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Understanding large-scale interacting quantum matter requires dealing with the huge number
of quanta that are produced by scattering even a few particles against a complex quantum object.
Prominent examples are found from high energy cosmic ray showers, to the optical or electrical
driving of degenerate Fermi gases. We tackle this challenge in the context of many-body quantum
optics, as motivated by the recent developments of circuit quantum electrodynamics at ultrastrong
coupling. The issue of particle production is addressed quantitatively with a simple yet powerful
concept rooted in the quantum superposition principle of multimode coherent states. This key idea
is illustrated by the study of multi-photon emission from a single two-level artificial atom coupled to
a high impedance waveguide, driven by a nearly-monochromatic coherent tone. We find surprisingly
that the off-resonant inelastic emission lineshape is dominated by broadband particle production,
due to the large phase space associated with contributions that do not conserve the number of
excitations. Such frequency conversion processes produce striking signatures in time correlation
measurements, which can be tested experimentally in quantum waveguides. These ideas open new
directions for the simulation of a variety of physical systems, from polaron dynamics in solids to
complex superconducting quantum architectures.

I. INTRODUCTION

Exploring the quantum world [1] is an ongoing quest fu-
eled by the search for fundamental understanding, which
has enabled the creation of unexpected technologies. The
advent of lasers and semiconducting microelectronics has
indeed crucially relied on building blocks that are de-
termined at the microscopic level by quantum effects.
Whether intrinsically quantum effects such as entangle-
ment can provide further practical scientific developments
is at present intensely investigated. However, addressing
increasingly complex quantum systems is pushing the
boundaries of what simulations can cope with on present
day hardware, due to the exponential complexity growth
when working with states from the Hilbert space. This
question is certainly very acute when dealing with the
temporal driving of large-scale quantum circuits, which
can lead to a rapid proliferation of propagating quanta.
How to encode quantum information efficiently in such
a situation, using only available classical computers, is a
very general challenge in contemporary physics.

Because quantum many-body scattering is relevant for
a wide range of physical systems (solid state materials,
cold atomic gases, high energy collisions in particle ac-
celerators), fruitful concepts are best developed with the
relevant physics at hand. For this reason, we focus in
this article on the topic of many-body quantum optics,
which combines discrete atomic states (the scatterer) with
broadband photonic fields (leading to a huge Hilbert space
of quanta). Historically, light-matter interaction has been
thoroughly studied in the regime of standard quantum op-
tics [2, 3], where the combination of small atomic dipoles
and perturbative fine structure constant aqgep ~ 1 /137
leads to small radiative corrections, such as the famous

Lamb shift at order [aqgep]?® (in units of the atomic fre-
quencies). Quantum electrodynamics (QED) corrections
to the bare atom picture also control the natural linewidth
of atomic transitions [3, 4] associated to vacuum fluctua-
tions of the electromagnetic field, occurring also at third
order in aqrp. As a consequence, the electromagnetic
modes that may strongly interact with an atom are limited
to those very close to its resonance frequency. A variety
of strategies are being pursued in atomic quantum optics
in order to enhance the strength of light-matter coupling.
First, there is extensive work on confining light to a cavity
in order to increase the magnitude of the electric field
[1, 5, 6]; however, in this case, interesting effects involving
a photon continuum are discarded. Under strong pump-
ing, multi-photon non-resonant contributions can become
sizable, but this suffers from the same problem of rather
limited bandwidth. Finally, several strategies involving
photonic crystals or Rydberg atoms are being pursued in
which a collective light-matter coupling is made strong
by using a large number of weakly coupled components

We wish to address, however, regimes where radiative
effects become of order one in a system with a single emit-
ter and a broad continuum of photonic modes, an area
known as ultra-strong coupling waveguide quantum elec-
trodynamics (WQED). Access to this regime is becoming
possible [11, 12] through circuit quantum electrodynamics
in which artificial superconducting atoms interact on-chip
with microwave transmission lines (see Refs. [10, 13] for
general reviews on the topic); in fact, in cavities, ultra-
strong coupling has been achieved in this system [14—19)].
In ultra-strong wQED, many-body phenomena are ex-
pected to occur that have no counterpart in standard
quantum optics [2, 3] or in low-coupling superconduct-



ing transmission lines [20-26]. A non-exhaustive list of
theoretical predictions includes giant Lamb shifts [27—

|, single-photon down-conversion [32, 33], non-RWA
transmission lineshapes [28, 34, 35], multi-mode entan-
glement [36—38], and non-classical emission [39]. The

key element in all of the novel many-body phenomena in
ultra-strong wQED is that the number of excitations is
no longer conserved because the rotating-wave approxi-
mation is not legitimate anymore. It is worthwhile then
to focus directly on this non-conservation. We show here
that a key signature of scattering or excitation in the
ultra-strong regime is broadband photon production: a
greater number of photons come out than go in, even in
the very low power single-photon excitation regime.

In contrast to previous studies which focused on effects
that become prominent when the light-matter coupling
reaches values of order one (the so-called Kondo regime),
we investigate here many-body effects that are realistically
observable when entering the ultra-strong coupling regime,
with typically 0.1 < o < 0.3. These many-body effects are
nevertheless dramatic and have the additional advantage
that they may be probed experimentally in the very near
future. This regime is characterized by a qubit linewidth
T" that is a sizeable fraction of its resonance frequency
A, owing to the perturbative relation I' ~ waA. For
a < 1, it is widely believed in the quantum optics context
that dominant physical processes are well captured by
the so-called rotating wave approximation (RWA), upon
which non-resonant transitions are discarded from the
outset. While it is true that RWA provides quantitatively
accurate results for the linear response of an atom weakly
coupled to a waveguide, we find that low-power non-linear
scattering properties are however dominated by non-RWA
contributions, even for arbitrarily small coupling in which
the RWA is thought to become exact.

The scenario that we consider is shown in Fig. 1. A
right-going coherent state pulse is injected into a waveg-
uide. The waveguide and qubit are initially in their ground
state, implying that the qubit is non-perturbatively
dressed by a cloud of waveguide photons [37]. The incom-
ing coherent state pulse then scatters from this dressed
state, leading to outgoing transmitted and reflected pulses,
that have acquired on general grounds a many-body char-
acter [410].

Our goal here is two-fold. First, we uncover new phys-
ical effects in non-linear many-body photon scattering
by analyzing the photonic content of non-resonant emis-
sion spectra. One major observation is that significant
non-linear emission arises from both RWA and non-RWA
pathways. In light of standard knowledge in quantum
optics, it comes as a surprise that non-RWA processes
are found to dominate in magnitude the RWA non-linear
response when off resonance. Indeed, in the regime of
ultra-strong coupling, the linewidth of the qubit broadens
substantially, leading to important non-resonant inelastic
contributions to the scattering cross-section. Under a
drive that is detuned in frequency above the resonance of
the qubit, for instance, inelastic down-conversion occurs
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FIG. 1. TIllustration of the setup considered in this paper:
a long transmission waveguide (grey horizontal line) is side-
coupled to a two-level system, allowing the measurement of
multi-photon scattering matrices in a typical two-terminal ge-
ometry from the reflection and transmission (outgoing states
with arrows pointing outward) of a coherent state Gaussian
wavepacket (incoming state with arrow pointing inward). A
many-body polarization cloud lives in the central region (tied
to the qubit) [37]. Frequency-conversion processes are ex-
tracted by a spectral and number state analysis of the outgoing
wavepackets.

by the “splitting” of an incoming photon into several
lower energy ones [32]. For larger power, there are simi-
lar processes involving an increasing number of incoming
photons, all of which are described by counter-rotating
terms. These processes are favored by a wide continuum
of available outgoing multi-photon states. The surprising
dominance of non-RWA processes can thus be interpreted
as a consequence of the larger phase space of outgoing
states for particle production.

Another dramatic many-body effect is uncovered by
studying the correlations in time. We find that ultra-
strong coupling leads to striking qualitative signatures in
the photon statistics of a single emitter, namely incom-
plete anti-bunching on resonance at zero time-delay and
strong bunching at finite delay, that are very prominent in
the off-resonant case. These previously unrecognized fea-
tures are quantitatively different from RWA results and
constitute important signatures of particle production
from an experimental point of view. A further indica-
tion of interesting many-body effects is that perturbative
expansions for the elastic and inelastic emission spectra
cannot be captured quantitatively.

Our second objective is to provide a general and pow-
erful simulation toolbox to access the non-linear and
inelastic processes involved to any order in the incoming
beam power. This methodology relies on an expansion
of the full many-body wavefunction (qubit+waveguide)
in terms of multi-mode coherent states, using quantum
superpositions of several classical-like configurations. It
was introduced recently as a numerically controlled tech-
nique to capture the ground state [30, 36] or quenched
dynamics [39] in ultra-strong coupling wQED. Two orig-
inal developments are made in the present manuscript.
First, a new and more numerically efficient algorithm is
proposed, which allows for the first time to tackle in a
controlled way the many-body dynamics in waveguides
composed of several thousands of modes. Second, we
develop a many-body scattering protocol, that can be



used to simulate realistic scattering setups, as shown in
Fig. 1, allowing to deal with the challenging problem of
many-body particle production in quantum optics. The
resulting multi-photon emission processes in the output
field are characterized precisely. Despite the coupling
being weak to intermediate in magnitude, non-RWA con-
tributions to these multi-photon processes open the door
to a tremendously large Hilbert space. Typically our
calculations manage up to five photons in the outgoing
beam, which, for a long waveguide accounting for about
1000 environmental modes, leads to an effective Hilbert
space of order 10'® ~ 250, It is quite remarkable that
a quantum superposition of classical-like multi-mode co-
herent states can be harnessed as an eflicient computing
resource to address quantum many-body problems that
are currently well beyond the reach of any brute force
numerical method.

Regarding waveguides, several strategies are possible
in order to bring these systems into a truly many-body
territory, such as using the inductive coupling of a flux
qubit to a low-impedance coplanar waveguide transmis-
sion line [11, 41], or tayloring a charge-like qubit with
a capacitive coupling to a high impedance metamate-
rial [28, 32, 37]. For this latter purpose, long chains
of Josephson junctions [42—45] constitute a promising
platform that is currently under investigation [12] in the
context of multi-mode ultra-strong coupling quantum op-
tics. In any case, it remains challenging at present to
control experimentally a strongly non-linear element con-
stituting a true two-level system (such as the Cooper pair
box or a flux qubit) that is also very well coupled to a
designed environment, because non-linearity brings a high
sensitivity to external noise sources. Designs based on a
weakly non-linear qubit, such as a transmon [40] ultra-
strongly coupled to a waveguide [12, 47] could offer an
interesting alternative for high precision measurements,
at the expense however of weakening the sought-after
non-linear effects.

The paper is organized as follows. We first review in
Sec. II the basic model of waveguide quantum electrody-
namics, and develop a general many-body wavefunction
approach for the study of inelastic photon emission by
a single two-level system. Section III presents detailed
inelastic emission spectra, in connection with the relevant
physical processes. Section IV provides a comparison to
standard results in quantum optics, based on the RWA,
which can only account for processes in which two input
photons are inelastically scattered, keeping the number of
outgoing photons equal to two. This section closes with
a discussion of the temporal correlations of the emitted
light, showing several qualitative features of ultrastrong
coupling. Finally, the perspectives section, Sec. V, dis-
cusses prospects for experimental measurements of these
effects in superconducting circuits, and the need for de-
veloping further our theoretical tools in order to capture
realistic aspects of Josephson waveguides beyond the spin-
boson limit. Appendices contain technical derivations that
should make the manuscript self-contained, and present

details on the new algorithm proposed in this work.

II. MANY-BODY COHERENT STATE
SCATTERING FORMALISM

A. Modeling a two-level system coupled to a
waveguide

The main assumption that will be made in this study
is the restriction of the atom to a perfect two-level sys-
tem. This hypothesis is perfectly legitimate for strongly
non-linear qubits, such as the Cooper pair box or the flux
qubit [11, ], although these devices typically expe-
rience more strongly charge or flux noise compared to a
transmon qubit (which is however weakly non-linear). Fo-
cusing on a two-level system aims to capture the maximum
inelastic scattering cross-sections, due to its intrinsically
high non-linearity. It is thus an excellent testbed to ex-
amine physics that is already quite rich, and to develop
state-of-the-art methodologies in the most challenging sit-
uation from a computational point of view. Following this
path, a qubit coupled to a full one-dimensional waveguide
is quite generically expressed by the so-called spin-boson
Hamiltonian (setting h to unity):

A o, u
H= 5%~ Zgz n(ak + az) + Zwkazak , (1)
kER kER

with A the bare splitting of the qubit levels. We stress
that we do not work in the qubit eigenbasis here, but
rather in a basis that makes the qubit-waveguide cou-
pling diagonal, as described by the o, term above (this
corresponds for instance to the charge basis for a Cooper
pair box that is capacitively coupled to a waveguide).
This choice allows a natural description of the driving
force behind the entanglement between the qubit and the
waveguide, and sets the natural language for our numeri-
cal technique based on coherent states. The momentum
dependence of the coupling constant g,fc“11 to mode aL of
the full waveguide depends on the device geometry and
its physical parameters, such as inter-island capacitances,
ground capacitances and inter-island Josephson energy.
In the case where the waveguide is constructed from a
Josephson junction array, Refs. [32, 37, 51] proposed ex-
plicit microscopic derivations of the coupling constants
based on rather different designs. Similarly, the momen-
tum dispersion of the eigenfrequencies wy, of the photonic
modes is determined by the microscopic details of the
waveguide.

In what follows we will consider for simplicity a lin-
ear dispersion relation given by wp = |k| (taking the
speed of light in the metamaterial ¢ = 1), and a simple
parametrization of the coupling constant. For this pur-
pose, and in order to simplify the problem, we start by
folding the bosonic modes of the full waveguide onto a



half-line, by defining even and odd modes:

1 1
ajy = 7 (ax +a—g) and aj = 7 (ap —a—x), (2)

so that the Hamiltonian (1) can be rewritten as

Ao i i
H= 501—72%(@; —&-aZT)—l—Zwk[aZ a, +ay'ay |,
k>0 k>0
(3)

with the coupling constant to the even modes, g =
V2gf". We choose a parametrization of the effective cou-
pling constant gy, given by the following spectral function:

J(w) = Z Wgﬁé(w —wg) = 2rarwe W/ We, (4)
k>0

This form of spectral function, although not completely
generic, contains the main realistic ingredients of the
qubit-waveguide interaction, such as a linear ohmic fre-
quency dependence at low energy, and a rapid falloff near
the plasma edge w,, that we assume to be exponential in
form. For a discretized momentum grid, we deduce that
the coupling constant g; to even modes reads:

gL = \/Q(ywk Ok e=wr/we, (5)

where 0k is the wave-number spacing corresponding to
the discretisation of the continuous momentum integral.

In the form of Hamiltonian (3), only the even modes are
interacting with the qubit, while the odd modes are freely
propagating. This allows us to write the state vector |¢))
as the direct product of the even sector [¢)¢) and the odd
sector |¢°):

[9) = [¢%)e @ [9%), = [¥°) [¥°), (6)

provided the initial state can be decomposed accordingly.
The dynamics in the odd sector is essentially trivial, while
many-body effects have to be considered to capture the
dynamics in the even sector, a topic that we address now.

B. Many-body quantum dynamics with
multi-mode coherent states

The rationale behind the multi-mode coherent state
(MCS) expansion is as follows. The only source of non-
linearity in Hamiltonian (3) is the two-level system, and
this non-linearity is transferred from a single degree of
freedom (the qubit) to a large number of degrees of free-
dom (the modes of the waveguide). A first effect of this
coupling is to dress the two qubit states by displacing the
oscillators, as is clear from the o, term in Eq. (3). This
picture, which is only approximate when a single coherent
state displacement is used, becomes quantitavely exact for
the many-body ground state when superposing a small set
of coherent states [30]. Regarding the quantum dynamics,
an input coherent state (as is relevant in our description of

4

the scattering problem) remains stable only when turning
the coupling to zero (classical-like propagation). At finite
coupling, quantum fluctuations of the output field around
the dominant classical trajectory are again accounted for
by the superposition of additional Gaussian states. The
strategy is thus to write the state vector in the even sec-
tor as a coherent state expansion, also referred to in the
following as the multi-mode coherent state (MCS) ansatz

[30, 36, 52]:

Nes

ey = [ m (D) fm ()] 1) + @ () [hn (1)) 1) |, (7)

m=1

where we have introduced the complex and time-
dependent amplitudes p,,(t) and ¢, (t) for each qubit
component, with m an index that labels the states used
in the superposition. These multi-mode coherent states
also occur as two discrete sets of states (one for each qubit
component):

Nmodes

|fin(t)) = H elfrm (Dag! =i (Daj, 10) (8)

k=1

and similar for |hm(t)>. Due to the completeness of the co-
herent state basis on a discrete von-Neumann lattice [53],
which naturally extends to the case of many modes, this
discrete decomposition can target in principle an arbitrary
state of the full Hilbert space for N.s — oo. However,
for a fixed choice of Gaussian states, this leads to the un-
fathomable exponential cost that is typical of many-body
quantum mechanics. The advantage of the MCS ansatz (7)
lies in the variationally optimized time-dependent dis-
placements fj m, (t), which allows one to track with high
precision and low numerical cost the dynamics of the full
state vector.

What is truly remarkable about such a multi-component
multi-mode wavefunction is the relatively small number
of coherent states N that are necessary to capture both
the static many-body ground state [36] and the complex
dynamics resulting from quantum quenches [39], even deep
in the ultra-strong coupling regime. The method works
efficiently from the case of single mode cavities [54-56] up
to the challenging situation of an infinite continuum [57].
As we will see later, addressing frequency conversion
brings an additional difficulty in that non-linear emission
signals are extremely faint when driving off resonance
compared to the dominant elastic contributions, which
requires very careful convergence of the numerics.

In principle, the exact Schrédinger dynamics, controlled
by the Hamiltonian (3), can be derived from the real
Lagrangian density:

T = 1
£ =(¥(0)50; - 20— M (1), (9)
by applying the time-dependent variational principle [58],

§ [dtL = 0, upon arbitrary variations of the state vec-
tor (7) with respect to its set of variational parameters.



This minimization obviously provides Euler-Lagrange
equations

doL oL
dt 0v v (10)
for the set of variables v = {pm, ¢m, fi,m, Pe,m }, Which
can be solved by numerical integration [34, 39, 59—G1].
The detailed form of the dynamical equations is provided
in Appendix A1l. A new numerical algorithm, which
supersedes the one proposed in Ref. [39] and allows to
deal with up to thousands of modes, is presented in Ap-
pendix A 2.

C. General coherent state scattering formalism

Now that we have obtained exact dynamical equa-
tions for the time evolution under the spin-boson Hamil-
tonian (1), we need to prepare our initial state in or-
der to perform scattering simulations according to the
scheme in Fig. 1. The generic difficulty is that the
qubit is dressed non-perturbatively by a cloud of pho-
tons [27, 29, 31, 33, 36, 37] in the ultra-strong coupling
regime, so that this ground state assumes a many-body
character. Thanks to the MCS ansatz introduced in
eq. (7), we can efficiently express the static ground state
of the joint qubit and waveguide system in terms of multi-
mode coherent states:

NGS

Zp S5l 1) = 1= £ D] 10y, (1)

\IJGS

where we enforced the Zs spin-symmetry of the spin-boson
Hamiltonian (3) to simplify the expression. We have also
used the fact that the odd modes do not interact with the
qubit, so that the ground state displacements include only
even modes in Eq. (11), and the odd modes are placed in
the vacuum state.

By implementing numerically a variational optimization
[30, 36], one can determine the set of weights p$S and
displacements fk:GSw and thus obtain a nearly exact result
for the ground state up to negligible numerical error.
Conveniently, only a small number of coherent states
NES| typically less than 10, are required in the realistic

cs 7
domain of parameters of the spin-boson model.

NGS
|\IJIN

_ |¢> ez Zk>0( Zkfgi*+zlec*fk‘§n)ezk>o[(*fl?,?n*zz)a?-*

The many-body scattering theory thus amounts to use
state (17) as the initial condition for the dynamical equa-
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The second step in the scattering picture of Fig. 1 is
to include a wavepacket (with arrow pointing inward)
impinging on the dressed ground state. We will work in
what follows with a single coherent state pulse as input,
which is realistic in terms of the classical sources used in
actual experiments. Let us denote z; the displacement
of the incoming wave-packet in mode k of the physical
waveguide, and z, its Fourier transform to real space:

. / LA (12)
277

We choose to use here a Gaussian—shaped wavepacket

1
1 1 (k—kg)?
2 = \/5 <27r02 e 102 e

corresponding to a signal initially centered around po-
sition xg in the waveguide, with mean wavenumber kg,
spatial extent 1/0, and total intensity corresponding to
n photons on average, as illustrated on Fig. 1. The
associated real space wavepacket is then

7i(k7k¢0)a:067ik:0:ﬂ0/27 (13)

1
2\ 1
2 = \/ﬁ (%> e—(a;—wo)Qaze-&—iko(w—wo)e-‘rikga:g/Q.
™

(14)
Note that these amplitudes are both normalized so that
S5 daleaf? = [, K|zl = n.
The even and odd parts of the incoming wavepacket
are then defined strictly for k > 0 as

1 1
— (2 + 2_ and z2p=—= (2 —2_%). (15
7 (2k k) =7 (zk — 2-k). (15)
Since even and odd modes commute, we can then define

a displacement operator D(z) for the initial incoming
wave-packet which verifies:

= D(2)|0) = D(=%)D(=°) |0) (16)
— eXumo(shoi =5k 0f) (Do (ske —28at) |y

25 =

2%, 2%)

The final step in the initialization of the state vector
is to combine the incoming wavepacket coherent state
z, with the displacements entering the full many-body
ground state (11). Straightforward calculations, shown
in Appendix A 3, lead to the following explicit expression
for the input state:

—(F5+=1) " ag]

(=r&est)ail] oy, |22), (17)

(

tions of motion (10) performed in the even sector, see
Egs. (A1)-(A2) for their full explicit form. During the



dynamics, as the incoming wavepacket impinges on the
qubit, the necessary number of coherent states N g will
sensibly grow from the initial value NS° due to non-
classical emission, therefore requiring to add extra coher-
ent states to the state vector when needed (the procedure
is detailed in Appendix A 5). In the odd sector, which
is completely decoupled from the qubit, the related dis-
placements are trivially evolving in time according to
127 = wi2y, and a single coherent state is enough for the
whole time-evolution.

After a given time T long enough to ensure interac-
tion of the wavepacket with the qubit and subsequent
decoupling of the two outgoing wavepackets from the
many-body cloud surrounding the qubit (in the reflection
and transmission channel of the full 1D waveguide), one
expects on general grounds (since the spin-boson model is
non-integrable with a realistic dispersion) a factorization
of the final wavefunction as:

¥(T)) = [¥9%) ®

where |¥SS) is the many-body ground state of the
spin-boson model and |¥°VUT) a many-body outgoing
wavepacket that contains a non-trivial decomposition of
the emitted signal in terms of a large number of multi-
mode coherent states (typically NQUT ~ 20 — 30):

[wOUT), (18)

NOUT

Z pOUT

Nmodes

[fOUT et fOUT*

[gOUT) — OUT=qe ]‘0>.

k=1

(19)
The extraction procedure for the outgoing weights pQUT
and displacements fOUT is given in Appendix A 3. The
factorization property (18) occurs because the spin-boson
model (with a macroscopic number of modes) is a truly
dissipative system, always showing a path for relaxation.
In practice, this hypothesis can be checked from the nu-
merical calculations by observing that the dressed qubit
does not show correlations with the outgoing photons. In-
deed, any observable of the qubit relaxes back to its initial
equilibrium value at the end of the scattering protocol.
Also, the nature of the scattered photons does not depend
on how one traces out the qubit density matrix. We now
proceed to the analysis of the transmission and spectral
properties of this scattered many-body wave-packet.

III. MULTIPHOTON INELASTIC SCATTERING
A. Elastic emission and high power saturation

As a first illustration for our dynamical many-body
scattering method, we investigate the elastic reflection as
a function of the frequency and power of the incoming
signal. This problem is particularly challenging because
of the combination of non-perturbative ultra-strong cou-
pling with non-equilibrium effects that arise at finite input
power. Ultra-strong coupling scattering at non-vanishing
power has been addressed previously with approximate

techniques [28, 34, 35, 50] and with more advanced nu-
merical methods [29, 62]. However, systematic extraction
of many-body scattering matrices has not been performed
to our knowledge.

Our calculation scheme proceeds similarly to an ex-
perimental setup: the incoming Gaussian coherent-state
wavepacket, shown schematically as the incoming distri-
bution of photons in real space in Fig. 1, is initialized to
the left of the qubit. The qubit is placed at position x = 0
as seen from its sharply decreasing photonic cloud [37]
which is present in both the input and output ports, but
remains statically bound to the central impurity. After
propagation towards the qubit and subsequent interac-
tion, the photon flux decouples at long times, and is
separated into a reflected left going (k < 0) signal and
a transmitted right going (k > 0) signal, both shown
with arrows pointing outward in Fig. 1. Note that in
all the simulations made in this paper, we have consid-
ered the linewidth o of the wavepacket in k-space to be
smaller than the qubit linewidth T (in order to achieve
high spectroscopic resolution), but large enough to keep
the simulations on a reasonable system size (typically we
consider from Nyoges = 1000 to Npodes = 3000 modes for
the chain used in the even sector). All calculations are
done in the units of the plasma frequency w. as defined
in the spectral density (4), and the wavepacket linewidth
appearing in Eq. (13) is taken as ¢ = 0.005w,, unless
indicated otherwise.

We define the reflection and transmission coefficients
in the following way:

t
Zk<0 <akak: >0ut

_ Zk>0 <U’Lak >out
o T
Zk>0 (aay >in

and R=
Zk>0 <C‘L@k >in

bl

where we have denoted (...). the average over the state
vector corresponding to the coherent incoming wave-
packet before scattering, and (...)_ , the average over the
many-body outgoing wave-packet after scattering. Both
are obtained from the full state vector (19) by simply fil-
tering out in real-space the polarization cloud associated
with the ground state, as explained in Appendix A 3.
Results for different values of the incoming power are
shown in Fig. 2. The probability of reflection generally
increases on resonance; indeed, for elastically scattered
photons, interference effects cause almost complete re-
flection when exactly on resonance. For small values of
the incoming power (7 = 0.01 and 7 = 0.1), for which
the initial coherent state wavepacket has a very small
probability of containing Fock states with more than 1
photon, one can note that the reflection only reaches
R ~ 0.9 at peak value. This incomplete reflection of the
photons arises from the finite linewidth of the incoming
wavepacket, and not from inelastic losses. Since our in-
coming Gaussian pulse is not perfectly monochromatic,
the modes at the edge of a resonant incoming beam (cen-
tered at kg = Ag) are slightly off-resonant and do not get
fully reflected by the qubit. Even in the present case of a
relatively small light matter coupling o = 0.1, many-body
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FIG. 2. Saturation effects in the reflection coefficient Eq. (20)
as a function of incoming wavevector ko, for three different
amplitudes 7 = 0.01, 0.1, 2.0 of the input, with a wavepacket
width ¢ = 0.005w.. These curves correspond to converged
numerical data with up to N¢s = 16 coherent states in the MCS
wavefunction (7). The bare qubit frequency is A = 0.1w, and
the dimensionless light-matter interaction is a = 0.1, leading
to a sizeable renormalized qubit frequency Ar ~ 0.08we.

effects due to the ultra-strong coupling are apparent in
the reflection curve of Fig. 2. First, a non-Lorentzian
asymmetric lineshape is obtained, with a high energy
tail more prominent than at low energy. In addition, we
clearly observe a substantial renormalization of the qubit
frequency Ag ~ 0.08w, from its bare value A = 0.1w,.
For higher incoming power, one physically expects satu-
ration effects to take place, and these are clearly evidenced
by the curve with average number of photons i = 2.0 in
Fig. 2. We stress that converging such computations in
the high power regime is quite challenging, and approxi-
mate techniques such as a single coherent state truncation
lead to uncontrollable noise levels, as found in previous
work [34]. We show in detail in Appendix A 4 that the
reflection curve converges smoothly at 7 = 2.0 for about
N = 16 coherent states in the MCS state vector (7).
This is also confirmed by a systematic control of the error,
as done previously for quantum quench protocols [39].

B. Off-resonant frequency-conversion spectra

We now turn to analyzing the emitted radiation in
the off-resonant case, in which the system is excited at
a frequency ko above the renormalized qubit transition
frequency Ag. A typical inelastic spectrum is shown in
Fig. 3, here for kg = 0.16w., Ar = 0.08w,, and an injected
n of 0.5. The stronger transmission relative to reflection
(upper panel) simply reflects the off-resonant situation

ko =~ 2AR, in agreement with the reflection curve in Fig. 2.

The vertical scale is expanded in the lower panel, so that
the inelastic contributions are made apparent at the foot of
the large reflection and transmission elastic peaks located
at +kg. Note that the actual linewidth of this elastic peak,
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FIG. 3. Mean density of photons at momentum k& in the
outgoing wave-packet (the incoming wavepacket is displayed
as a dashed line); bottom panel is a zoom of top. The total
outgoing signal (gray shaded) is decomposed into Fock resolved
excitations (in full lines) with N = 2 (bottom curve), N = 3
(top curve) and N = 4 (middle curve) photons, in order to
highlight the processes of Fig. 4. The parameters for this
simulation are the incoming wave-packet wave-number ko =
0.16w. and linewidth o = 0.005w., the mean photon number
n = 0.5, the qubit bare energy A = 0.1w., and the coupling
strength o = 0.1. Simulations were performed by considering
a wavefunction containing N.s = 30 coherent states, and
Nmodes = 1200 modes.

set by 0 = 0.005w,, is in fact much smaller than what the
lower panel seems to indicate, because the maximum peak
amplitude is 2000 times higher that the scale of the graph.
The gray-shaded curve displays the expectation value of
the total number of outgoing photons <a,1ak )oue While
the dashed line indicates the total number of incoming
photons (a,tak );, centered around ko. The first striking
result is the broad spectrum of emission extending from
the qubit frequency Apg all the way down to k = 0.

The full lines display how the total outgoing photon
contribution is distributed among different Fock states
|N} with photon number N = 2, 3, 4, allowing us to assess
the nature of particle production. Our method to obtain
these photon-number resolved amplitudes by considering
the probability of all the possible single- and multi-photon
states for a given momentum k is explained in Appendix
A 6. Note that the majority of the inelastic emission
involves 3 and 4 photon contributions. Since the incoming
average photon number is only 0.5, clearly substantial
particle production is occurring! Both the broad inelastic
spectrum and particle production are quintessentially
ultra-strong coupling phenomenona.
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FIG. 4. Diagrammatic representation of some non-linear pho-
ton processes occurring during scattering onto a two-level sys-
tem. Panel (a) is a RWA frequency exchange process restricted
at the two photon level, which shows two sharp emission lines
at Ar and 2ko — Ar (due to energy conservation). Panel
(b) shows the non-RWA one photon to three photon conver-
sion [32], which leads to a broad emission continuum, sharply
peaked at the resonance Agr in the case of an off-resonant
drive. Panel (c) is a similar particle producing process, now
with two input photons, one being down converted to three
photons, the other photon being elastically scattered.

For an initial understanding of the various contributions
to this spectrum, we consider a schematic diagrammatic
perturbation theory as shown in Fig. 4. For two incoming
photons, an inelastic RWA process can occur by distribut-
ing the total incoming energy 2kg into a resonant photon
at Ag and another at 2kg — Agr as shown in panel (a).
However, for a single incoming photon with momentum
ko, since the emission is still maximum at the (renormal-
ized) resonant qubit frequency Ag, an excess energy of
ko — Ar must be distributed between two extra outgoing
photons (in order to properly relax to the ground state).
The accessible non-resonant states thus lead to the non-
RWA 3-photon emission process shown in panel (b). In
general, the two extra photons that are produced are not
resonant, and the amplitude of the total process is sizable
only because of the ultra-strong coupling regime. Indeed,
the elastic reflection curve of Fig. 2 is spectrally very
broad, and emission does not necessarily occur strictly on
resonance.

The non-RWA nature of the particle production process
is obvious from the non-conservation of excitations: the
middle outgoing arrow in Fig. 4(b) corresponds to the
emission of a photon upon excitation of the two-level
system (instead of the usual de-excitation). Four photon
production is also displayed in panel (c) for an input
state with two photons. In this case, one input photon is
elastically scattered at kg, while the second input photon
splits into three photons similar to the process in panel (b).
Since the RWA 2 — 2 process in panel (a) and the non-
RWA 2 — 4 process in panel (¢) come at the same order

0.25 =
— a=0.1 MCS
--- a=0.1Fit
0.201|— 4-02Mcs
—me =02 Fit
% 0.154|— «=03 N!CS
S~ |[===- a=0.3 Fit
=
£ 0.10
0.05 1
0.00 T T f : ;
-0.2 -0.1 0.0 0.1 0.2
k/w.

FIG. 5. Frequency conversion spectrum by going deeper in the
ultra-strong coupling regime (a = 0.1,0.2,0.3, bottom to top
curves) for an off-resonant incoming wavevector ko = 0.2w,.
Parameters are otherwise taken as in Fig. 3. Although the res-
onance frequency Ag and inelastic linewidth ¢ were fitted,
one observes increasing deviations to the fitting formula (B1)
at larger a. Enhanced scattering of low-energy modes, pre-
cursor of the Kondo regime, originate from non-perturbative
many-body corrections beyond the lowest order perturbation
theory of Ref. [32].

in the input power, they can be used to directly compare
the relative strength of RWA and non-RWA processes.
All three processes of Fig. 4 are clearly observed in the
spectrum shown in Fig. 3, as the emission amplitude is
decomposed into photon number states N = 2,3,4. In
view of the wide use of the RWA in the quantum optics
context, the main surprise in these results (to be discussed
in more detail below) is that non-RWA processes strongly
dominate in amplitude the RWA processes.

Some of the off-resonant processes were previously pre-
dicted perturbatively by Goldstein et al. [32] in the a« — 0
limit and at the Toulouse limit, and we are able to char-
acterize quantitatively the non-linear emission for the
first time at finite o values, as seen in Fig. 5. The main
effect brought by stronger coupling is a further renor-
malization of the spontaneous emission line Ag down to
lower values, as well as a global increase of the probability
for inelastic conversion. Interestingly, we find that the
perturbative formula (B1) cannot quantitatively describe
our data anymore in this regime, even when allowing to
fit the inelastic linewidth. Perturbation theory thus fails
to capture the pile-up of low-energy photons found in
the numerical simulations, which signals the approach to
the incoherent Kondo regime, in which the qubit reso-
nance is fully washed out. A detailed study of non-linear
spectra as a function of incoming momentum is given in
Appendix B 1.
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FIG. 6. Left panel: probability distribution of the two-photon states |a, x,|>/dk? corresponding to the 2-photon curve in Fig. 3.
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C. Particle production processes

We now investigate more precisely the photonic content
of the emitted radiation in the inelastic channel. Let us
start with the 2-photon particle-conserving RWA contribu-
tion (bottom full line N = 2 in Fig. 3) forming two lobes
symmetrically arranged around the main elastic peak (at
ko = 0.16w.). The lowest energy lobe is centered around
k ~ 0.08w. ~ Ag corresponding to the spontaneous ree-
mission of the qubit, while the high energy lobe is located
around k ~ 0.24w. ~ 2ky — AR, as expected from energy
conservation [panel (a) in Fig. 4]. A closer view into this
two-photon joint emission process is given by the com-
plete two-photon probability distribution |y, 1,|? that is
plotted in the top panel of Fig. 6 (see Appendix A 6 for
details). The main 2-photon elastic peaks are the white
disks located at [£ko, £ko], that have been cut off in order
to magnify the small inelastic contributions. From the
lateral inelastic peaks, one can immediately read-off the
two-photon frequency conversion process in which two
photons with energy kg redistribute their energy into one
photon with momentum Apg and another with energy
2kg — A R-

The inelastic spectrum originating from the conversion
of a single incoming photon into three outgoing photons,
with probability (nk)z 00, ©f measuring one of these
photons at energy k, is represented by the middle full line
in Fig. 3. This inelastic lineshape presents quite unusual
features: a sharp resonance at the qubit frequency Ag, a
broad continuum extending from zero energy up to the
foot of the elastic peak, and a small lobe at the same
energy 2ky — Ag as the previous two-photon conversion
process. The latter is easily understood as an input
of three photons with momentum kg, out of which one
photon is elastically scattered, while the other two are

RWA frequency converted to Ag and 2ky — Ag (similar
to the previous 2 — 2 RWA process). We have checked
that this 3 — 3 RWA process becomes relatively weaker
in amplitude as the input power 7 is turned down, and is
indeed associated to a three-photon input.

The broad low-energy continuum is readily explained
by the 1-photon to 3-photon non-RWA conversion process
shown in panel (b) of Fig. 4. This interpretation is backed
up by studying in the right panel of Fig. 6 the probability
distribution |ag, k,ks=ax|? of 3-photon outgoing states
for which one of the three outgoing modes is resonant,
ks = Ag. To understand this diamond-shaped pattern,
one can observe that the process leading to the diagonal
line in the top-left quadrant can easily be parametrized
as:

|ko) — |AR) Q) |ko — Ag — Q) with Q € [0: kg — ARg].

which basically expresses the conservation of energy be-
tween the input and the output. Note that in the on-
resonant situation (or for a drive at frequency below Ag),
all emitted photons present energies below the qubit fre-
quency.

The next section investigates how the complete inelastic
emission spectra compare with the standard RWA pre-
diction in quantum optics. This comparison will provide
not only a benchmark of our simulations, but also several
physical signatures that cannot be captured without the
inclusion of particle production processes.



IV. SUCCESS AND FAILURE OF THE RWA
FOR NON-LINEAR EMISSION

A. RWA inelastic conversion

To highlight particle production that arises at ultra-
strong coupling, we now compare our MCS simulations
to a direct treatment within the RWA, an approximation
which conserves the number of excitations. Transport
under the RWA is obtained in the framework of input-
output theory. Within the RWA, it is convenient to work
in the basis that diagonalizes the qubit. After applying
the rotating wave approximation to the Hamiltonian (1)
and assuming a frequency-independent coupling constant
gr = VaApg, one finds that the system is described by
the Hamiltonian

H = %Aaz + /dw g[ﬁ(m +1o) +he] (21
—|—/dw w(rlm — lllw)7

where o is the raising operator of the qubit and r,(l,)
is the annihilation operator for the right(left)-going mode
of frequency w. We adapt standard input-output theory
for a monochromatic input [63-66] to our case of an
incoming wavepacket with finite energy resolution. The
input-output relation remains the usual one, rou(t) =
rin(t) — in/7/2g0~ (t) and similarly for the left-going
field lin jous- This allows one to find the properties of the
outgoing field from a master equation for the qubit. In this
way the power spectrum is calculated through the first-
order correlation function G (t1,t5) = (al , (t1)aous (t2))
by a Fourier transform

1

T T
S[w]=§/0 dt1/0 dty GO (81, tg)et2—1)  (22)

We assume that the qubit is located at = 0 while the
input and output ends are located at x = —T/2 and T'/2
respectively (¢ = 1). From the definition (13), we can
write the wavepacket in frequency as

1
5 1 2> 4 o (WZ:QO)2 ei(wka)T/2’ (23)
To

() = Vi (

through which the input coherent state is defined as
|2%) = exp [ [ dk z(w) i (w) - h.c.] |0), where i (w) is
the standard monochromatic input operator [63—66] of
input-output theory. The input operator describing our
wavepacket then satisfies

rin(t) |21) = A(t)e‘ikot |21) and I, (t) [2T) = 0,

1
vors
(24)
where A(t) = Ae=7 (=T/2° with A = 2nc(2m)1/* is
the change of driving amplitude on the qubit with time
as the Gaussian wavepacket passes by.
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A master equation for the qubit density matrix ps is
then obtained by transforming to the Schrodinger picture,

0

0
8tps = i[fo—z + gA(t)U+ + h.c., ps]

2 (25)

1
+ 7T92 (UfpsUJr - i{psa U+0’,}),

where a rotating frame given by kgo?/2 has been used.
Note that decay rate is I' = w¢? = maAgr. For the
reflected light, the power spectrum can be shown to be

T T—t
Splw] = gQ/ dt/ dr (o4 (t)o_(t+7)) ei(w—ko)T;
0 —t

(26)
two additional interference terms appear in the power
spectrum for the transmitted light and are not given
here. The desired correlation function (o4 (t)o_(t + 7))
can be calculated through the master equation (25) and
the quantum regression theorem [67].
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FIG. 7. Comparison of MCS simulations to RWA input-output
theory with regard to frequency conversion spectra for the
off-resonant case (upper panel) and on-resonant case (lower
panel). The parameters are the same as in Figs. 3 and 12.
This confirms the previous interpretation that RWA inelastic
processes dominate only on-resonance, and miss the main
contributions to the off-resonant signal.

Comparison to the RWA power spectrum in the off-
resonant and resonant cases is shown in the upper and



lower panels of Fig. 7 respectively. In making this com-
parison, we used as input to the RWA calculation the
numerically found renormalized level spacing and width,
Apr and I'g = maAR, as this is essential to get the elastic
peak correctly. The dominant inelastic process within
the RWA is the scattering of two incoming photons into
two outgoing photons, see panel (a) in Fig. 4. One sees
that this process explains most of the total scattered spec-
trum in the resonant case. Indeed, the lower panel in
Fig. 7 shows that the RWA and numerical MCS results
are nearly identical on the scale shown. In particular
both the overall width and shape of the inelastic power
spectrum agree well. However, it is clear that the RWA
prediction is only a small fraction of the total inelastic
scattering in the off-resonant case (upper panel in Fig. 7),
as particle production leads to qualitatively different and
much larger cross-sections. Thus for these parameters,
the RWA fails badly, even though the coupling constant
a = 0.1 is not very large.

B. Temporal correlations associated to particle
production

It is interesting to study photon number temporal cor-
relations, a standard measure of non-linearities, but now
in light of the large inelastic effects that we uncovered
in the ultra-strong coupling regime. We have computed
the photon-number autocorrelation function go(7) of the
reflected signal (z < 0, k < 0), defined by

(al al-}-raz—kf aa)
<ajc+7—aw+‘r> (alaﬁ

where z is a point within the left-going wavepacket, such
that both z and x 4+ 7 are within the wavepacket. In
principle, go(7) also depends on z, but this dependence is
weak provided the wavepacket is almost monochromatic,
and the location z is taken deep within the outgoing
photon wavepacket. Details of the computation in the
context of an MCS expansion are given in Appendix A 7.

92(7) = ; (27)

We find that temporal correlations are a very sensitive
measure of ultra-strong coupling effects. In the resonant
case (see the top panel of Fig. 8), the correlations are
typical of single photon emission. The comparison to the
RWA is globally quantitative, as expected from the pre-
vious agreement in the inelastic spectrum on-resonance
(small oscillations at long time in go(7) reflect the im-
proper convergence of our MCS numerics near the edges
of the outgoing wavepacket). In disagreement with the
RWA however, we notice that the numerical data shows
partial antibunching at zero delay, g2(0) > 0, signaling the
production of particles, as was revealed by the low energy
spectrum in Fig. 12. Thus particle production leads to
physical effects that are potentially observable experimen-
tally even when on resonance. This offset, which is zero in
the RWA, is found to increase with « (see the upper mid-
dle of Fig. 8 for kg = Ag). The incomplete cancellation
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FIG. 8. Second order correlation function g2(7) in reflection,
at @ = 0.1 (upper panel) and o = 0.2 (middle panel). The dip
at 7 = 0 is a standard signature of anti-bunching, but multiple
photon emission seen in Fig. 3 at ultra-strong coupling leads
to an incomplete cancellation, g2(0) > 0. In the off-resonant
case (ko = 1.2AR), particle production is enhanced relative to
the single photon reflection, resulting in a stronger bunching
(g2(7) > 1) than predicted in the RWA. The MCS simulations
were performed with the same parameters as in Fig. 12, except
for the stronger coupling o = 0.2, 0 = 0.004w. and a hard
cut-off that was used (see Appendix A 7). Bottom panel:
Real space probability distribution of the two-photon states
|tz o |?/da? at the initial (left panel) and final (right panel)
times of the simulation. One remarks the absence of reflection
for two photons arriving at the same time on the qubit, as
seen by the dip within the probability distribution located in
the bottom left quadrant of the right panel.

here can be readily interpreted as a probability of emitting
many-photon states due to frequency down-conversion.
Even more striking is the appearance of a large bunch-
ing signal at intermediate times in the off-resonant case
(see the middle panel of Fig. 8 for kg = 1.2AR), which
was not reported to our knowledge for the radiation of
a single level qubit (bunching can be observed in spon-
taneous emission from multilevel atoms [68], due to a
simpler cascade effect [69], or from multiqubit systems
[70-72]). Here, bunching originates from the single-shot
emission of three photons by the two-level system, a prop-
erty that is only allowed at ultra-strong coupling. The



bunching signal becomes sizable in the off-resonant case,
even though the particle production is comparable to that
in the resonant case, because the reflection amplitude for
single photon emission is reduced. The typical time scale
where these correlation effects occur is set by the inverse
qubit linewidth 1/T ~ 1/[raARg] ~ 25 for a = 0.2, as
observed in Fig. 8.

As a nice illustration of the partitioning of the incoming
beam by the two-level system, we show in the bottom
panels of Fig. 8 the real space probability distribution
of the two-photon states |ay, 4,|?/dz? at the beginning
and at the end of the time evolution. These results were
obtained in the on resonant case with v = 0.1, by Fourier
transforming to real space the k-space displacements. One
can clearly see within the reflected signal (bottom left
quadrant in the right panel) a deep trench on the diag-
onal 1 = 23 < 0 with vanishing photon content (the
incoming coherent state is shown in the bottom left panel
for comparison). Two photons impinging simultaneously
on the qubit have thus very low likelihood of both being
reflected. This provides a direct visualization of photon
anti-bunching, which arises because a single emitter can
only reflect one photon at a time.

V. CONCLUSION AND PERSPECTIVES

In this work we have developed a powerful methodol-
ogy, namely the MCS technique, based on multi-mode
and multi-configuration coherent state wavefunctions, to
address many-body scattering properties of a two-level
system that is embedded in a waveguide in the regime
of ultra-strong coupling. This problem is intrinsically
non-perturbative in nature due to the large production of
particles, and cannot be reliably addressed by standard
methods in quantum optics.

Our main finding is that excitation-preserving processes,
described by the rotating wave approximation (RWA),
dominate the inelastic spectrum only in the resonant
situation. In contrast, when the frequency of the incom-
ing photons is larger than the renormalized transition
frequency of the two-level system, particle production be-
comes very favorable and dominates the inelastic signal.

We have been able to characterize precisely the output
field, by decomposing the reflected and transmitted pho-
ton wavepackets into Fock states, and also by computing
temporal correlations. The main results are as follows.
(i) The process by which one photon is absorbed and
three photons are emitted dominates in the off-resonant
low power limit and leads to a broad spectrum of emis-
sion extending from zero frequency to the renormalized
qubit frequency. (ii) Even in the resonant case, while the
dominant inelastic emission near the resonant frequency
is captured by the rotating wave approximation, there
is still a broad spectrum of weak inelastic transmission
produced by the counter-rotating terms. (iii) The corre-
lation function go(7) in reflection is a sensitive measure
of ultra-strong coupling physics. In particular, particle
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production implies that it needs not vanish at zero delay,
92(0) > 0, and that it shows a strong bunching effect
at a delay of order the inverse lifetime. (iv) Finally, we
have found that perturbative predictions for the inelastic
response [32] cannot be used simply by renormalizing the
bare qubit resonance frequency and linewidth when the
coupling becomes ultrastrong. A more consistent theory
including self-energy effects should be developed for the
future.

All our quantitive predictions have relevance for the
ongoing experimental effort in pushing waveguide quan-
tum electrodynamics to the ultra-strong coupling regime.
The connection to future experiments opens in addition
various research directions. One important issue is that
superconducting qubits are rarely operated as truly per-
fect two-level systems. Reducing the non-linearity of the
qubit is typically important to minimize the effect of ran-
dom noise from the circuit, but this strongly diminishes of
course the amplitude of the interesting non-linear signals.
Thus, extending our methodology to fully realistic super-
conducting quantum circuits will be crucial to address
whether particle-production can be sizeable in practice.

The ability of the multi-coherent state method to deal
naturally with coherent state pulses and open environ-
ments is also relevant for the large interest in quantum
manipulation within complex architectures. It would
thus be very useful to adapt techniques from signal treat-
ment in order to numerically optimize the quantum evo-
lution of the displacements that are used to simulate the
Schrodinger dynamics of the complete system. Such devel-
opments will certainly be useful, because the description
of strongly driven open quantum systems is a very impor-
tant topic currently. Based on the physical artifacts that
we can observe in our simulations of the scattering prob-
lem when the wavefunction is far from being converged,
we suggest that the description of non-linear effects in
quantum circuits for arbitrary pulse sequences is a very
delicate subject that has to be examined with advanced
and reliable many-body techniques.
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Appendix A: Technical aspects of the simulations
1. Dynamics of the MCS state vector

The multi-mode coherent state decomposition (7) leads
to compact Euler-Lagrange equations (10) that determine
the full quantum dynamics the spin-boson model (1):

P Z (pm - pmHm]) Mjm7
F“;C = Z (pmfk,m + ( m 2pm/fmj> fk,m) Mj”’“ (A2)

(A1)

Kij = Z (fk,mf]:,m + fl:,mfk,m - 2fl:,jf.k,m) . (AS)
k
Here, M;; = (filfj) = e~ % Zkllfu il +1Fx " =2f%ifr] corre-

sponds to the overlap between two multi-mode coherent
states, and arises in the equations because of the over-
completeness of the coherent state basis. Identical equa-
tions (up to a minus sign in all terms containing g ) are
obtained for the variables ¢, and Ay ,. We have denoted
respectively in Eq. (Al) and Eq. (A2): P; = fing; and
P =i -] (ggp; + 22 pj) k. with E = (U|H|¥)
the average energy, which reads explicitely:

2 =25 (bhtontfalh) + pont ()

n,m

+ 37 (Do Fal Fu) W,
- % Z (p;pm<fn|fm>L

i+ @ (B ) Wi, )

= @t o) L, )
(A4)

where we have deﬁned Wi = ks0 Wk i em, Wi, =

Zk>0 wkhk,nhkvm7 nm Zk>0 9k (flc nt fk m) Zm =
> k>0 gr (R, + hi,m). We now proceed with the imple-
mentation of a new and efficient numerical solution of the
dynamical equations.

2. New integration algorithm

One can note that the dynamical equation (A2) for
the displacement field fy () is not yet in the proper
form where a unique time derivative fy . (t) is extracted
on one side of the set of equations. Achieving such a
decomposition is required for efficient time integration,
but considering that the system under study will require
Nmodes =~ 1000 (for accurate spectral resolution) and
Nes ~ 40 (for convergence of the quantum many-body
state), a brute force inversion of equations (A1-A2) would
scale prohibitively as (Nes X Nmodes)® operations for each
time step. A more efficient algorithm, allowing to cope
with a few hundred modes was proposed in Ref. [39], used
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an inversion technique with only (Ne)® operations, which
is favorable provided Neg < Npodes- We present here an
improved version of this algorithm, which enables us to
reach the realistic situation of several thousands of modes.

The first step is to multiply Eq. (A1) by M1, with M

the overlap matrix M;; = (fi|f;):
_ o1
> M, P =p, - 5 > DmbimiM,,} (A5)
j mj
o1 :
= Pn T 5Pn Z(fq,m am + fqmfam)
q
+ meM;lejmf;,ijﬂm (Aﬁ)

mjq
and similarly for Eq. (A2):
Z MTTJIF]’C = pnfk,n +pnfk,n
J

1 . .
*ipnfk,n Z(fq,nf*m + f(;,nfq,n)
q

+ meM;lejmfk,mf;,jf.q,m' (A7)
Jjmgq
We now substitute Eq. (A5) in Eq. (A7):
pnfk,n = Z(Mn_le]k - fk,nMn_jlpj) (AS)

r
- Z M,:lejmpmf;,ij,m (fk,m - fk,n) )
mjq
which allowed to eliminate the complex conjugate time
derivative f7,,. Eq. (A8) is not yet in explicit form since
time derivatives of all possible displacement fields appear
in the right hand side. We define the mode-independent
quantities a;, = pn Zf;:,ifk,n and by, = > fiifkn and
k k

solve for a;, by inserting Eq. (A8) in its expression:

QAin + Z aijn_lejm (bim - bin) = Ai?u (Ag)
mj
with Ain =30 fis (M FF = fenM,} P;).
After solving the hnear system (A9) with the (Nes)?

unknown parameters a;,, the evolution equation for each
displacement field is then cast into explicit form:

pnfk,n = Z(Mn_leJk - fk,nMn_ijj)
ik
- Z Mn_lejmajm(fkﬂn - fk,n)a (AIO)
mj

which can be integrated numerically using an RK4 method.
The numerical inversion of the system (A9) can be
sped up below the naive (Ng)® cost by defining d;, =
Zj lM]majm and Qipm = Zl M Mln(blm bln)a S0
that we can solve a linear system for din:

Z (6136nm + aznm(sn] Z M IM]mA]m (All)

mj 7



which assumes a sparse form suitable for Krylov based
methods (provided a good preconditioner can be found).

3. Incoming and outgoing many-body states

Combining the incoming coherent state, described by
the displacement zj, in Eq. (13), with the static polariza-
tion cloud wavefunction Eq. (11) can be done by trans-
forming the incoming signal in the even/odd basis (see
Sec. ITC). For the spin-up projection of the wavefunction,
we readily find:

[Wy) = D(2%)D(=°) [9§®)
NES

_ zfat—c.c. § GS o S8 ot _ce.
— ezk>0 k% P ezk>0 k,m%E |0>
m

(A12)

MRS

which can be recombined using the standard relation
edeB = eA+Be%[A’B], valid as the commutator here is
only a number. The initial state associated to the 1 qubit
state thus reads:
NGS
Wy = 3 pGSed Tuna (GHIR —i4E5) (a13)
m

X ezbo[(fﬁ?”-i-zl‘i)a?—(fﬁf’”-i-zl‘i)*ai] |0>€ |z°>0.
For the spin-down projection, one simply replaces f,?fn
by ff,ssl without changing the sign of zj, so that our
total initial wavefunction is given by Eq. (17).

The outgoing wavepacket is constructed in a similar
spirit:

NOUT

[TOUT) = 37 pRUTed Beso (2l 2 ) g,

m=1

(A14)
where we have written the displacements of the outgoing
state in real space because they have no spatial overlap
with the real space modes that populate the many-body
ground state (working in momentum space would compli-
cate the analysis). This decoupling occurs in fact when
the wavepacket reaches distances away from the qubit
that are larger than the inverse Kondo energy [37], or
said otherwise, that are larger than the entanglement
cloud around the qubit. Clearly the quantum many-body
character of the scattering process is encoded in the sum
over more than a unique coherent state, in contrast to
the incoming wavepacket (16) that is characterized by a
single coherent state (namely a classical-like signal). Con-
trarily to the driven dynamics for an isolated few level
quantum system, this long time equilibration between the
many-body ground state and the wavepacket is physically
expected because the waveguide acts as a bath for the
dressed two-level system, and thus provides a natural

pathway for relaxation, even in a many-body system.
Extracting the wavepacket contribution (A14) from the
long-time wavefunction (18) can be performed as follows.
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The complete set of displacements {f¢ (T, hf, ,(T)} in
the even sector at a fixed long time T for the full wave-
function (7) are first Fourier transformed to real space
using (12). The local photon density n(x) associated to
these displacements is sketched in Fig. 1: photons are
either bound statically near the qubit (associated to the
dressed vacuum) or travel in the outgoing wavepackets.
The displacements are then simply set to zero in the
region surrounding the qubit, and Fourier transformed
back to the momentum basis. Due to factorization (18),
the outgoing wavefunction is recovered, up to a normal-
ization factor, which is supplemented accordingly. The
even modes thus obtained and the trivial odd mode wave-
functions are finally combined together in the case of the
incoming wavepacket, allowing reconstruction of the full
outgoing wavefunction for the physical waveguide.

4. Convergence properties

Assessing the good convergence of the numerical results
is important to gain confidence in the time-dependent
variational MCS technique Indeed, we find that using too
few variational parameters imposes strong constraints on
the dynamics, which may result in unphysical behavior
and numerical artifacts. One delicate test is the strong
power saturation spectrum shown in Fig. 2 of the main
text. Indeed, the calculations that use only a single
coherent state, as done in a previous publication [34], are
found to be problematic in the strong power regime. This
behavior is illustrated in the top panel of Fig. 9, showing
the power reflection spectrum as a function of incoming
frequency at a strong input power (7 = 2) for three
different values of the number of coherent states N, =
1,4,16. The computation with N, = 1 is indeed quite
noisy and imprecise, and a smooth and converged curve
is only obtained at N.s = 16. We find that the inelastic
spectra shown in Fig. 3 are also delicate to compute,
because they consist of a tiny fraction of the total signal,
and encode complex quantum states. A relatively large
number of coherent state is also necessary here for success,
even at small input power.

An unbiased criterion for the convergence of our algo-
rithm for this non-equilibrium many-body dynamics is
also shown in the lower panel of Fig. 9. Here we demon-
strate that the error with respect to the exact Schrodinger
dynamics vanishes with the number of coherent states.
The error is defined [39] by the squared norm

Err(t) = (®(t)|@(t)) (A15)

of the auxiliary state |®(t)) = (i0, — H)|¥(¢)). Indeed,
this error decreases steadily and scales as [Nes] 2. For
the off-resonant case of Fig. 3 (see bottom curve in the

lower panel of Fig. 9) we managed to reach an error of
the order of 1077.
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FIG. 9. Top panel: Power reflection spectrum shown for
different number of coherent states N¢s = 1,4, 16 included in
the MCS wavefunction (7), with the same parameters as in
Fig. 2 in the case of 7 = 2 photons in the incoming beam.
Bottom panel: Convergence of the error defined in the text
at the final time Tgna of the simulations, as a function of
coherent state number in the wavefunction for various incoming
momenta and power.

5. Protocol for adding coherent states during the
time evolution

Because the coherent state basis is over-complete, all
the coherent states required for good convergence (typ-
ically Nes > 16) cannot be initialised simultaneously at
the initial time. Indeed, two coherent states with identical
displacements will result in a singularity in the matrices
to be inverted for solving the dynamics, due to a vanishing
determinant. During the initial stage of the dynamics,
this is not an issue, as only a small number of coherent
states (typically 6 to 10) is needed to describe the static
many-body cloud and the incoming coherent state. Af-
ter some time however, the wavepacket starts to interact
with the dressed qubit, which would increase the error
should the number of coherent states remain the same.
Therefore, to account for the emerging complexity of the
many-body scattered state, we progressively increase the
number of coherent states N in the MCS state vector
(Eq. (7)), initializing the newly added coherent states in
a bosonic vacuum configuration with zero weight. Thus,
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FIG. 10. Number of used coherent states in the MCS wave-
function defined in Eq. (7) as a function of time, for the
off-resonant kg = 0.16w. simulation. The initial 6 coherent
states present are those required for describing the dressed
ground state of the spin-boson model as well as the incoming
wave-packet. Subsequent additions of coherent states start
only as the wave-packet starts to impinge on the qubit. The
addition process stops as the wavepackets exit the interaction
region.

the addition of a new set of variational displacement does
not immediately affect the dynamics, but provides the
necessary freedom to our variational algorithm for main-
taining a minimal error at later times. This procedure is
illustrated in Fig. 10.

The right time for a coherent state to be added is
found by monitoring the error, which was defined by
Eq. (A15), and by defining an error increment Erryax
at which the coherent state should be added. Whenever
Err(t) — Erryes > Errpax during the time evolution, where
Erryef is the error right after the previous coherent state
was added, one simply adds a coherent state with dis-
placement f* = h¥ = 0 and weights p,, = ¢,,, ~ 1076
in Eq. (7). The near-zero amplitude ensures that this
new coherent state only changes the wave-function neg-
ligibly at the time it is added. Empirically, we find the
value of Errmax = 1077 to be adequate. The system,
through the variational principle, will subsequently have
the possibility to increase the displacements and weights
according to the requirements of the quantum trajectory.
As an example, a plot of the number of coherent states
as a function of time for the off-resonant kg = 0.16w,
simulation in Fig. 3 is given in Fig. 10.

6. Calculation of Number Resolved Spectra

To assess the nature of particle production in the scat-
tering process, we analyze the inelastic spectrum in terms
of Fock states |N). First, consider the general expansion
of the multi-mode outgoing wavefunction (19) in terms of



number states:

|WOUTY = ~|0) + ZakaL |0) + Z akl,kzallalz 0)
Lk k1,k2

TooT T
§ : Oky ko ks Oy Oy Ay |0> +
k1,k2,k3

(A16)

It can then easily be verified that the 1-photon amplitude
is given by:
g = (0] ay, [FOUT)

= Pufin (Ofa), (A17)

and that the scattering amplitude for a generic N-photon
state is:

1

7 Olak, . ai [WOUT), (A1)

Oky by = 77 (O] @i, -
which can be obtained straightforwardly from the alge-
braic identities of coherent states. For the sake of clarity,
we have dropped the OUT labels on p,, and f, ;. From
the multi-photon amplitudes, we can then compute the
probability distribution for finding a photon in a given k
mode, according to the various Fock contents of the total
wavefunction:

<nk>1photon = |ak |2

< 2ph0ton =4 Z |ak k1| 5
(k) 3photon = 18 Z | ka,k3”- (A19)
k2,k3
These Fock resolved inelastic contributions <nk.>1\1phot(m7

with N = 2,3,4 are displayed as full lines in Fig. 3 (note
that the outgoing N = 1 process is purely elastic and is
not shown).

7. Calculation of g2(7)

In this appendix, we give some details on the calculation
of the correlation function go(7) when using the MCS
approach. First, since we take the speed of light ¢ = 1,
T is just the distance traveled by radiation in time 7.
Inserting the MCS expansion Eq. (7) into definition (27),
we obtain a compact expression for the autocorrelation
function in terms of the real space displacements f:

D Pa (L) () ST S5 (il fim)

(1) = (@) e+ 7) |
(A20)
with the local photon number
(n(z)) = (alaz) = papm(F2) fo (falfm) - (A21)

m,n

In the simulations performed to compute this quantity we
used a sharp cutoff ©(w, — w) for the dispersion relation
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instead of the exponential cutoff e=*/“< which we defined
in Eq. (5). Note that using the hard cut-off results in
a slightly lower value of the renormalised qubit energy
Apg, than with the exponential cutoff. This allowed us to
decrease the numerical cost and therefore attain a higher
number of coherent states, N.s = 40, which was necessary
because second-order correlations are more challenging to
converge than average photon numbers. The simulations
were stopped at a timescale T = 1250/w,. long enough
that the wavepacket is located far away from the dressed
qubit, and we chose the spacial point x = —681 in Eq.
(27), so as to keep the range of the function near the
center of the wavepacket. We finally note that spurious
effects associated with the finite spatial extension of the
wavepacket (due to o # 0) lead to the small oscillations
seen in Fig. 8 at longer times.

Appendix B: Further analysis of non-linear emission

1. Detailed off-resonant conversion spectra

—— ky=19A, (MCS)
-== ky=1.9Ap (Fit)
—— ky=24Ap (MCS)
--= ky=2.4Ap (Fit)
—— ky=3Ax (MCS)
- ky=3Apg (Fit)

a=0.1

FIG. 11. Low-energy inelastic spectrum for several off-resonant
values of the incoming momentum ko = 0.16,0.20, 0.25w. ob-
tained using the MCS technique (with the same parameters
as in Fig. 3), together with a comparison to the analytical for-
mula (B1), using a fitted and momentum-dependent linewidth

vr (ko).

We proceed here with a systematic study of particle
production spectra in the off-resonant case, as a func-
tion of incoming momentum ko (see Fig. 11). A weak
coupling calculation of the one photon to three photon
conversion process (see Fig. 4) was given in the a — 0
limit in Ref. [32]. We have found that this theory can
quantitatively account for our data at small o upon two
important modifications. First, as already seen by the
frequency shift in the reflection spectrum in Fig. 2, one
must replace the bare qubit frequency A by the renor-
malized quantity Agr within the analytical results given
by the perturbative approach. Second, the golden rule
value for the qubit linewidth appearing in the transmis-



sion lineshape, given by I' = maA at small «, cannot
be used. For the elastic response, one can use reliably
I'r = mraAR up to moderate values of . However, we
find that the renormalized broadening parameter 'y'}gel
entering the inelastic response function for fixed value of
the incoming momentum kg is not given by I' g, but rather
displays a strong momentum dependence, v = vz (ko).
This is not completely unexpected, since a consistent cal-
culation should include the full momentum variation of
the self-energy, and we found that the theory of Ref. [32]
is very sensitive to the way the inelastic regularization is
implemented. For the present purpose, we will only use a
phenomelogical model that uses (as fitting parameters)
only two renormalized quantities Ag and yg(ko) within

the perturbative formula:

a4 ko—k
<nk>3ph0ton = gA%%/ dky kkokqke
0

kokkiko — kA (k* + k3 + k3 + kky + kko + kik2) + 3kA |2
(7 = KR (K — KA (K — k2)(k — K2

with ko = ko—k1—k and ka = Ag+ivyr(ko), with Ag the
renormalized qubit frequency and g (ko) the linewidth
describing the inelastic spectrum, which is fitted from our
numerical data. The resulting comparison is shown in
Fig. 11, with excellent quantitative agreement.

2. Detailed on-resonant conversion spectra

We consider here the detailed photonic content of the
emission spectra in the resonant case where the incoming
photon energy ko = Ap matches the renormalized atomic
transition energy. Fig. 12 shows the total transmitted
signal as well as its decomposition in terms of number
states with N = 1,2, 3 photons. Not surprisingly, the two-
photon amplitude in this regime is strongly enhanced with
respect to the off-resonant situation of Fig. 3. One-photon
contributions are also observed as two side-bands away
from the resonance Ag, which are due to the finite width
of the incoming wave-packet. The resonant 1-photon
states (at exactly k = ko) are completely reflected, as
expected. In the resonant case, 2 — 2 RWA frequency
conversion gives rise to the broader wings (extending
clearly beyond the linewidth o of the pump), as seen

(B1)
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in the N = 2 curve of Fig. 12. As in the off-resonant
case, the resonant scattered spectrum also presents a 3-
photon low energy continuum, as can be seen from the
inset. The shape however does not present any sharply
peaked feature, since this time the continuum does not
contain the resonant frequency k = Ag at which the qubit
spontaneously reemits. Instead, the spectrum is more flat,
implying the single photon splits more uniformly into
all the possible (ki, ka, k3) allowed by the 1 — 3 process
of Fig. 4. Interestingly, the magnitude of this 3-photon
continuum is of the same order of magnitude as in the
off-resonant case of Fig. 3, since non-linear processes are
here intensified by having an on-resonant input, which
compensates for the absence of an enhancing resonant
frequency in the output below k. Again, this particle
production process dominates the RWA contribution, here
only away from the probe frequency.

6
---- Total IN a=0.1
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49—
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FIG. 12. On-resonance transmission spectrum for an incoming
photon energy that matches the renormalized qubit excitation,
ko = 0.08w. = Agr. The simulation required 2500 modes with
the use of 34 coherent states (all other parameters are identical
to the ones in Fig. 3). The black dashed curve corresponds
to the nearly monochromatic incoming wave-packet. Because
of the wavepacket finite linewidth o, a small fraction of one-
photon states is still transmitted (dot-dashed line), despite
being on resonance. The two-photon contribution (top full
line) presents wider inelastic wings, that extend beyond the
width o, and that are parametrically larger in amplitude than
the off-resonant signal of Fig. 3. The 3-photon continuum is
magnified in the inset.
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