript “pert” in the figure) and those of April (subscript “A”), for both long (Fig. 2a) and short (Fig. 2b) pulses. The spatial radius of convergence of the perturbative expansion is discussed in Appendix C.

B. Sensitivity of the Fields to the Spectral Profile

The EM fields are calculated using the time-domain phasor $U(t)$, which may be obtained in one of two ways. The exact way, as done in Sec. II, is to Fourier transform the frequency-domain phasor to the time domain according to Eq. (8). An approximate approach is to multiply the monochromatic phasor by a temporal Gaussian envelope, as follows:

$$U(r, t) = U_{BGV}(r, \omega_0) \exp \left[-i \omega_0 t - \frac{(t - z/c)^2}{\tau^2} \right]. \quad (20)$$

While these two methods may agree for longer pulse durations, it is known that use of a Gaussian temporal envelope as in Eq. (20) fails to correctly model the behavior of ultrashort pulses [36].

The problem may be understood by considering the time-frequency uncertainty relation, i.e., that the spectral bandwidth grows as the pulse length decreases. For sufficiently short pulses, the bandwidth becomes so large that negative frequency components enter with appreciable weight. These nonphysical frequencies may cause the electric fields to grow with transverse distance from the optical axis instead of decay, as required for a physically correct model [41].

A Poisson-like frequency spectrum was used in the derivation of our phasor in Sec. II to correctly model the behavior of ultrashort pulses. Owing to its inherent unit step function $\Theta(\omega)$, a Poisson-like spectrum removes unphysical negative frequency components from the frequency-domain phasor. Thus, upon Fourier transform into the time domain, one eliminates the possibility of nonphysical temporal fields.

A comparison of the fields calculated from the time-domain phasors defined in Eqs. (8) and (20) for two different pulse durations is given in Fig. 3. As shown in Fig. 3(b) for short pulses, the fields generated from Eq. (20) (subscript “TG”) clearly differ from those generated from the Poisson spectrum phasor (subscript “PS”). In contrast, for long pulses, Fig. 3(a) shows much better agreement between the fields generated by the two different methods. This better agreement occurs since the frequency bandwidth of the temporal Gaussian doesn’t extend to negative values in the case of a long pulse. Note that the “PS” fields in Fig. 3 are the same as the “pert” fields in Fig. 2.
FIG. 2. Comparison of numerical values of the relative intensities of fields E_ρ and E_z near the beam waist for the $LG_{0,0}$ mode for two different spectral parameters: (a) $s=2848$ (∼20-cycle FWHM, 53.4 fs) or (b) $s=7$ (∼1-cycle FWHM, 2.65 fs). Solid dark (blue) and light (gray) curves are calculated using fields derived from April’s phasor [40] (“A”), while the dashed and dash-dot curves are calculated from the fields given in Eqs. (14) and (16) of this paper with the phasor to perturbative order ϵ_2^c (“pert”), all with $w_0 = 1.5\lambda$ and $\lambda = 800$ nm ($\epsilon_2^c \approx 0.0113$).

V. SUMMARY AND CONCLUSIONS

In this paper we have presented an analytic method for calculating the EM fields of a tightly focused, arbitrarily-short laser pulse of any radial and azimuthal LG mode. In brief, the EM fields are obtained from the time-domain phasor, whose analytic expression to the ϵ_2^c perturbative order is given in Eq. (10). An example for obtaining the phasor to higher orders in ϵ_2^c is given in Appendix B. For the case of radially-polarized EM fields, Eqs. (13) - (18) show how to obtain the EM fields from the phasor of any perturbative order. With only lowest order perturbative corrections included, these fields are consistent with the field model of April [40] for the Gaussian mode over a wide range of pulse durations. Use of a Poisson-like frequency spectrum was essential to obtain this agreement, as this spectrum eliminates the possibility of negative frequency modes that lead to unphysical fields for ultrashort pulses.

Invoking the condition of isodiffraction is necessary for solving the Fourier integral of the phasor when transforming it into the time domain. The phasor for a completely general nonparaxial eLG beam, valid for arbitrarily short pulses, has never to our knowledge been expressed in the time domain without use of the isodiffraction condition, as otherwise the necessary Fourier integral becomes prohibitively complicated. For nonparaxial complex source-point models, this condition of isodiffraction requires that the imaginary distance to the source point, z_R in this case, remains frequency-independent.

A major benefit of our perturbative model is its scalability to higher radial and orbital LG modes. Expressions for the time-domain EM fields for these higher LG modes using other models usually require the calculation of infinite sums or the evaluation of integrals involving special functions of complex variables. The integrals over these complex special functions, for arbitrary LG modes, are difficult to evaluate. In our model, all EM fields are written simply in terms of the phasor and its elementary derivatives.

FIG. 3. Comparison of numerical values of the relative intensities of fields E_ρ and E_z near the beam waist for the $LG_{0,0}$ mode for two different spectral parameters: (a) $s=2848$ (∼20-cycle FWHM, 53.4 fs) or (b) $s=7$ (∼1-cycle FWHM, 2.65 fs). Solid dark (blue) and light (gray) curves are calculated using the temporal Gaussian (“TG”) model of Eq. (20) with the indicated pulse durations, while the dashed and dash-dot curves are calculated using the Fourier transformed Poisson spectrum (“PS”) of Eq. (8) to order ϵ_2^c, all with $w_0 = 1.5\lambda$ and $\lambda = 800$ nm ($\epsilon_2^c \approx 0.0113$).
VI. ACKNOWLEDGMENTS

We gratefully acknowledge informative discussions with E. Heyman regarding the nature of isodiffraction. This research is supported in part by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Award No. DE-FG02-96ER14646. It was carried out utilizing the Holland Computing Center of the University of Nebraska, which receives support from the Nebraska Research Initiative.

Appendix A: Derivation of the Factors $f^{(2j)}(v)$

We begin with the frequency-domain phasor, for any LG mode, of BGV in integral form (Eq. (16) of Ref. [22]),

$$U_{n,m} = \int_0^\infty (-\alpha)^{2n+m}(-1)^n \exp(\pm im\phi)w_0^{2n+m}
\times \left[\frac{z_R}{k_z} \exp(ik_z(z - iz_R) - k z_R) \right] \times J_m(\alpha \rho) d\alpha.$$ (A1)

An intermediate result of Ref. [22] is that the phasor of Eq. (A1) above is equivalent to an infinite series representation given by Eq. (22) of Ref. [22],

$$U_{n,m} = \int_0^\infty (-\alpha)^{2n+m}(-1)^n \exp(\pm im\phi)w_0^{2n+m}
\times \left[\frac{w_0^2}{2} \exp(ik_z) \exp\left(-\frac{i\alpha^2}{2k}(z - iz_R)\right) \right] \times \sum_{j=0}^{\infty} \frac{G^{(2j)}}{(kw_0)^{2j}} J_m(\alpha \rho) d\alpha.$$ (A2)

Comparing these two equations, it is clear that the terms inside the square brackets of each expression must be equal. Making use of the relation $z_R = kw_0^2/2$ and our previous definition of β from Eq. (1), and defining $\Omega \equiv w_0^2k_1^2$, the terms in square brackets of Eqs. (A1) and (A2) can be equated and solved for the infinite sum, yielding

$$\sum_{j=0}^{\infty} \epsilon^{(2j)} G^{(2j)} = O(\epsilon^8) + 1 + \epsilon^2 \left(\frac{\Omega}{2} - \frac{\Omega^2}{16\beta}\right) + \epsilon^4 \left(3\Omega^2 - \frac{\Omega^3}{16\beta} + \frac{\Omega^4}{512\beta^2}\right) + \epsilon^6 \left(\frac{5\Omega^3}{16} - \frac{15\Omega^4}{256\beta} + \frac{3\Omega^5}{1024\beta^2} - \frac{\Omega^6}{24576\beta^3}\right).$$ (A4)

These results confirm Eq. (23) of Ref. [22], and elucidate how to extend the method to arbitrarily large j. These terms $G^{(2j)}$ are then used in Eq. (A2) along with the integral

$$\int_0^\infty \alpha^{2n+m} \exp(-p^2\alpha^2) J_m(\alpha \rho) d\alpha$$

(A5)

to produce the factors $f^{(2j)}(v)$ given by BGV in Ref. [22].

Appendix B: The Phasor to order ϵ^4

In this Appendix we derive the $O(\epsilon^4)$ correction to the time-domain phasor, starting with the frequency-domain phasor in Eq. (1). Considering only the term of order ϵ^4 in Eq. (1), we make the replacements $w_0 \to \sqrt{2z_R/k}$ and $k \to \omega/c$ and invoke the condition of isodiffraction, which requires that z_R is constant. We obtain

$$\frac{\epsilon^4}{\beta^2} U_{4,BGV} = (-1)^{n+m}2^{2n+m}\exp(i\omega z/c + im\phi)
\times h^{2n+m+2}v^{m/2} \exp(-v) \left[\left(\frac{c}{2\omega z_R}\right)^2 \right]$$

(A1)

$$\times \left\{ 6(n+2)!L_{n+4}(v) - 4(n+3)!L_{n+3}^m(v) + \frac{1}{2} \right\}.$$ (B1)

Multiplying this result by the Poisson-like frequency spectrum in Eq. (5), expressing the associated Laguerre polynomials as sums [see Eqs. (3) and (4)], and extracting powers of ω within the sums, we obtain

$$\mu^{(4)}(\omega) = \frac{\Lambda_{n,m}}{\Gamma(s+1)} \exp\left\{ -\omega \left(\frac{i\omega}{c} + \xi + \frac{s}{\omega_0}\right) \right\}$$

$$\times \left(\frac{s}{\omega_0}\right)^{s+1} \beta(\omega) \frac{2\pi c^2}{\beta^2} \sum_{j=0}^{n+2} \sum_{j=0}^{n+4} \xi_j \omega^{-2}$$

$$\times \sum_{j=0}^{n+3} \xi_j \omega^{-2} + \sum_{j=0}^{n+4} \xi_j \omega^{-2},$$ (B2)
where some variables defined in Eq. (11) have been used, and new constants are defined as follows:

\[
\begin{align*}
\hat{c}_{2,2} &= 6\omega_0^2(n + 2)(n + 1)G_{(n+2),m,j} \\
\hat{c}_{2,3} &= 4\omega_0^2(n + 3)(n + 2)(n + 1)G_{(n+3),m,j} \\
\hat{c}_{2,4} &= \frac{\omega_0^2}{2}(n + 4)(n + 3)(n + 2)(n + 1) \\
&\times G_{(n+4),m,j}.
\end{align*}
\]

(B3a) \hspace{1cm} (B3b) \hspace{1cm} (B3c) \hspace{1cm} (B3d)

We now Fourier transform \(U_4(\omega)\) to the time domain as in Eq. (8) to obtain \(U_4(t)\),

\[
U_4(t) = \frac{\Lambda_{n,m}}{\Gamma(s+1)} \left(\frac{s}{\omega_0} \right)^{s+1} \left[\sum_{j=0}^{n+3} \hat{c}_{2,\delta} \xi_j^\gamma \eta^{-(\gamma-1)} \right] \eta^{-q}
\]

where \(\eta = -iz/c + \xi + s/\omega_0 + it\). Using the integral representation of the gamma function in Eq. (9), we obtain

\[
U_4(t) = \frac{\Lambda_{n,m}}{\Gamma(s+1)} \left(\frac{s}{\omega_0} \right)^{s+1} \left[\sum_{j=0}^{n+3} \hat{c}_{2,\delta} \xi_j^\gamma \eta^{-(\gamma-1)} \right] \eta^{-q}
\]

(B4)

\[c_{2,\delta} = \hat{c}_{2,\delta}/\Gamma(\gamma - 1)/\Gamma(s + 1)\] for \(\delta = 2, 3, 4\).

Also, for \(\delta = 2, 3, 4\), the final result for the \(O(\epsilon_2^4)\) term \(U_4(t)\) is:

\[
U_4(t) = \frac{\Lambda_{n,m}}{\Gamma(s+1)} \left(\frac{s}{\omega_0} \right)^{s+1} \left[\sum_{j=0}^{n+3} c_{2,\delta} \xi_j^\gamma \right] \eta^{-(\gamma-1)}
\]

(B5)

Adding this result to the \(O(\epsilon_2^4)\) phasor \(U^{(4)}\) in Eq. (10), the complete \(O(\epsilon_2^4)\) time-domain phasor \(U^{(4)}(t)\) is:

\[
U^{(4)} = \Lambda_{n,m} \left[\sum_{j=0}^{n+3} c_{0,0} \xi_j^\gamma T^{-(\gamma+1)} \right] + \frac{\epsilon_2^2}{\beta^2} \left[\sum_{j=0}^{n+3} c_{1,\gamma} \xi_j^\gamma T^{-(\gamma+1)} \right] + \frac{\epsilon_4}{\beta^4} \left[\sum_{j=0}^{n+3} c_{2,\gamma} \xi_j^\gamma T^{-(\gamma+1)} \right] + \frac{\epsilon_4}{\beta^6} \left[\sum_{j=0}^{n+3} c_{3,\gamma} \xi_j^\gamma T^{-(\gamma+1)} \right]
\]

(B6)

The calculation of higher order terms would proceed similarly. The upper limits of the sums, their interior coefficients, the leading powers of \(\epsilon_2^2/\beta\), and the integrated powers of \(\omega\) would change, but otherwise the process would be identical to that demonstrated above.

Appendix C: Radius of Convergence of the Perturbative Phasor

Perturbative models require that higher-order terms in the perturbative expansion have smaller magnitude than lower-order terms, so that the infinite series converges. However, the series expansions upon which such perturbations are based often do not have this behavior in all space. For example, the one-dimensional function \(1/(x^2 + 1)\) is well-defined at all values on the real axis. Expanding this function in a Maclaurin series gives...

We begin by considering the magnitude of the frequency-domain phasor in Eq. (1). Each term in the perturbative sum contains a factor \(f_n^m(v)\), which is a sum of associated Laguerre polynomials. At some perturbative order \(j\), the dominant contribution to \(f_n^m(v)\) is:

\[
f_n^m(v) \approx \frac{(n + 2j)!}{j!} L^{m}_{n+2j}(v),
\]

(B7)

since \(L^{m}_{n+2j}(v)\) has the highest power of \(v\) amongst all associated Laguerre polynomials contributing to \(f_n^m(v)\) [cf. Eqs. (2) and (3)]. The term in \(L^{m}_{n+2j}(v)\) having the highest power of \(v\) is \(G_{(n+2j),m,n+2j}v^{m+2j}\) [cf. Eq. (3)]. Making use of Eq. (4), and noting that \(|h| = (1 + z^2/\epsilon_2^2)^{-1/4}\), one can write the magnitude of the dominant contribution to the \(j^{th}\)-order term of Eq. (1) as...
\[|U^{(2j)}| \approx \frac{2^{2n+m} e^{2j}}{j!} \left(1 + \frac{z^2}{z_R^2} \right)^{-\frac{1}{2}(2n+3j+m+1)} \times \exp \left[-\frac{\rho^2}{w_0^2 (1 + z^2/2z_R^2)} \right] \left(\frac{\rho}{w_0} \right)^{2n+4j+m}. \]

(C2)

As noted above, the radius of convergence is defined by the spatial region in which the term of order \(n\), \(\rho < \frac{w_0}{\lambda} 2^{n}\), determines the difference \(|U^{(2j)}| - |U^{(2j-2)}| < 0\). Given that \(\rho \geq 0\) and \(z^2 \geq 0\), this inequality can only be satisfied for

\[\rho < \left[j \left(1 + \frac{z^2}{z_R^2} \right)^{3/2} \frac{w_0^4}{\lambda^2} \right]^{1/4}. \]

(C3)

This condition must be satisfied for all \(j\), and the maximum allowed value of \(\rho\) increases with larger \(j\). Therefore, the radius of convergence \(\rho_c\) is determined by the minimal case of \(j = 1\),

\[\rho < \left[\left(1 + \frac{z^2}{z_R^2} \right)^{3/2} \frac{w_0^4}{\lambda^2} \right]^{1/4} \equiv \rho_c. \]

(C4)

Note that \(\rho_c\) is defined for any \(z\) and is independent of the LG modes \(n\) and \(m\).
