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We show that indirect spin-spin interactions between effective spin-1/2 systems can be realized in
two parallel 1D optical lattices loaded with polar molecules and/or Rydberg atoms. The effective
spin can be encoded into low-energy rotational states of polar molecules or long-lived states of
Rydberg atoms, tightly trapped in a deep optical lattice. The spin-spin interactions can be mediated
by Rydberg atoms, placed in a parallel shallow optical lattice, interacting with the effective spins
by charge-dipole (for polar molecules) or dipole-dipole (for Rydberg atoms) interaction. Indirect
XX, Ising and XXZ interactions with interaction coefficients J⊥ and Jzz sign varying with interspin
distance can be realized, in particular, the J1 − J2 XXZ model with frustrated ferro-(antiferro-
)magnetic nearest (next-nearest) neighbor interactions.

I. INTRODUCTION

Polar molecules and Rydberg atoms interact via
strong, anisotropic and long-range dipole-dipole in-
traspecies and charge-dipole interspecies interactions.
Both systems have long-lived internal states, which can
encode qubits and effective spins, such as low-energy ro-
tational states of the ground electronic and vibrational
state of molecules and long-lived high-n states of Ryd-
berg atoms. The long-lived qubit/effective spin states
and strong long-range interactions make for highly at-
tractive quantum computation and quantum simulation
platforms [1, 2]. In periodic trap arrays, these systems
offer the additional advantage of scalability to qubit num-
bers sufficient for large-scale simulations [3, 4].

Quantum magnetism is particularly amenable to simu-
lations with ultracold atomic and molecular systems be-
cause various types of magnetism models can be mod-
elled due to exquisite control over atomic interactions. In
particular, polar molecules can efficiently simulate vari-
ous quantum magnetism models [5], e.g. effective XX
spin-exchange has been realized in a 3D lattice of KRb
molecules [6]. Rydberg atoms have also been proposed
for quantum simulation of magnetism phenomena [7],
starting with the seminal work on realization of an Ising
model with Rydberg crystals [8], recently demonstrated
in [9], and extending to simulation of exotic frustrated
magnetic states such as quantum spin-ice [10].

One particularly interesting class of magnetic interac-
tions are indirect, i.e. mediated, spin-spin interactions.
Examples include superexchange [11, 12], electron-spin
mediated interaction between nuclear spins in molecules
(J-coupling) [13], and Ruderman-Kittel-Kasuya-Yosida

(RKKY) interaction between localized magnetic impuri-
ties in metals and semiconductors, mediated by coupling
to conduction electron spins [14–17]. The RKKY inter-
action is of special interest in that it has a sign period-
ically varying with the distance between the impurities,
which can lead to frustration and random magnetization,
producing non-trivial magnetic phases such as spin glass
[18]. Frustrated magnetic systems with sign-changing in-
teractions, in particular, with competing ferromagnetic
nearest and antiferromagnetic next nearest neighbor in-
teractions, such as copper oxide spin chains [19–23], have
attracted active interest in recent years [24–26] due to un-
usual magnetic properties of the corresponding materials
stemming from large degeneracies of their ground states
induced by frustration.

In the present work we consider indirect interaction in
a setup comprised of effective spin-1/2 systems, encoded
in either rotational molecular or atomic Rydberg states,
mediated by their respective interactions with auxiliary
spin-1/2 systems, encoded in Rydberg atom states. The
effective and mediator spins can be trapped in two 1D
parallel optical lattices or trap arrays such that the ef-
fective spins are tightly trapped in their sites, while the
mediator spins are loosely trapped and because of spatial
delocalization of their motional wavefunction can simul-
taneously interact with several effective spins.

Drawing an analogy with the RKKY interaction the
tightly trapped polar molecules/Rydberg atoms act as
localized magnetic impurities, and the weakly trapped
mediator Rydberg atoms play the role of conduction
electrons. We show that this indirect interaction can
change sign depending on interspin distance analogous
to the one of RKKY. The resulting interaction extends
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beyond nearest neighbors, e.g. nearest and next-nearest
neighbors can interact with comparable strengths, allow-
ing to realize the J1 − J2 XXZ model [25]. By making
the next-nearest neighbor interaction antiferromagnetic,
frustrated interactions in the J1 − J2 model similar to
those in 1D copper oxide spin chains, can be realized.

Indirect magnetic interactions such as superexchange
have been previously simulated with ultracold atoms in
an optical lattice [27]. Past proposals also include simula-
tion of phonon-mediated electron interactions in a hybrid
system of trapped ions and ground state atoms [28] and in
a bilayer of Rydberg atoms [29]. Spin-spin interactions
with distance dependent tunable interaction strengths,
giving rise to frustration, were simulated in a linear chain
of three ions [30], where the spin-spin interactions were
mediated by phonons in the ion chain [31]. A similar
approach to realize phonon-mediated spin-spin interac-
tions with distance-dependent interaction strength was
considered in Ref.[32] for polar molecules arranged in a
dipolar crystal. Spin-spin interactions can also be medi-
ated via interaction with electromagnetic modes of a cav-
ity [33]. Nuclear spins of ultracold atoms of two internal
electronic states, tightly and weakly trapped in an opti-
cal lattice, were proposed to simulate the RKKY interac-
tion [34]. The atoms interact via short-range s-wave po-
tential, making the corresponding interaction strengths
much smaller compared to the long-range dipole-dipole
or charge-dipole interactions considered here.

The systems envisioned in this work offer the possibil-
ity that a large realizable atomic and molecular param-
eter set can be exploited to simulate a range of many-
body interactions. The paper is organized as follows. In
Section II we describe the system and derive the effec-
tive Hamiltonian for indirect interaction between effec-
tive spins encoded in polar molecules or Rydberg atoms.
In Section III two examples of simulation of indirect in-
teraction are discussed: i) XX interaction by encoding
spins into low-energy rotational states of polar molecules,
interacting via mediator Rydberg atoms; ii) XXZ inter-
action by spin encoding into states of Rydberg atoms,
mediated by a Rydberg atom in a different state. Fi-
nally, we conclude in Section IV.

II. MODEL DESCRIPTION

In this section, we will introduce the physical system
(cf, Fig. 1), derive its Hamiltonian, and simplify it into
the effective Hamiltonian by tracing out and averaging
over the degrees of freedom of the mediating Rydberg
atoms. It will then be obvious that, like in the RKKY
case, this system leads to interspin distance-dependent
sign-changing interaction, which constitutes the main re-
sult of this article.

A. Effective interaction Hamiltonian

We consider a setup with two parallel 1D optical lat-
tices or trap arrays, one filled with polar molecules or Ry-
dberg atoms representing effective spin-1/2 systems, and
another filled with auxiliary Rydberg atoms, mediating
the interaction between the effective spins, as illustrated
in Fig.1a. The effective spins are assumed to be tightly
trapped in their optical lattice such that tunneling be-
tween sites is strongly suppressed. They interact with
Rydberg atoms trapped in a parallel shallow optical lat-
tice, in which tunneling is significant. In the setup, where
the effective spins are comprised of polar molecules, e. g.
Fig. 1(b), the interaction is charge-dipole

Vcd =
e~dspin · ~R

R3
−
e~dspin ·

(
~R− ~r

)
∣∣∣~R− ~r∣∣∣3 . (1a)

Here, e is the electron charge, ~dspin is the molecule electric

dipole moment, ~R is the distance between the mediator
Rydberg atom ionic core and the spin-encoding system,
and ~r is the distance between the Rydberg electron and
the ionic core. In the scheme, where the effective spins
are Rydberg atoms, the mediator atoms interact with the
spin-encoding species via dipole-dipole interaction

Vdd =
~dspin · ~dRyd

R3
−

3
(
~dspin · ~R

)(
~dRyd · ~R

)
R5

, (1b)

where ~dRyd is the electric dipole moment of the media-
tor Rydberg atom. For distances ∼ µm between the
spin and mediator arrays we will consider in the
next section the charge-dipole interaction can be
approximated by the dipole-dipole one, and in the
following we will assume the interaction is dipole-
dipole. More details on the charge-dipole inter-
action mediating the effective interaction can be
found in Appendix A.

The effective spins are assumed to occupy the lowest
energy band of the deep optical lattice in both |↓〉, |↑〉
spin states, such that the spin-mediator interaction does
not excite the spins to higher-energy bands. The media-
tor atoms, on the other hand, are assumed to be initially
prepared in one of the low-energy bands in their lattice in
the |ns,mj〉 Rydberg state, such that they can be trans-
ferred to

∣∣npj′ ,m′j′〉, ∣∣(n− 1)pj′ ,m
′
j′

〉
internal and differ-

ent motional states by the interaction with the spins. In
the following we actually will need to consider only the
coupling to npj′ states. The mediator states are denoted
as |n, kν〉q = φ(Xq, kν q) |nlj ,mj〉q, describing the mo-

tional φ(Xq, kν q) and internal |nlj ,mj〉q states of the qth

mediator atom, and n = {n, l, j,mj} is a short-hand no-
tation for its internal quantum numbers. Here we assume
for simplicity that the trapping potentials and therefore
the motional states for |ns,mj〉 and

∣∣npj′ ,m′j〉 internal
states are the same, which is not a principal requirement,
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FIG. 1: Setup schematic. (a) Illustration of the bilayer setup,
in which spin-encoding polar molecules or Rydberg atoms are
trapped in a deep optical lattice or trap array, and the me-
diating Rydberg atom(s) is placed in a shallow optical lattice
such that its spatial wave function is delocalized over several
sites, and it can simultaneously interact with several spins;
(b) Geometry of the setup: an effective mth spin with a dipole

moment ~dm interacts with a mediator atom via charge-dipole
interaction Eq.(1a) in case of the polar molecule spin encoding
or dipole-dipole interaction Eq.(1b) in the case of the Rydberg
atom spin encoding. The distance between the two parallel
lattices is |~ρ|, ~Rqm is the vector connecting the ionic core of
the qth mediator atom to the spin, Xqm = Xq − Xm is the
distance between the mediator atom and the spin along the X
axis, ~r is the vector connecting the mediator Rydberg electron
and the ionic core.

and will be only used to simplify numerical analysis in
the next section.

Rydberg atoms can be trapped in intensity minima in
a ponderomotive [35] or a blue-detuned [36] optical lat-
tice. The latter also can also trap atoms in their ground
state, which can be used if a superatom or a dressed Ry-
dberg mediator state is used, as will be discussed later.
The motional wavefunction of the qth mediator atom is
then given by the Bloch function of a νth Bloch band,
corresponding to the quasimomentum k:

φ(Xq, kν q) = u
(ν)
k (Xq)e

ikXq , (2)

where Xq is the coordinate of the atom along the lattice,

u
(ν)
k (Xq+Lat) = u

(ν)
k (Xq) is periodic with the period Lat

of the mediator atom’s lattice. We also assume periodic
boundary conditions Nlatt atkLat = 2πnw, where Nlatt at

is the number of sites in the mediator lattice and nw is
the periodicity integer.

The Hamiltonian without the spin-mediator interac-
tion has the form:

Ĥ0 =

N∑
i=1

Espin |↑〉i 〈↑|i +

Na∑
q=1

∑
M=m,m′

EM |M〉q 〈M|q ,

where |m〉q = |ns, kν〉q with ns = {ns, j = 1/2,mj =

±1/2}, |m′〉q = |np, k′ν′〉q with np = {np, j =

3/2, 1/2,mj = ±3/2,±1/2}; Espin = E↑ − E↓ is the
spin transition energy and EM = Ens(np)(kν(k′ν′)) is the
energy of the mediator atom, including both internal
Ens(np) and motional energy of the corresponding Bloch
states. The summation is over i = 1, ..., N effective spins
and q = 1, .., Na mediator atoms in the first and sec-
ond optical lattices, respectively; over nlj = ns, np1/2,3/2;
mj = ±1/2,±3/2 internal states of the mediator atoms,
and their quasimomenta k in the first Brillouin zone of
ν = 1, ...,∞ Bloch bands.

The spin-mediator interaction Hamiltonian can be
written in the combined basis of spin and mediator states:

V̂ =

N∑
i=1

Na∑
q=1

∑
m,m′

α,β=↑,↓

|m〉q |αi〉 〈βi| 〈m
′|q ×

×〈αi| 〈m|q V̂ |m
′〉q |βi〉+ H.c., (3)

where V̂ = V̂dd.
Next we show how the spin-mediator interaction Eq.(3)

gives rise to indirect interaction between the effective
spins. The interaction Hamiltonian in the basis of two-
spin states |αiβm〉 is:

V̂ =

N∑
i,m=1

Na∑
q=1

∑
α,β,γ,δ
m,m′

[
|m〉q |αiβm〉

(
V iqm,α;m′,γδβm,δm+

+V mqm,β;m′,δδαi,γi

)
〈γiδm| 〈m′|q + H.c.

]
.

(4)

The interaction matrix element between the mth

spin and the qth mediator atom is V mqm,ξ;m′,η =

〈m|q 〈ξm| V̂ |ηm〉 |m′〉q, which describes the process in

which the qth mediator atom is transferred from the |m〉q
to the |m′〉q state, and the mth spin goes from the |ξ〉 to

the |η〉 state.
The interaction Hamiltonian in the limit of weak in-

teraction |V̂ | � Espin, |Enpj′ −Ens|, |Enpj′ −Ens±Espin|
induces energy shifts and couplings among many-body
spin states |α1α2...αN 〉, corresponding to the same medi-
ator state |m〉q, which have a form of interaction between
the effective spins. This can be shown by allpying the
Schrieffer-Wolff transformation to the total Hamiltonian
Ĥ = Ĥ0 + V̂ :

eŜĤe−Ŝ = Ĥ +
[
Ŝ, Ĥ

]
+

[
Ŝ,
[
Ŝ, Ĥ

]]
2

+O
(
|Ŝ2V̂ |

)
,

(5)

in which terms of the first order in V̂ are eliminated by

setting
[
Ŝ, Ĥ0

]
= −V̂ , where the corresponding genera-

tor Ŝ is given in Appendix A. The transformed Hamilto-
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nian has the form:

eŜĤe−Ŝ = Ĥ0 +

[
Ŝ, V̂

]
2

+O
(
|V̂ |3

)
, (6)

in which the effective interaction V̂eff =
[
Ŝ, V̂

]
/2 terms

are now of the second order in V̂ .
Assuming for concreteness that the mediator atoms

are initially prepared in a single or a superposition of
|ns, kν〉q states, we are interested in the projection of the
effective interaction on these states:

V̂ nseff = P̂nsV̂eff P̂ns =

Na∑
q=1

∑
k,ν

mj=±1/2

|ns, kν〉q 〈ns, kν |q ×

×

 N∑
i,m=1

∑
α,β,γ,δ=↑,↓

Kq,kν
αiβm,γiδm

|αiβm〉 〈γiδm|

 ,

(7)

where

P̂ns =

Na∑
q=1

∑
k,ν

mj=±1/2

|ns, kν〉q 〈ns, kν |q = (8)

=

Na∑
q=1

∑
k,ν

mj=±1/2

∣∣ns1/2,mj , kν
〉
q

〈
ns1/2,mj , kν

∣∣
q

is the projection operator on the ns state and the Kq,kν
αβ,γδ

coefficients are given in Appendix B.
Replacing |αiβm〉 〈γiδm| by Ŝ±,zi Ŝ±,zm spin-1/2 opera-

tors as shown in Appendix B, we can rewrite Eq.(7) in
the following way:

V̂ nseff =

Na∑
q=1

∑
k,ν

mj=±1/2

|ns, kν〉q 〈ns, kν |q ×

×
N∑

i,m=1

[
Jzz q,kνim Ŝzi Ŝ

z
m + J+− q,kν

im Ŝ+
i Ŝ
−
m+

+
(
J+− q,kν
im

)∗
Ŝ−i Ŝ

+
m + J++ q,kν

im Ŝ+
i Ŝ

+
m+

+
(
J++ q,kν
im

)∗
Ŝ−i Ŝ

−
m + Jz+ q,kν

im Ŝzi Ŝ
+
m+

+
(
Jz+ q,kν
im

)∗
Ŝzi Ŝ

−
m + bz q,kνim nmŜ

z
i +

+b+ q,kν
im nmŜ

+
i +

(
b+ q,kν
im

)∗
nmŜ

−
i + bq,kν0 imninm

]
, (9)

where ni(nm) is the number of spins at site i(m), and

the interaction coefficients J+− q,kν
im , Jzz q,kνim , J++ q,kν

im ,

Jz+ q,kν
im and the coefficients bz q,kνi , b+ q,kν

i and bq,kν0 are
given in Appendix C.

If the effective interaction is weak such that |Jim| �
Espin, |Enpj′−Ens|, |Enpj′−Ens±Espin|, the non-resonant

terms J++ q,kν
im Ŝ+

i Ŝ
+
m,
(
J++ q,kν
im

)∗
Ŝ−i Ŝ

−
m, Jz+ q,kν

im Ŝzi Ŝ
+
m,(

Jz+ q,kν
im

)∗
Ŝzi Ŝ

−
m, bz q,kνi Ŝ+

i and
(
bz q,kνi

)∗
Ŝ−i , coupling

collective spin states with energies differing by the spin
transition energy or twice this energy, can be neglected.
As a result, we are left with the effective interaction
Hamiltonian:

V̂ nseff =

N∑
i,m=1

Na∑
q=1

∑
k,ν

mj=±1/2

|ns, kν〉q 〈ns, kν |q ×

×

(
Jzz q,kνim Ŝzi Ŝ

z
m +

J⊥ q,kνim

2

(
Ŝ+
i Ŝ
−
m + Ŝ−i Ŝ

+
m

)
+

+bz q,kνim Ŝzi

)
, (10)

where we assumed
(
J+− q,kν
im

)∗
= J+− q,kν

im = J⊥ q,kνim /2

and a unity filling of the spin lattice with ni = nm = 1

and omitted constant terms ∼ bq,kν0 im.
The Hamiltonian, acting only on effective spins can be

obtained by taking the expectation value of Eq.(10) with
respect to an unperturbed initial state of the mediator
atoms. We consider two examples:

1) the mediator atoms prepared in a Rydberg super-
atom state:

|Ψ〉sat =

Na∑
q=1

∑
k′,k0
ν′,ν0

∏
q′ 6=q

ck′
ν′ ,k0 ν0√
Na

φgq′
(
Xq′ , k

′
ν′ q′

)
× Φnsq (Xq, k0 ν0 q) |g1, ...nsq, ..., gNa〉 , (11)

in which the qth mediator atom is in the |ns, k0 ν0〉q Ry-

dberg state and q′ 6= q atoms are in the ground state
|g, k′ν′〉q′ ,

or
2) the Rydberg dressed state:

|Ψ〉dress =

Na∏
q=1

∑
k′,k0
ν′,ν0

ck′
ν′ ,k0 ν0

(
cgφgq (Xq, k

′
ν′ q) |g〉q +

+cnsΦnsq (Xq, k0 ν0 q) |ns〉q

)
,

(12)

created when all mediator atoms interact with
a dressing laser field of Rabi frequency Ω
and detuning ∆ from the Rydberg state, and

cg =
√√

∆2/4 + Ω2 + ∆/2/[
√

2
(
∆2/4 + Ω2

)1/4
],

cns =
√√

∆2/4 + Ω2 −∆/2/[
√

2
(
∆2/4 + Ω2

)1/4
].

In both cases φgq′
(
Xq′ , k

′
ν′ q′

)
is the spatial wave func-

tion of a q’th atom in the ground state; Φnsq (Xq, k0 ν0 q)

is the spatial wave function of the qth atom in the |ns〉q
Rydberg state. In the general case the atoms in the
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ground and Rydberg states are assumed to be prepared in
a wave packet of Bloch states with quasimomenta k′ν′ and
k0 ν0 , respectively, weighted by the coefficients ck′

ν′ ,k0 ν0
.

The spin Hamiltonian averaged over the mediator states
takes the form:

V̂ nseff spin = sat
(dress)

〈Ψ| V̂ nseff |Ψ〉 sat
(dress)

= (13)

=

N∑
i,m=1

(
JzzimŜ

z
i Ŝ

z
m +

J⊥im
2

(
Ŝ+
i Ŝ
−
m + Ŝ−i Ŝ

+
m

)
+

+bzimŜ
z
i

)
.

As shown in Appendix D, using the assumption that
initially the mediator atoms are prepared in a superposi-
tion of Bloch states the averaged interaction coefficients
(same for bzim) can be written in the following form for
the superatom initial mediator state:

J
zz(⊥)
im =

1

Na

Na∑
q=1

∑
k′,k0
ν′,ν0

|ck′
ν′ ,k0 ν0

|2Jzz(⊥) q,k0 ν0
im =

=
1

Na

Na∑
q=1

∑
k0,ν0

|ck0 ν0 |
2J

zz(⊥) q,k0 ν0
im , (14)

and the dressed initial state:

J
zz(⊥)
im = |cns|2

Na∑
q=1

∑
k′,k0
ν′,ν0

|ck′
ν′ ,k0 ν0

|2Jzz(⊥) q,k0 ν0
im

= |cns|2
Na∑
q=1

∑
k0,ν0

|ck0 ν0 |
2J

zz(⊥) q,k0 ν0
im , (15)

where |ck0 ν0 |
2 =

∑
k′,ν′ |ck′ν′ ,k0 ν0 |

2. In particular, for

mediator atoms initially prepared in a stationary BEC
with k0 = 0, ν0 = 1 [37] the averaged interaction co-

efficients are J
zz(⊥)
im = 1

Na

∑Na
q=1 J

zz(⊥) q,k0=0ν0=1

im for the

superatom and J
zz(⊥)
im = |cns|2

∑Na
q=1 J

zz(⊥) q,k0=0ν0=1

im for
the dressed initial states. In a more general case the
initial mediator state is a superposition of Bloch states
with quasimomenta k0 in Bloch bands ν0 determined by
the distribution |ck0 ν0 |

2. Assuming for simplicity that

the only dependence of the J
zz(⊥) q,k0 ν0
im coefficients on

the initial quasimomentum k0 is given by the prefactor

J
zz(⊥) q,k0 ν0
im ∼ e−ik0(Xi−Xm), the averaged interaction

coefficients for the superatom initial state (similar for
the dressed state) have the form:

J
zz(⊥)
im ∼ 1

Na

Na∑
q=1

J
zz(⊥) q
im

∑
k0,ν0

|ck0 ν0 |
2e−ik0(Xi−Xm). (16)

A Gaussian distribution |ck0 ν0 |
2 ∼ e−k

2
0/κ

2
0 will give∑

k0,ν0
|ck0 ν0 |

2e−ik0(Xi−Xm) ∼ e−(Xi−Xm)2κ2
0/4 for a nar-

row wave packet with κ0 � π/Lat, resulting in an addi-
tional factor of decay of interaction coefficients with an
interspin distance, controlled by the wave packet distri-
bution width κ0. The κ0 therefore can allow to control
the relative strengths of e.g. nearest neighbor to next
nearest neighbor and more distant interactions.

The total effective Hamiltonian will thus take the form:

Ĥeff = Ĥ0 spin + V̂ nseff spin =

=

N∑
i,m=1

(
JzzimŜ

z
i Ŝ

z
m +

J⊥im
2

(
Ŝ+
i Ŝ
−
m + Ŝ−i Ŝ

+
m

))
+

+

N∑
i=1

(Espin + bzi ) Ŝ
z
i , (17)

where the effective magnetic field bzi =
∑
m 6=i b

z
im at site i

was introduced. The effective Hamiltonian (17) with av-
eraged interaction coefficients from Eqs. (14), and (15) is
the main result of our work. In the case bzi do not depend
on i, the Hamiltonian couples collective spin states with

the same z component of the total spin Ŝz =
∑N
i=1 Ŝ

z
i ,

and describes the XXZ model of magnetism in the pres-
ence of a longitudinal magnetic field. As will be shown
below, due to mediator atoms being spatially delocalized
in their lattice, both the magnitude and the sign of the
interaction coefficients Jzzim, J⊥im can depend on the dis-
tance between the spins.

We note that since in the XXZ model the to-
tal magnetization

∑N
i=1 Ŝ

z
i is conserved, the effec-

tive Zeeman energy (last) term in the Hamilto-
nian (17) is needed to neglect the magnetization

non-conserving terms Ŝ+
i Ŝ

+
j , Ŝ−i Ŝ

−
j , Ŝ+

i Ŝ
z
j , Ŝ

−
i Ŝ

z
j ,

etc. in Eq.(9). It dominates over interactions
since Espin � |J⊥im|, |Jzzim|, and the ground state cor-
responds to all |↓〉 spins. However, if the effective
spins are initially prepared in a superposition of
states, corresponding to zero total magnetization
(setting the Zeeman term to zero), the system
can have non-trivial non-magnetic ground states
[26]. Any zero magnetization state, i.e. a state
with an equal number of spins in the |↑〉 and |↓〉
states can be prepared e.g. by individually ma-
nipulating the spins and setting each spin in the
|↑〉 or |↓〉 state with MW or radiofrequency fields.
Next, this state can be coupled to other zero mag-
netization states by e.g. adiabatic passages using
chirped or STIRAP microwave or radiofrequency
pulse sequencies via states with ±1 magnetiza-
tion, differing from the zero magnetization ones
by one flip of a spin. In order to selectively couple
particular zero magnetization states by the adia-
batic passage pulses the transition frequencies of
the spins can be individually controlled using e.g.
electric or magnetic field induced gradients of the
spin frequency along the spin chain.
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The XXZ model in the presence of the Zee-
man term can also be used to study the dynamics
of out-of-equilibrium systems, when the spin sys-
tem is initially prepared in a superposition of its
eigenstates, which can be considered as an analog
of a quantum quench. Its evolution will involve
growth and spread of quantum correlations and
entanglement between spins, which is known to
lead to an equlibrium state, closely resembling a
thermal one on a local scale [38]. It was theoreti-
cally predicted [39] and experimentally shown in
a BEC of magnetic Cr atoms [40] and a trapped
ions system [41] (XX model in the presence of
a large longitudinal magnetic field similar to the
one of Section IIIa below was simulated), that the
system dynamics strongly depends on the initial

averaged magnetization 〈Ŝz〉 = 〈
∑N
i=1 Ŝ

z
i 〉. In par-

ticular, it was shown that the closer the total av-
eraged magnetization to zero, the more important
role quantum correlations play and the faster the
entanglement between the spins grows.

B. Sign varying interactions

Below we show that the interaction coefficients J⊥im,
Jzzim can change sign depending on the distance between
the spins. From Eq.(4) one can see that the coefficients
depend on the interaction matrix elements, given by the
expression:

V mqm0,α;m′,α′ =

∫
dXqΦ

∗
nsq (Xq, k0 ν0 q)×

×〈ns| 〈αm| V̂ (~Rqm) |α′m〉 |np′〉φ(Xq, kν q), (18)

where the initial mediator state is denoted as |m0〉q =

|ns, k0 ν0〉q. Let us approximate the Bloch functions
of the mediator motional state by plane waves as
φ (Xq, kν q) = eikXq/

√
Nlatt atLat, Φnsq (Xq, k0 ν0) =

eik0Xq/
√
Nlatt atLat. The matrix elements then have the

form:

V mqm0,α;m′α′ =
1

Nlatt atLat
ei(k−k0)Xm× (19)

×
∫
dXqm 〈ns| 〈αm| V̂ (~Rqm) |α′m〉 |np′〉 ei(k−k0)Xqm ,

where the x coordinate Xm of the mth spin and the sep-
aration between the qth mediator atom and the mth spin
along the x axis Xqm = Xq − Xm are introduced (see
Fig.1b). The integral in the above expression no longer
depends on Xm for sufficiently long spin and mediator
atom arrays. As a result, the matrix element can be
written as

V mqm0,α;m′,α′ = cmqm0,α;m′α′e
i(k−k0)Xm . (20)

with cqmm0,α;m′,α′ independent of Xm. The interaction co-
efficients will be proportional to a sum over quasimo-
menta k of the first Brillouin zone of the product of the

matrix elements corresponding to the interaction of the
qth atom with ith and mth spins:

J
⊥(zz) q
im ∼

∑
k,ν

V iqm0,α;m′,α′

(
V mqm0,β;m′,β′

)∗
Em′ − Em0

∼
∑
ν

ciqm0,α;m′α′

(
cmqm0,β;m′,β′

)∗
Em′ − Em0

×

×
∑
k

ei(k−k0)(Xi−Xm),

where it is assumed for simplicity that the cqm terms
and the total energies of the mediator states weakly de-
pend on the quasimomentum k. For high ν Bloch bands
the motional energy will eventually become comparable
to the internal energies, but for these bands the over-
lap integral between the interaction potential and Bloch
functions in Eq.(18) will already be negligible. The sum-
mation over the quasimomenta of the first Brillouin zone
will give the factor

∑
k

eik(Xi−Xm) =
sin
[
π(Xi−Xm)(1+Nlatt at)

Nlatt atLat

]
sin[π(Xi−Xm)

Nlatt atLat
]

= (−1)p

for a spin lattice having the same period as the me-
diator lattice with Xi − Xm = pLat. In addition to
varying the sign the interaction coefficients also fall off
with the distance between the spins. The cqm factors
have approximate dependence ∼ 1/R3

qm, resulting in

J
⊥(zz) q
im ∼ 1/(R3

qiR
3
qm) ∼ 1/|Xi−Xm|6 for distant spins.

This simplified derivation qualitatively shows that the
interaction coefficients can change sign with an interspin
distance, analogous to the RKKY effect. In the next sec-
tion two examples of spin encoding in polar molecules and
Rydberg atoms will be considered and the corresponding

interaction coefficients J
⊥(zz)
im will be numerically calcu-

lated.

III. MODELLING XX, ISING, XXZ
INTERACTIONS

In this section effective spin-spin interactions that can
be realized in the bilayer system are discussed by ana-
lyzing the interaction coefficients J⊥im and Jzzim, given in
Appendix C. Examples of i) XX interaction using spin
encoding in polar molecule states and ii) XXZ interac-
tion using Rydberg atom spin encoding are considered.

A. XX interaction with NaCs effective spins and
Rb Rydberg mediator atoms

The XX interaction
∑N
i,m=1 J

⊥
im

(
Ŝ+
i Ŝ
−
m + Ŝ−i Ŝ

+
m

)
/2+∑N

i=1(Espin + bzi )Ŝ
z
i can be realized if the spin states
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have zero dipole moments 〈↑| ~dspin |↑〉 = 〈↓| ~dspin |↓〉 = 0,

non-zero spin transition dipole moment 〈↑| ~dspin |↓〉 6= 0,
and spin |↑〉 ↔ |↓〉 and mediator |ns〉 ↔ |npj′〉 transi-
tions are close in energy such that their energy difference
∆E = Enpj′ −Ens±Espin is |∆E| � Espin, |Enpj′ −Ens|
(but |∆E| � |V̂ |) (see Fig.2a,b). In this case from

Eqs.(C.2)-(C.6) one can see that |J⊥ q,kνim |, |bz q,kνi | 6= 0,

|Jzz q,kνim | = 0, i.e. only the spin flipping terms J⊥imŜ
±
i Ŝ
∓
m

will be present in the effective interaction.

In the polar molecules setup the spin-exchange inter-
action between a polar molecule and a mediator Ry-
dberg atom can be realized if a rotational molecular
transition is close in energy to a Rydberg transition
(atom-molecule Forster resonance). The Forster reso-
nances between rotational states of a polar molecule
and atomic Rydberg states have been studied recently
in [42], where the resonant exchange between a NH3

molecule and a He atom has been experimentally ob-
served. For effective spins, encoded in Rydberg states,
atom-atom Forster resonances can be used to realize
the spin-mediator interaction. In this case e.g. dif-
ferent atomic species can be used to encode the spin
and mediate the interaction, such as Rb and Cs. For
this atomic pair there are several interspecies Forster
resonances available such as

∣∣Rb59s1/2,Cs57s1/2

〉
↔∣∣Rb58p1/2,Cs57p1/2

〉
with an energy defect ∆E = −16.6

MHz,
∣∣Rb81s1/2,Cs78s1/2

〉
↔

∣∣Rb80p1/2,Cs78p1/2

〉
with ∆E = 6.31 MHz,

∣∣Rb82s1/2,Cs79s1/2

〉
↔∣∣Rb81p1/2,Cs79p1/2

〉
with ∆E = −6.41 MHz,∣∣Rb84s1/2,Cs89s1/2

〉
↔

∣∣Rb84p1/2,Cs88p1/2

〉
with

∆E = −2.43 MHz [43]. In fact, recently signs of indi-
rect interaction between two Rydberg atoms, mediated
by a third one, have been observed in [44]. An advantage
of using different species for spin encoding and mediating
the interaction is that they can be spectrally addressed
using laser fields of different frequencies, allowing to sep-
arately initialize, control and read out their states. Fi-
nally, a spin can be encoded in two ground state sublevels
of neutral atoms, which can be coupled to two Rydberg
states such as |ns〉 and |npj〉 to form Rydberg dressed
states. In this case two dressed atoms encoding spins
can indirectly interact via spin-exchange with a media-
tor Rydberg atom.

As an example of how indirect XX interaction can
be modelled we consider a system of spin-encoding po-
lar molecules and mediator Rydberg atoms in a super-
atom state Eq.(11). In the case interactions between a
Rydberg atom and ground state atoms are present in
the superatom state [45], a single mediator atom can be
used. Each molecule is assumed to be in the ground elec-
tronic and vibrational state; two low-energy rotational
states are used to encode the spin states, e.g. |↑〉 =
|J = 1,mJ = 0〉, |↓〉 = |J = 0,mJ = 0〉. We consider the
case shown in Fig.2a, where the spin |↑〉 ↔ |↓〉 and media-
tor |ns〉 ↔

∣∣npj′ ,m′j′〉 transitions are close in energy such

that |∆E = Enpj′ − Ens − Espin| � Espin, |Enpj′ − Ens|

and the states |ns,mj〉 |↑〉 and
∣∣npj′ ,m′j′〉 |↓〉 are almost

degenerate. In this case the atomic and molecular basis
sets can be limited to only the |ns,mj〉,

∣∣npj′ ,m′j′〉 and

|↓〉, |↑〉 states. The coefficients J
⊥ q,k0 ν0
im and b

z q,k0 ν0
i

will have the form (see Eqs.(C.3),(C.6)):

J
⊥ q,k0 ν0
im ≈−

∑
m′

2V iqm0,↑;m′,↓

(
V mqm0,↑;m′,↓

)∗
Em′ − Em0 − Espin

,

b
z q,k0 ν0
i =−

∑
m 6=i
m′

2
∣∣∣V iqm0,↑;m′,↓

∣∣∣2
Em′ − Em0 − Espin

. (21)

As a concrete example, we consider a 1D ar-
ray of spin-encoding NaCs molecules and medi-
ator Rb(99s1/2) Rydberg atoms in a superatom
state (or a single mediator atom in the Rydberg
state), placed in two parallel 1D optical lattices
(see Fig.1a). NaCs has the permanent dipole mo-
ment d = 4.607 D [46] and the rotational constant
B = 0.06047 cm−1 = 1.813 GHz [47], and is actively
studied for formation of ground state ultracold
molecules [48]. The molecular rotational transi-
tion with Espin/~ = 2B ≈ 3.62569 GHz is nearly
resonant with the Rb(99p3/2 − 99s1/2) transition,
(E99p3/2 − E99s1/2)/~ ≈ 3.62745 GHz, where Enlj =

− 1
2(n−µlj)2 (in a.u.) and µs = 3.1311804, µp1/2 =

2.6548849 [49], with a frequency defect of only
(∆E = E99p3/2 − E99s1/2 − Espin)/~ ≈ 1.76 MHz. The

frequency defect between the Rb(99p1/2 − 99s1/2)
and the molecule spin transition is ≈ −95.4 MHz,
and spin flips involving this transition can be ne-
glected. Other examples of near resonant molec-
ular rotational J = 1 ↔ J = 0 and Rydberg tran-
sitions are listed in Table I.

Details of the calculations of the matrix elements of
the spin-mediator charge-dipole interaction and the co-
efficients Eqs.(21) are given in Appendix E. Fig.3 shows

the numerically calculated J⊥im =
∑Na
q=1 J

⊥ q,k0=0ν0=1

im /Na

and bzi =
∑Na
q=1 b

z q,k0=0ν0=1

i /Na coefficients for an mth

spin at the center (m = 0) of the array interacting with an
ith spin depending on their spatial separation assuming
that initially the mediator atoms are prepared in a BEC
state k0 = 0, ν0 = 1 and in the

∣∣99s1/2,mj = 1/2
〉

inter-
nal state. The following parameters were used in the cal-
culations: the spin-mediator arrays distance ρ = 1.5 µm;
the spin and mediator lattices periods Lspin = Lat = 1.5
µm; number of spins and mediator atoms N = Na = 100;
the mediator atoms lattice depth V0 = −Erec, where
Erec = ~2 (π/Lat)

2
/2mRb is the recoil energy of medi-

ator atoms, mRb is the mass of Rb atom; and ν = 1, ..., 5
Bloch bands of the mediator lattice were taken into ac-
count. One can see that i) the J⊥im changes sign with an
interspin distance. The nearest neighbor and the next
nearest neighbor interactions can be ferro- and antiferro-
magnetic, respectively; ii) the interaction extends beyond
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FIG. 2: Schemes of different types of spin encoding into low-energy rotational states of polar molecules (left side) or long-lived
states of Rydberg atoms (right side), allowing to model indirect interactions in a 1D effective spin chain: (a) spin encoding
into low-energy rotational states of a polar molecule and near resonant interaction between molecular rotational and mediator
Rydberg atomic states, allowing to model XX type of interaction; (b) example of spin encoding into long-lived states of a
Rydberg atom; (c) polar molecule rotational states not connected by a dipole-allowed transition can be used as spin states
to realize effective Ising-type spin-spin interaction. Spin state dipole moments can be induced by near-resonant coupling to
opposite parity rotational states by MW fields; (d) the same as in (c) for spins encoded in Rydberg states; (e) spin encoding
in nearly degenerate rotational sublevels of a polar molecule such that |Espin| � |Enpj′ − Ens| is satisfied allows to realize

an effective XXZ interaction; (f) the same as (e) for Rydberg atom spin encoding. The Rydberg encoded spin states can be
initially additionally split by an external magnetic field.
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TABLE I: Examples of Forster resonances between J = 1 ↔ J = 0 rotational transitions of alkali dimer polar molecules and
Rydberg transitions of alkali atoms

Species B, cm−1 nl′j′ − nlj (∆E = Enl′
j′
− Enlj − Espin)/~, MHz

(Espin/~ = 2B, GHz)

LiCs+Na 0.218 64p3/2(1/2) − 64s1/2 −26.4 (−42.7)
(13.071)

LiCs+Rb 0.218 65p1/2 − 65s1/2 11
(13.071)

LiRb+Rb 0.254 62p1/2 − 62s1/2 −52
(15.229)

LiNa+Rb 0.425 53p3/2 − 53s1/2 111
(25.482)

LiK+Rb 0.293 59p1/2 − 59s1/2 176
(17.568)

 (a)  (b) 

FIG. 3: Spin encoding in low-energy rotational states of polar molecules near resonantly interacting with a mediator atom
Rydberg transition allows to model XX interaction. Numerically calculated from Eqs.(21): (a) Interaction coefficient J⊥im and
(b) effective magnetic field bzi for spins encoded in rotational states of NaCs |↓〉 = |J = 0,mJ = 0〉, |↑〉 = |J = 1,mJ = 0〉, near
resonant with the Rb transition

∣∣99p3/2,mj = ±1/2, 3/2
〉
−
∣∣99s1/2,mj = 1/2

〉
. The mediator atoms are assumed to be initially

prepared in the superatom state Eq.(11) in the
∣∣99s1/2,mj = 1/2

〉
internal and in a BEC motional state with k0 = 0, ν0 = 1.

In Eqs.(21), summation over quasimomenta in the first Brillouin zone for ν = 1, ..., 5 lowest Bloch bands of the mediator lattice
with the depth V0 = −Erec was performed. The red (circles) and blue (squares) curves in (a) correspond to BM = 0 G and
BM = 0.92 G, respectively; in (b) the effective magnetic field was calculated for BM = 0 G. Setup dimensions: ρ = 1.5 µm,
spin and mediator lattice periods Lspin = Lat = 1.5 µm, N = Nat = 100. The calculations were done for a spin in the center
of the array m = 0.

nearest neighbors and falls off at about |i −m| ∼ 5; iii)
the interaction strengths ∼ ten kHz can be realized; iv)
bzi do not depend on i and only change the initial spin
transition frequency. Two consequencies follow: first, the

term
∑N
i=1(Espin + bzi )Ŝ

z
i corresponds to a Zeeman inter-

action with a homogeneous effective magnetic field; ce-
cond, the effective spin-spin interaction strength ∼ ten
kHz is more than an order of magnitude larger than the
strength of the direct dipole-dipole interaction between
NaCs molecules Vdd ∼ d2

spin z/L
3
spin ∼ 300 Hz.

From Fig.3a one can see that if the mediator atoms
are initially prepared in a BEC state the interaction is
significant between spins separated by up to five lat-
tice sites. The interaction strength between the next-
nearest and more distant neighbors Eq.(14) can be con-
trolled by preparing the initial mediator superatom state
as a superposition of Bloch states Eqs.(11). For ex-
ample, if the mediator atoms are initially prepared in

a superposition of Bloch states in the second Bloch
band ν0 = 2 with a Gaussian distribution of quasi-

momenta |ck0 ν0=2
|2 ∼ e−k

2
0/κ

2
0 , the ratio of the next-

nearest and more distant to the nearest neighbor in-
teraction strengths can be controlled by the quasimo-
menta distribution width κ0, as shown in Fig.4a. At
κ0/(π/Lat) ∼ 0.2, the ratios J⊥im/|J⊥m+1,m| ≤ 0.4 and

J⊥im/J
⊥
m+2,m ≤ 0.3 for |m − i| ≥ 3 and the interac-

tion can be approximated as the J1−J2 XX model∑
l=1,2 Jl

(
Ŝxi Ŝ

x
i+l + Ŝyi Ŝ

y
i+l

)
. The phase diagram for

ferromagnetic nearest neighbour J1 = J⊥m+1,m < 0
and antiferromagnetic next-nearest neighbor J2 =
J⊥m+2,m > 0 interactions were analyzed in [26],
where it was found that for J2/|J1| ≈ 1/1.4 = 0.71
realized at κ0/(π/Lat) ∼ 0.2 in our case, the sys-
tem is in a vector chiral phase [50]. Another
way to control the strength of the interaction be-



10

 (a) 

 (b) 

FIG. 4: In the XX model next-nearest and more distant in-
teraction strengths relative to the nearest neighbor interaction
strength can be controlled by (a) the width of the quasimo-
menta distribution of the initial superposition of Bloch states
of mediator atoms in Eq.(14); (b) external DC magnetic field.
(a) Assuming a Gaussian initial distribution of the quasi-

momenta in the second Bloch band |ck0 ν0=2 |2 ∼ e−k
2
0/κ

2
0 ,

the ratios of interaction coefficients J⊥im/|J⊥m+1,m| can be

controlled by the distribution width κ0: J⊥m+2,m/|J⊥m+1,m|
(red solid curve), J⊥m+3,m/|J⊥m+1,m| (green dashed curve),

J⊥m+4,m/|J⊥m+1,m| (blue dotted curve), J⊥m+5,m/|J⊥m+1,m|
(pink dashed-dotted curve). (b) the external magnetic field
can tune the energies of the initial

∣∣ns1/2,mj = ±1/2
〉

and

virtually excited
∣∣np3/2,mj = ±1/2, 3/2

〉
mediator states,

which can be used to tune the ratios of interaction coefficients
J⊥im/|J⊥m+1,m|.

tween distant neighbors is to tune the energies of∣∣ns1/2,mj = ±1/2
〉

and
∣∣np3/2,mj = ±1/2, 3/2

〉
states

with a magnetic field BM . In particular, for
µBBM/∆E ≈ 0.77, corresponding to BM ≈ 0.92 G,
the J⊥im � |J⊥m+1,m|, as shown by the blue squares
curve in Fig.3a, resulting in the exactly solvable
XX model with only nearest neighbor interac-
tions [51]. Fig. 4b shows how the sign of inter-
action coefficients between distant neighbors and
their strengths relative to the nearest neighbor

one can be controlled more extensively by tuning
the magnetic field.

The mediator atoms have to stay in the ns state long
enough for the indirect interaction to take place, i.e.
the effective interaction strength should be larger than
the mediator Rydberg state decay rate. For Rb(99s1/2),
the lifetimes, including contributions from spontaneous
emission and interaction with black-body radiation, are
τ99s1/2 = 1.168 ms at T = 4.2 K and τ99s1/2 = 330 µs

at T = 300 K [52]. The J⊥im ∼ 10 kHz corresponds to
interactions times ∼ 10 µs, which are two orders of mag-
nitude shorter than the mediator Rydberg state decay
times at cryogenic temperatures, making the interaction
observable.

Finally, we note that in order to selectively ad-
dress the spin transition the degeneracy between the
|↑〉 = |J = 1,mJ = 0〉 state and the |J = 1,mJ = ±1〉
rotational states should be lifted such that their en-
ergy difference exceeds the effective interaction strength.
The degeneracy can be lifted by a DC electric field
or by MW fields, coupling the |J = 1,mJ = 0,±1〉 to
|J = 2,mJ = 0,±1,±2〉 states. For example, for a σ+ po-
larized MW field the ratio of the dipole moments for the
transitions |1,−1〉 ↔ |2, 0〉, |1, 0〉 ↔ |2, 1〉 and |1, 1〉 ↔
|2, 2〉 is |d1,−1;2,0|/|d1,0;2,1|/|d1,1;2,2| = (1/

√
6)/(
√

2)/(2)
and the states will be shifted differently by the MW
field. For a MW field with detuning ∆̃ ∼ 10 MHz
and Rabi frequency Ω̃ ∼ 3 MHz shifts |Ω̃|2/∆̃ ∼ 1
MHz will be induced, exceeding the effective interaction
strength by more than an order of magnitude. There
is a subtle point, however, that the coupling of |↑〉 to
the |J = 2,mJ = 1〉 state will induce the state dipole

moment 〈↑| ~dspin |↑〉 ∼ dspinΩ̃/∆̃. In turn, the non-
zero dipole moment of the |↑〉 states will give rise to
non-zero matrix elements of the charge-dipole interac-
tion V mqm0,↑;m̃,↑ = V mqns,k0 ν0 ,↑;ns,kν ,↑

, which in turn will give

rise to terms ∼ V iqm0,↑;m̃,↑

(
V mqm0,↑;m̃,↑

)∗
/(Em̃ − Em0) and

∼
∣∣∣V iqm0,↑;m̃,↑

∣∣∣2 /(Em̃ − Em0) in the coefficients J
zz q,k0 ν0
im

and b
z q,k0 ν0
i , respectively, where m̃ = |ns, k′ν′〉 and Em̃−

Em0 ∼ ~2(2π)2/2mRb(Nat lattLat)
2 = 4Erec/N

2
at latt ≈

0.87 Hz for a Rb mediator atom. It shows that 1) the

V iqm0,↑;m̃,↑ matrix elements should be much smaller than
the latter energy difference for the Schrieffer-Wolff ex-

pansion to be valid and 2) the resulting J
zz q,k0 ν0
im and

b
z q,k0 ν0
i terms should be much smaller than J

⊥ q,k0 ν0
im in

order to be neglected. Both of these requirements are in-
deed satisfied due to small values of the V iqm0,↑;m̃,↑ matrix
elements, as discussed in Appendix E, end of part A.

B. Ising interaction

Ising interaction can be realized in the bilayer system
if the spin states |↑〉, |↓〉 are not coupled by a dipole-

allowed transition, i.e. 〈↑| ~dspin |↓〉 = 0, but at the
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same time have non-zero dipole moments 〈↑| ~dspin |↑〉 6=
0, 〈↓| ~dspin |↓〉 6= 0 (see Fig.2c,d). One can see from

Eqs.(C.2)-(C.6) that in this case J⊥ q,kνim = 0 and

Jzz q,kνim 6= 0, bz q,kνi 6= 0, which describes the Ising
interaction in the presence of a longitudinal magnetic
field. Fig.2c shows an example of spin encoding in
the polar molecule case, where |↓〉 = |J = 1,mJ = 0〉,
|↑〉 = |J = 2,mJ = 2〉 spin states are not coupled by a
dipole-allowed transition. The dipole moments in the
states |↑〉, |↓〉 can be induced by MW fields, e.g. by cou-
pling the |↓〉 = |J = 1,mJ = 0〉 to |J = 0,mJ = 0〉 and
|↑〉 = |J = 2,mJ = 2〉 to |J = 3,mJ = 3〉 state by near-
resonant MW fields (Fig.2c). An additional advantage
of the MW dressing is that it shifts the energies of the
dressed states with respect to near energy states, allow-
ing for the |↑〉 ↔ |↓〉 transition to be addressed spectro-
scopically. In the Rydberg atom spin encoding case the
MW dressing can also induce non-zero spin state dipole
moments, which can be done in the way, shown in Fig.2d.

C. XXZ interaction with Rb (ñ = 50) effective spins
and Rb (n = 100) mediator atoms

There is a growing number of theoretical proposals
and experimental demonstrations on simulation of many-
body interacting systems using Rydberg atoms [7]. Be-
low we discuss how the XXZ interaction can be real-
ized in the case of effective spins encoded into long-
lived states of Rydberg atoms, which interact indirectly
via mediator Rydberg atoms. The XXZ interaction, in
which both J⊥im and Jzzim are non-zero, can be realized if

both transitional 〈↑| ~dspin |↓〉 and state 〈↑| ~dspin |↑〉 and/or

〈↓| ~dspin |↓〉 dipole moments are non-zero and of compara-
ble strength and the spin transition frequency is smaller
or comparable to the mediator transition frequencies
Espin . |Enpj′ −Ens|. It can be seen then from Eqs.(C.2)-

(C.6) that in this case J⊥ q,kνim ∼ Jzz q,kνim . These re-
quirements can be met by choosing the spin states to
be nearly degenerate such as e.g. |↑〉 = |J = 1,mJ = 1〉,
|↓〉 = |J = 1,mJ = 0〉 in the polar molecule case and
|↑〉 =

∣∣ns1/2,mj = 1/2
〉
, |↓〉 =

∣∣ns1/2,mj = −1/2
〉

in the
Rydberg atom case, where the latter can be additionally
split by a DC magnetic field (see Fig.2e,f). The spin
states can acquire dipole moments if dressed with MW
fields, nearly resonantly coupling them to states of oppo-
site parity, e.g. in the way, shown in Fig.5a:

|±〉↑ = a±↑

∣∣∣∣ñp1/2,mj =
1

2

〉
+ b±↑

∣∣∣∣ñs1/2,mj =
1

2

〉
,

|±〉↓ = a±↓

∣∣∣∣ñp1/2,mj = −1

2

〉
+ b±↓

∣∣∣∣ñs1/2,mj = −1

2

〉
,

with

a±↑(↓) =

√√(
∆↑(↓)

2

)2

+ Ω2
↑(↓) ±

∆↑(↓)
2

√
2

((
∆↑(↓)

2

)2

+ Ω2
↑(↓)

)1/4
,

b±↑(↓) = ±

√√(
∆↑(↓)

2

)2

+ Ω2
↑(↓) ∓

∆↑(↓)
2

√
2

((
∆↑(↓)

2

)2

+ Ω2
↑(↓)

)1/4
.

where Ω↑(↓) and ∆↑(↓) are the MW dressing fields Rabi
frequencies and detunings. The |+〉↑ and |+〉↓ or |−〉↑
and |−〉↓ dressed states can be chosen as spin states. This
encoding makes both the spin transition and spin states
dipole moments to be non-zero and, by tuning the a±↑,↓,

b±↑,↓ coefficients, of comparable strength: 〈↑| ~dspin |↑〉 =

−2a±↑ b
±
↑ ~ezdñp,ñs/3, 〈↓| ~dspin |↓〉 = 2a±↓ b

±
↓ dñp,ñs~ez/3 and

〈↑| ~dspin |↓〉 = −(a±↑ b
±
↓ + b±↑ a

±
↓ )(~ex − i~ey)dñp,ñs/3. Here

dñp,ñs = e
∫∞

0
Rñp(r)Rñs(r)r

3dr is the radial part of the
dipole moment between the ñp and ñs states. We also
assume that the ñs1/2,mj = ±1/2 states are split by
a DC magnetic field such that their splitting is much
larger than the energy differences between the |±〉↑,
|±〉↓ dressed states. Additionally, the effective interac-
tion strength should exceed the decoherence rate of the
system, given mainly by the lifetimes of the Rydberg
states. The interaction can be made ∼ hundred kHz
and faster than the decay, if the mediator atom tran-
sition frequency (|En′pj′ − Ens| ∼ Espin)/~ . hundreds
MHz. These requirements can be met by using dressed
mediator states instead of bare ones in the way shown
in Fig.5b. One can initially prepare the mediator atom
in the

∣∣ns1/2,mj = −1/2
〉

state and then the closest in
energy virtual states, to which it can be transferred from
the initial state by the dipole-dipole interaction with a
spin will be

|+〉med = c+

∣∣∣∣ns1/2,mj =
1

2

〉
+ d+

∣∣∣∣np1/2,mj = −1

2

〉
,

|−〉med = c−

∣∣∣∣ns1/2,mj =
1

2

〉
+ d−

∣∣∣∣np1/2,mj = −1

2

〉
.

Other possible virtually excited mediator states are sep-
arated by ∼ 3.5 GHz and can be therefore neglected.

The J
⊥(zz) q,k0 ν0
im coefficients and the effective mag-

netic field b
z q,k0 ν0
i in this case will be given by the fol-

lowing expressions:
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FIG. 5: Spin encoding in MW dressed states of a Ryd-
berg atom interacting with a MW dressed mediator Rydberg
atom allows to realize the XXZ interaction. (a) Spin-1/2 sys-
tem can be encoded in long-lived

∣∣ñs1/2,mj = ±1/2
〉

Ryd-
berg states dressed by MW fields near resonantly coupling
them to

∣∣ñp1/2,mj = ±1/2
〉

states. The sublevels of the
ñp1/2 and ñs1/2 states can be additionally split by a DC
magnetic field to make the spin transition frequency differ-
ent from frequencies between other dressed states; (b) The
J⊥im and Jzzim interaction coefficients can be made ∼ hundred
kHz by using mediator virtual transitions between the initial∣∣ns1/2,mj = −1/2

〉
and dressed by a MW field states |±〉med,

which can be separated by . hundreds MHz.

J
⊥ q,k0 ν0
im =

∑
med

−2

V iqm0↑;med,↓

(
V mqm0,↑;med,↓

)∗
Emed − Em0 − Espin

+
V mqm0,↓;med,↑

(
V iqm0,↓;med,↑

)∗
Emed − Em0 + Espin

 ,

J
zz q,k0 ν0
im =

∑
med

−

(
V iqm0,↑;med,↑ − V

iq
m0,↓;med,↓

)((
V mqm0,↑;med,↑

)∗
−
(
V mqm0,↓;med,↓

)∗)
Emed − Em0

+ c.c.,

b
z q,k0 ν0
i =

∑
m 6=i
med

2

(∣∣∣V iqm0,↓;med,↓

∣∣∣2 − ∣∣∣V iqm0,↑;med,↑

∣∣∣2)
Emed − Em0

−
2
∣∣∣V iqm0,↑;med,↓

∣∣∣2
Emed − Em0 − Espin

+
2
∣∣∣V iqm0,↓;med,↑

∣∣∣2
Emed − Em0 + Espin

+

+


(
V mqm0,↑;med,↑

(
V iqm0,↓;med,↓

)∗
− V mqm0,↓;med,↓

(
V iqm0,↑;med,↑

)∗)
Emed − Em0

+ c.c.

 . (22)

where |med〉q = |med, k′ν′〉q and |med〉 = |±〉.

For spins encoded in Rydberg states an additional com-
plication arises from the fact that the direct dipole-dipole
interaction will be larger than the effective one, even for
not high ñ, and should be canceled. The direct interac-
tion between the ith and mth spins placed in the x-z plane

has the form:

V̂dd =

~̂di ~̂dm − 3
(
~̂di ~Rim

)(
~̂dm ~Rim

)
/R2

im

R3
im

=

=
1

2R3
im

((
1− 3 cos2 θ

) (
d̂i+d̂m− + d̂i−d̂m+ + 2d̂iz d̂mz

)
+

+
3√
2

sin θ cos θ
(
d̂i+d̂mz − d̂i−d̂mz + d̂iz d̂m+ − d̂iz d̂m−

)
−3

2
sin2 θ

(
d̂i+d̂m+ + d̂i−d̂m−

))
,
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where θ is the angle between the vector ~Rim connect-

ing the two dipoles and their quantization axis Z, d̂i± =

∓(d̂i x ∓ id̂i y)/
√

2. This expression shows that the res-

onant interaction terms d̂i+d̂m−, d̂i−d̂m+, d̂iz d̂mz, con-
necting states with the same energies, can be cancelled
by tilting the dipoles such that cos2 θ = 1/3, which cor-
responds to θ ≈ 54.73o. The dipoles quantization axis
can be set by applying a magnetic field along the Z axis,
as shown in Fig.6.

As a concrete example we consider a 1D bi-layer setup
shown in Fig.1, in which the effective spins are en-
coded in the dressed |↑〉 = |+〉↑, |↓〉 = |+〉↓ states of

ñ = 50 of Rb, and a Rb superatom mediator state (or
a single mediator Rb atom if interaction between Ry-
dberg and ground state atoms is to be avoided [45])
initially prepared in the state Eq.(11) with the Ry-
dberg atoms in the

∣∣ns1/2,mj = −1/2
〉

state of n =
100. Assuming also that initially the mediator atoms
are prepared in a BEC state with k0 = 0, ν0 =

1, the J⊥,zzim =
∑Na
q=1 J

⊥,zz q,k0=0ν0=1

im /Na and bzi =∑Na
q=1 b

z q,k0=0ν0=1

i /Na coefficients were calculated from

Eqs.(22) using the V mqm0,α;med,β matrix elements given in
Appendix E, part B. The bzi coefficients can be mini-
mized and the Jzzim coefficients can be maximized at the

same time by setting a+
↑,↓ = b+↑,↓ = c± = d± = 1/

√
2,

which can be realized by using dressing microwave fields
resonant to the corresponding transitions. In this case
V mqm0,↑;med,↑ = −V mqm0,↓;med,↓, and only the second and

third terms in b
z q,k0 ν0
i are non-zero.

The numerically calculated J
⊥(zz)
im and bzi coefficients

are shown in Fig.7. One can see that similar to the
case of XX interaction considered in the previous sub-
section, the XXZ interaction i) changes sign with the
interspin distance. The nearest neighbor interaction is
ferro- and the next nearest neighbor and more distant
ones are antiferromagnetic; ii) extends beyond nearest
neighbors and falls off at the distances |i −m| ∼ 5; (iii)
interaction strengths |J⊥im|, |Jzzim| ∼ hundred kHz can be
realized; iv) bzi do not depend on spin position i. In
the general case the interaction is of XXZ type, but tun-
ing the spin and mediator transition frequencies by ad-
justing the corresponding MW dressing fields Rabi fre-
quencies it can be made of symmetric Heisenberg type
with J⊥im = Jzzim for chosen im spin neighbors. In par-
ticular, in Fig.7 the nearest neighbor interaction with
|i − m| = 1 is of the Heisenberg type, and the next-
nearest-neighbor and more distant interaction terms are
of XXZ type. This case can be realized with the follow-
ing parameters: spin and mediator lattice periods Lspin =
Lat = 7 µm, ρ = 7 µm, Ens1/2,mj=1/2−Ens1/2,mj=−1/2 =
Eñs1/2,mj=1/2 − Eñs1/2,mj=−1/2 = 148.5 MHz, Espin =
E↑ − E↓ = 150 MHz, the energy splittings of the
mediator states E+ − Ens1/2,mj=−1/2 = 151.155 MHz,
E−−Ens1/2,mj=−1/2 = 145.845 MHz, the spin and medi-
ator states dressing fields Rabi frequencies and detunings
are Ω↑ = 2.5 MHz, Ω↓ = 1 MHz, Ωmed = 2.655 MHz, and

∆↑ = ∆↓ = ∆med = 0, respectively.

The contribution of the next-nearest and more dis-
tant neighbors can be controlled by preparing initial mo-
tional state of the mediator atoms as a superposition of
Bloch states Eq.(11). Assuming the atoms prepared in
a Gaussian distribution of quasimomenta of initial Bloch

states in the lowest Bloch band with |ck0 ν0=1
|2 ∼ e−k20/κ2

0 ,
the strength of the next-nearest and more distant rela-
tive to the nearest neighbor interaction one can be con-
trolled by the quasimomenta distribution width κ0, as
shown in Fig.8. In particular, for κ0/(π/Lat) ≈ 0.65

the J⊥,zzim � |J⊥,zzm+1,m| for 2 ≤ |i − m| ≤ 5, result-
ing in the Heisenberg model with nearest neighbor in-
teractions. In the range 0.3 . κ0/(π/Lat) . 0.65
the J⊥m+3,m/J

⊥
m+2,m . 0.2 and J⊥m+2,m/|J⊥m+1,m| ≤ 1

and the interaction can be approximated as the J1 −
J2 XXZ model

∑
l=1,2 Jl

(
Ŝxi Ŝ

x
i+l + Ŝyi Ŝ

y
i+l + ∆lŜ

z
i Ŝ

z
i+l

)
with J1 = J⊥m+1,m < 0, J2 = J⊥m+2,m > 0, ∆1 = 1
and ∆2 ≈ 0.27. The J1 − J2 XXZ model with both
∆1 = ∆2 and ∆1 6= ∆2 attracts significant interest due
to its relevance for description of spin-1/2 frustrated an-
tiferromagnetic copper oxide spin chain compounds such
as LiCu2O2 [19], NaCu2O2 [20], PbCuSO4(OH)2 [21],
LiCuSbO4 [22], etc. Numerical analysis of the phase
diagram of this model has shown [26] that in the case
∆1 = ∆2 for J1/J2 < −4 the system is in the ferromag-
netic state, for −4 < J1/J2 < −2.5 it is in the vector
chiral phase, and for −2.5 < J1/J2 < −0.5 in the Hal-
dane dimer state, i.e. there are two critical points denot-
ing the transitions between the phases. In the 1D copper
oxide spin chains the ratios J1/J2 are fixed at certain
values, while in our setup the ratio J1/J2 can be set be-
tween ≈ −1 to −∞ (keeping the J3 and J4 small) by ini-
tially preparing the mediator atoms in the superposition
of Bloch states with a certain width κ0 of the quasimo-
menta distribution. The J1 − J2 XXZ model does not
have an exact solution yet, and the bi-layer setup could
potentially allow to study its phases, in particular, near
quantum critical points.

The effective spins encoded into Rydberg states have
finite lifetimes due to decay by spontaneous emission and
interaction with black-body radiation. For the effective
interactions to be observable their magnitude should ex-
ceed the spin states decay rates. The 50s1/2 state of
Rb has lifetimes τ50s1/2 = 141.3 µs at T = 4.2 K and
65.2 µs at T = 300 K, and the 50p1/2 state has lifetimes
τ50p1/2 = 257.4 µs at T = 4.2 K and 86.5 µs at T = 300 K

[52]. Since the spin states are equal superpositions of the
50s1/2 and 50p1/2 states their decay rates will be an aver-
age of the s and p decay rates: (1/τ50s1/2 + 1/τ50p1/2)/2,
giving the averaged spin states lifetimes ≈ 182.4 µs at
T = 4.2 K and ≈ 74.4 µs at room temperature. The
effective XXZ interaction strengths ∼ 50 kHz correspond
to the interaction times ∼ 2 µs, which is more than an
order of magnitude smaller than the averaged spin state
decay times, making the effective interaction observable.

Higher-order truncated terms in the expansion
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Eq.(5) will result in an error of the phase accu-
mulated by the effective interaction, which needs
to be estimated. The nearest higher-order inter-
action which will bring the mediator atom back
to the initial ns state is ∼ O(Ŝ3V̂ ) ∼ |V̂ |4/|∆E|3
because as shown in Eq.(A.5) |Ŝ| ∼ |V̂ |/|∆E|.
The effective interaction coefficients (21), (22)

are J⊥,zzim ∼ |V̂ |2/|∆E|, which gives the order of

∼ O(J⊥,zzim |V̂ |2/|∆E|2) for the truncated terms. As
was discussed in the previous paragraph, the fi-
nite lifetimes of ∼ 100 µs of the mediator Ryd-
berg states will allow to realize ∼ 102 effective
interaction cycles. It means that the decoher-
ence rate due to the higher-order truncated terms
will be smaller than the one due to mediator
decay if |V̂ |/|∆E| ≤ 0.1. This condition is satis-
fied in the examples analyzed above. In partic-
ular, for the NaCs+Rb(99s1/2) system the inter-

action matrix elements |V iqm0,α;m′,β | ∼ 10 kHz, and

the ratio |V |/|∆E| ∼ 10−2 for the energy defect
∆E = 1.76 MHz; for the spin encoding in Ryd-
berg states considered in this section the inter-
action matrix elements |V iqm0,α;med,β | ∼ 100 kHz,

giving |V |/|∆E| ∼ 0.1 for |∆E| ∼ 1 MHz. The fi-

nite |V̂ |/|∆E| will also result in the readout error,
when the state of the combined system will be
measured at the end of the simulation. The read-
out will be assuming that the mediator is in the
initial ns state, but there will be small popula-
tion on the order of ∼ |V̂ |2/|∆E|2 in the virtually
excited np state. Both the Hamiltonian trunca-
tion induced decoherence rate and the readout
error can be reduced by increasing the energy de-
fect |∆E| or reducing the spin-mediator interac-

tion strength |V̂ | by using a larger spin-mediator
array distance ρ.

Finally, we come back to the direct dipole-dipole in-
teraction between spin states. Tilting of the spin dipoles
allows one to cancel the resonant direct dipole-dipole in-
teraction which, for the case of θ = 0, when the quantiza-

tion axis is perpendicular to ~Rim, would be of the order
Vdd ∼ 2d2

ñp,ñs/9R
3
im ∼ 11.5 MHz, which is three orders

of magnitude larger than the effective interaction with
strengths ∼ hundred kHz. The non-resonant parts of the
direct dipole-dipole interaction ∼ di±dmz, dizdm± and
∼ di±dm± are, however, not cancelled and are of the or-
der of d2

ñp,ñs/9
√

2R3
im ∼ 4.1 MHz and d2

ñp,ñs/9R
3
im ∼ 5.7

MHz, respectively, but they are more than an order of
magnitude smaller compared to the spin transition fre-
quency Espin/~ = 100 MHz, leading to the probability of
the spin changing its state due to the direct dipole-dipole
interaction being < 10−2.

FIG. 6: Tilting the effective spins with respect to the axis
of the spin array allows to cancel direct dipole-dipole interac-
tion in the case Rydberg atom spin encoding. In the case of
spin encoding into long-lived Rydberg states the direct dipole-
dipole interaction between the effective spins can be canceled
by tilting the spin quantization axis Z with respect to the
line, connecting the spins. For the angle θ = arccos(1/

√
3)

between the −Z and X ′ axes the resonant part of the direct
dipole-dipole interaction is zero.

IV. CONCLUSIONS

We propose a platform for simulating indirect spin-spin
interactions based on polar molecules and/or Rydberg
atoms trapped in two parallel 1D optical lattices. The ef-
fective spin-1/2 systems are encoded in rotational states
of polar molecules or long-lived Rydberg states of ultra-
cold atoms, which are tightly trapped. The interaction
between effective spins is mediated by Rydberg atoms
in a parallel shallow lattice to allow for mediator atom
motional state to be delocalized and interact simultane-
ously with several effective spins. The effective interac-
tion is therefore realized via direct charge-dipole (dipole-
dipole) spin-mediator interactions with polar molecule
(Rydberg atom) spin encoding. By a particular choice of
spin-encoding states XX, Ising and XXZ spin-spin inter-
action types are realized, with J⊥, Jzz interaction coeffi-
cients sign changing with interspin distance analogous to
the RKKY interaction. The interactions extend beyond
nearest neighbors and can reach magnitudes ∼ 100’s kHz,
limited by the trapping frequency of the spins optical lat-
tice.

The bi-layer setup allows to control the strengths of
the next nearest and more distant neighbor relative to
the nearest neighbor interaction by initially preparing
the mediator atoms in a superposition of motional Bloch
states with a specific distribution (e.g. a Gaussian) of
quasimomenta. Additionally, the Rabi frequencies and
detuning of spin and mediator MW dressing fields, can
be tuned to engineer symmetric Heisenberg interactions
for selected pairs of neighbors, e.g. for nearest neigh-
bors. In the XX model with spin encoding into rota-
tional states of polar molecules an external DC magnetic
field can be used to control the relative strengths of in-
teraction between distant neighbors with respect to the
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(b) 

 

 (a) 

FIG. 7: Interaction coefficients in the case of spin encoding into long-lived Rydberg states, allowing to realize XXZ interaction:
(a) J⊥im (circles, red curve), Jzzim (squares, blue curve) and (b) effective magnetic field bzi for spins encoded in |↑〉 = |+〉↑ =

(
∣∣ñp1/2,mj = 1/2

〉
+

∣∣ñs1/2,mj = 1/2
〉
)/
√

2, |↓〉 = |+〉↓ = (
∣∣ñp1/2,mj = −1/2

〉
+

∣∣ñs1/2,mj = −1/2
〉
)/
√

2 states of Rb with

ñ = 50. The mediator atoms are initially prepared in a superatom state (11) in the
∣∣100s1/2,mj = −1/2

〉
internal state and

a BEC motional state with k0 = 0, ν0 = 1. In calculations of J⊥,zzim , bzi of Eqs.(22) quasimomenta in the first Brillouin zone
were summed for ν = 1, ..., 5 lowest Bloch bands of the mediator atom lattice. Setup dimensions: inter-layer distance ρ = 7
µm, spin and mediator lattice periods Lspin = Lat = 7 µm. The calculations were done for a spin in the center of the array
m = 0. Other parameters were as follows: Ens1/2,mj=1/2 − Ens1/2,mj=−1/2 = Eñs1/2,mj=1/2 − Eñs1/2,mj=−1/2 = 148.5 MHz,

Ω↑ = 2.5 MHz, Ω↓ = 1 MHz, Ωmed = 2.655 MHz, ∆↑ = ∆↓ = ∆med = 0, resulting in E+ med−Ens1/2,mj=−1/2 = 151.155 MHz,
E− med − Ens1/2,mj=−1/2 = 145.845 MHz.

FIG. 8: In the XXZ model with interaction coefficients
Eqs.(14),(22) the strengths of next-nearest and more distant
neighbors relative to the nearest neighbor interaction can be
controlled by the width of the quasimomenta distribution of
the initial superposition of Bloch states of mediator atoms.
Assuming the atoms initially prepared in the lowest Bloch
band with the Gaussian initial distribution |ck0 ν0=1 |2 ∼
e−k

2
0/κ

2
0 of quasimomenta, the ratios of interaction coefficients

J⊥im/|J⊥m+1,m| can be controlled by the distribution width

κ0: J⊥m+2,m/|J⊥m+1,m| (red solid curve), J⊥m+3,m/|J⊥m+1,m|
(green dashed curve), J⊥m+4,m/|J⊥m+1,m| (blue dotted curve),

J⊥m+5,m/|J⊥m+1,m| (pink dashed-dotted curve). The interac-
tion coefficients shown in Fig.7 correspond to κ0 = 0.

nearest neighbor one.

The bi-layer system can be extended to 2D geometries
to simulate not only the Heisenberg/XXZ models, but
also the indirect Dzyaloshinskii-Moriya (DM) anisotropic
spin-spin interaction, which can also be mediated by con-
duction electrons [53, 54], provided spin-orbit interaction
between internal and motional states of mediator atoms
can be incorporated. In this case the DM vector ~D has
both the magnitude and the orientation oscillating with
an interspin distance, which can produce chiral magnetic
states with spatially oscillating chirality.

We note an interesting analogy between the XX model,
considered in Section III, with the interaction coefficients
given by Eqs.(21), with the Cook model [55], which is the
generalized Hopfield model of associative memory [56],
describing a system of N interacting neurons, encoding
p different patterns. The Cook model is predicted to
have a phase transition at a certain storage capacity p/N
between a self-organized phase, when the stored patterns
can be reliably retrieved, and a spin glass.
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Appendix A

Effective spins encoded in rotational states of polar
molecules will interact with the mediator Rydberg atoms
via charge-dipole interaction [57]. The spin-mediator in-
teraction Hamiltonian in this case can be written in the
combined basis of spin and mediator states:

V̂ =

N∑
i=1

Na∑
q=1

∑
m,m′,m̃,m′′

α,β=↑,↓

|m〉q |αi〉 〈βi| 〈m
′|q ×

×〈αi| 〈m|q V̂ |m
′〉q |βi〉+

+ |m〉q |αi〉 〈βi| 〈m̃|q ×

×〈αi| 〈m|q V̂ |m̃〉q |βi〉+
+ |m′〉q |αi〉 〈βi| 〈m

′′|q ×

×〈αi| 〈m′|q V̂ |m
′′〉q |βi〉+ H.c., (A.1)

where V̂ = V̂cd, and |m〉q = |ns, kν〉q, |m̃〉q =

|ns, k′ν′〉q, and |m′〉q = |np′, k′ν′〉q, |m
′′〉q = |np′′, k′′ν′′〉q

and the sums over the index vectors are restricted to
ns = {ns, j = 1/2,mj = ±1/2}, np′ = {np, j′ =
3/2, 1/2,m′j′ = ±3/2,±1/2},and np′′ = {np, j′′ =

3/2, 1/2,m′′j′′ = ±3/2,±1/2} for a fixed radial quan-

tum number n. The summation is over j,mj , j
′,m′j and

j′′,m′′j quantum numbers, and over k, k′, k′′ quasimo-
menta of ν, ν′ and ν′′ Bloch bands. At spin-mediator
distances comparable to the mediator Rydberg electron
orbit radius the charge-dipole interaction can couple elec-
tronic states of the same parity, i.e. the interaction ma-
trix elements 〈m|q V̂ |m̃〉q and 〈m′|q V̂ |m′′〉q can be non-
zero.

In order to show how the spin-mediator interaction
Eq.(A.1) gives rise to indirect interaction between the ef-
fective spins, the interaction Hamiltonian can be written
in the basis of two-spin states |αiβm〉 as follows:

V̂ =

N∑
i,m=1

Na∑
q=1

∑
α,β,γ,δ

m,m′,m̃,m′′

[
|m〉q |αiβm〉 (A.2)

×
(
V iqm,α;m′,γδβm,δm+

+V mqmβ;m′,δδαi,γi

)
〈γiδm| 〈m′|q + H.c.

]
+

+
[
|m〉q |αiβm〉

(
V iqm,α;m̃,γδβm,δm+

+V mqm,β;m̃,δδαi,γi

)
〈γiδm| 〈m̃|q + H.c.

]
+

+
[
|m′〉q |αiβm〉

(
V iqm′,α;m′′,γδβm,δm+

+V mqm′,β;m′′,δδαi,γi

)
〈γiδm| 〈m′′|q + H.c.

]
. (A.3)

Terms in the first square bracket involve the interaction
matrix elements between the mth spin and the qth me-
diator atom V mqm,ξ;m′,η = 〈m|q 〈ξm| V̂ |ηm〉 |m′〉q, which

describes the process in which the qth mediator atom is
transferred from the |m〉 to the |m′〉 state, and the mth

spin goes from the |ξ〉 to the |η〉 state, i.e. it describes
the interaction in which a mediator atom changes parity
of its electronic state |ns,mj〉 ↔

∣∣npj′ ,m′j′〉. The terms
in the second and third square brackets involve the inter-
action matrix elements V mqm,ξ;m̃,η = 〈m|q 〈ξm| V̂ |ηm〉 |m̃〉q
and V mqm′,ξ;m′′,η = 〈m′|q 〈ξm| V̂ |ηm〉 |m′′〉q and describe
the mediator being transferred to electronic states of
the same parity |ns,mj〉 ↔ |ns,mj〉 and |npj ,mj〉 ↔∣∣npj′′ ,m′′j′′〉, respectively, which is allowed by the charge-
dipole interaction. The parity conserving interaction
terms are present only in the polar molecule spin en-
coding setup and can be neglected for sufficiently large
spin-mediator distances, allowing for the charge-dipole
interaction to be approximated by the dipole-dipole one,
because at these distances the matrix elements of the
charge-dipole and dipole-dipole interactions differ by a
very small amount, as is discussed in Appendix E, end of
part A.

The V̂ terms can give rise to second order energy shifts,
having a form of an indirect interaction between the ef-
fective spins. This can be shown via the Schrieffer-Wolff
transformation of the total Hamiltonian Ĥ = Ĥ0 + V̂ :

eŜĤe−Ŝ = Ĥ +
[
Ŝ, Ĥ

]
+

[
Ŝ,
[
Ŝ, Ĥ

]]
2

+O
(
Ŝ2V̂

)

in such a way that
[
Ŝ, Ĥ0

]
= −V̂ , giving as a result the

transformed Hamiltonian

eŜĤe−Ŝ = Ĥ0 +

[
Ŝ, V̂

]
2

+O
(
|V̂ |3

)
, (A.4)

where the generator Ŝ has the form:
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Ŝ =

N∑
i,m=1

Na∑
q=1

∑
α,β,γ,δ=↑,↓
m,m′,m̃,m′′

[
−
|m〉q |αiβm〉V

iq
m,α;m′,γδβm,δm 〈γiδm| 〈m′|q

Em′ − Em + Eγ − Eα
−
|m〉q |αiβm〉V

mq
m,β;m′,δδαi,γi 〈γiδm| 〈m′|q

Em′ − Em + Eδ − Eβ
+

+
|m〉q |αiβm〉V

iq
m,α;m̃,γδβm,δm 〈γiδm| 〈m̃|q

Em̃ − Em + Eγ − Eα
+
|m〉q |αiβm〉V

mq
m,β;m̃,δδαi,γi 〈γiδm| 〈m̃|q

Em̃ − Em + Eδ − Eβ
+

+
|m′〉q |αiβm〉V

iq
m′,α;m′′,γδβm,δm 〈γiδm| 〈m′′|q

Em′′ − Em′ + Eγ − Eα
+
|m′〉q |αiβm〉V

mq
m′,β;m′′,δδαi,γi 〈γiδm| 〈m′′|q

Em′′ − Em′ + Eδ − Eβ

]
−H.c..

(A.5)

TABLE II: Notations for internal and motional mediator
states

|m〉q = |ns, kν〉q
|m̃〉q = |ns, k′ν′〉q
|m′〉q = |np′, k′ν′〉q
|m′′〉q = |np′′, k′′ν′′〉q
|med〉q = |med, k′ν′〉q

ns = {ns, j = 1/2,mj = ±1/2}
np′ = {np, j′ = 1/2, 3/2,m′j′ = ±1/2,±3/2}

np′′ = {np, j′′ = 1/2, 3/2,m′′j′′ = ±1/2,±3/2}

Below we list notations for all internal and motional
states of the mediator atoms used in the paper:

Appendix B

In this section we give the Kq,kν
αi,βm;γi,δm

coefficients of

Eq.(7):

Kq,kν
↑↑,↑↑ im =

∑
ξ,η=i,m

∑
M=m̃,m′

(−1)l

V ξqm,↑;M,↑

(
V ηqm,↑;M,↑

)∗
EM − Em

+

∣∣∣V ξqm,↑;M,↓

∣∣∣2
EM − Em − Espin

 , (B.1)

Kq,kν
↓↓,↓↓ im =

∑
ξ,η=i,m

∑
M=m̃,m′

(−1)l

V ξqm,↓;M,↓

(
V ηqm,↓;M,↓

)∗
EM − Em

+

∣∣∣V ξqm,↓;M,↑

∣∣∣2
EM − Em + Espin

 , (B.2)

Kq,kν
↑↓,↑↓ im =

∑
M=m̃,m′

(−1)l


∣∣∣V iqm,↑;M,↑ + V mqm,↓;M,↓

∣∣∣2
EM − Em

+

∣∣∣V iqm,↑;M,↓

∣∣∣2
EM − Em − Espin

+

∣∣∣V mqm,↓;M,↑

∣∣∣2
EM − Em + Espin

 , (B.3)

Kq,kν
↓↑,↓↑ im =

∑
M=m̃,m′

(−1)l


∣∣∣V iqm,↓;M,↓ + V mqm,↑;M,↑

∣∣∣2
EM − Em

+

∣∣∣V mqm,↑;M,↓

∣∣∣2
EM − Em − Espin

+

∣∣∣V iqm,↓;M,↑

∣∣∣2
EM − Em + Espin

 , (B.4)

Kq,kν
↑↓,↓↑ im =

∑
M=m̃,m′

(−1)l

V iqm,↑;M,↓

(
V mqm,↑;M,↓

)∗
EM − Em − Espin

+
V mqm,↓;M,↑

(
V iqm,↓;M,↑

)∗
EM − Em + Espin

 , (B.5)
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Kq,kν
↑↑,↑↓ im =

∑
M=m̃,m′

(−1)l


(
V iqm,↑;M,↑ + V mqm,↑;M,↑

)
2

(
V mqm,↓;M,↑

)∗( 1

EM − Em
+

1

EM − Em + Espin

)
+

+
V mqm,↑;M,↓

((
V iqm,↑;M,↑

)∗
+
(
V mqm,↓;M,↓

)∗)
2

(
1

EM − Em
+

1

EM − Em − Espin

)
−
V mqm,↑;m,↓

((
V iqm,↑;m,↑

)∗
+
(
V mqm,↓;m,↓

)∗)
Espin

+

(
V iqm,↑;m,↑ + V mqm,↑;m,↑

)(
V mqm,↓;m,↑

)∗
Espin

, (B.6)

Kq,kν
↑↑,↓↑ im =

∑
M=m̃,m′

(−1)l


(
V iqm,↓;M,↓ + V mqm,↓;M,↓

)
2

(
V iqm,↑;M,↓

)∗( 1

EM − Em
+

1

EM − Em − Espin

)
+

+
V iqm,↓;M,↑

((
V iqm,↑;M,↑

)∗
+
(
V mqm,↓;M,↓

)∗)
2

(
1

EM − Em
+

1

EM − Em + Espin

)+

+
V iqm,↓;m,↑

((
V iqm,↑;m,↑

)∗
+
(
V mqm,↓;m,↓

)∗)
Espin

−

(
V iqm,↓;m,↓ + V mqm,↓;m,↓

)(
V iqm,↑;m,↓

)∗
Espin

, (B.7)

Kq,kν
↓↓,↑↓ im =

∑
M=m̃,m′

(−1)l


(
V iqm,↓;M,↓ + V mqm,↓;M,↓

)
2

(
V iqm,↑;M,↓

)∗( 1

EM − Em
+

1

EM − Em − Espin

)
+

+
V iqm,↓;M,↑

((
V iqm,↑;M,↑

)∗
+
(
V mqm,↓;M,↓

)∗)
2

(
1

EM − Em
+

1

EM − Em + Espin

)+

+
V iqm,↓;m,↑

((
V iqm,↑;m,↑

)∗
+
(
V mqm,↓;m,↓

)∗)
Espin

−

(
V iqm,↓;m,↓ + V mqm,↓;m,↓

)(
V iqm,↑;m,↓

)∗
Espin

, (B.8)

Kq,kν
↓↓,↓↑ im =

∑
M=m̃,m′

(−1)l


(
V iqm,↓;M,↓ + V mqm,↓;M,↓

)
2

(
V mqm,↑;M,↓

)∗( 1

EM − Em
+

1

EM − Em − Espin

)
+

+
V mqm,↓;M,↑

((
V iqm,↓;M,↓

)∗
+
(
V mqm,↑;M,↑

)∗)
2

(
1

EM − Em
+

1

EM − Em + Espin

)+

+
V mqm,↓;m,↑

((
V iqm,↓;m,↓

)∗
+
(
V mqm,↑;m,↑

)∗)
Espin

−

(
V iqm,↓;m,↓ + V mqm,↓;m,↓

)(
V mqm,↑;m,↓

)∗
Espin

, (B.9)

Kq,kν
↑↑,↓↓ im =

∑
M=m̃,m′

(−1)l

V iqm,↑;M,↓

(
V mqm,↓;M,↑

)∗
2

(
1

EM − Em − Espin
+

1

EM − Em + Espin

)
+

+
V mqm,↑;M,↓

(
V iqm,↓;M,↑

)∗
2

(
1

EM − Em − Espin
+

1

EM − Em + Espin

) , (B.10)

Kq,kν
αβ,γδ;im =

(
Kq,kν
γδ,αβ;im

)∗
. (B.11)
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where l is the orbital quantum number of the M state.

Appendix C

The |αiβm〉 〈γiδm| can be expressed via the two spin-1/2 variables Ŝ±,zi Ŝ±,zm using relations

|↑i↑m〉 〈↑i↑m| =
(

1

2
+ Ŝzi

)(
1

2
+ Ŝzm

)
=

1

4
+

1

2

(
Ŝzi + Ŝzm

)
+ Ŝzi Ŝ

z
m,

|↓i↓m〉 〈↓i↓m| =
(

1

2
− Ŝzi

)(
1

2
− Ŝzm

)
=

1

4
− 1

2

(
Ŝzi + Ŝzm

)
+ Ŝzi Ŝ

z
m,

|↓i↑m〉 〈↓i↑m| =
(

1

2
− Ŝzi

)(
1

2
+ Ŝzm

)
=

1

4
− 1

2

(
Ŝzi − Ŝzm

)
− Ŝzi Ŝzm,

|↑i↓m〉 〈↑i↓m| =
(

1

2
+ Ŝzi

)(
1

2
− Ŝzm

)
=

1

4
+

1

2

(
Ŝzi − Ŝzm

)
− Ŝzi Ŝzm,

|↑i↓m〉 〈↓i↑m| = Ŝ+
i Ŝ
−
m,

|↑i↑m〉 〈↑i↓m| =
(

1

2
+ Ŝzi

)
Ŝ+
m,

|↑i↑m〉 〈↓i↑m| = Ŝ+
i

(
1

2
+ Ŝzm

)
,

|↓i↓m〉 〈↑i↓m| = Ŝ−i

(
1

2
− Ŝzm

)
,

|↓i↓m〉 〈↓i↑m| =
(

1

2
− Ŝzi

)
Ŝ−m,

|↑i↑m〉 〈↓i↓m| = Ŝ+
i Ŝ

+
m, (C.1)

and other states can be obtained using |γiδm〉 〈αiβm| = (|αiβm〉 〈γiδm|)†.

The interaction coefficients are given by the following expressions:

Jzz q,kνim = Kq,kν
↑↑,↑↑ im +Kq,kν

↓↓,↓↓ im −K
q,kν
↓↑,↓↑ im −K

q,kν
↑↓,↑↓ im =

=
∑

M=m̃,m′

(−1)l


(
V iqm,↑;M,↑ − V

iq
m,↓;M,↓

)((
V mqm,↑;M,↑

)∗
−
(
V mqm,↓;M,↓

)∗)
EM − Em

+ c.c., (C.2)

J+− q,kν
im = Kq,kν

↑↓,↓↑ im = −
∑
m′

V iqm,↑;m′,↓

(
V mqm,↑;m′,↓

)∗
Em′ − Em − Espin

+
V mqm,↓;m′,↑

(
V iqm,↓;m′,↑

)∗
Em′ − Em + Espin

 , (C.3)
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Jz+ q,kν
im = Kq,kν

↑↑,↑↓ im −K
q,kν
↓↑,↓↓ im =

∑
M=m̃,m′

(−1)l
[
V mqm,↑;M,↓×

×
((
V iqm,↑;M,↑

)∗
−
(
V iqm,↓;M,↓

))( 1

EM − Em − Espin
+

1

EM − Em

)
+

+
(
V iqm,↑;M,↑ − V

iq
m,↓;M,↓

)(
V mqm,↓;M,↑

)∗( 1

EM − Em + Espin
+

1

EM − Em

)]

−
V mqm,↑;m,↓

((
V iqm,↑;m,↑

)∗
−
(
V iqm,↓;m,↓

)∗)
Espin

+

(
V iqm,↑;m,↑ − V

iq
m,↓;m,↓

)(
V mqm,↓;m,↑

)∗
Espin

J++ q,kν
im = Kq,kν

↑↑,↓↓ im,

Jz− q,kνim =
(
Jz+ q,kν
im

)∗
,

J+z q,kν
im = Jz+ q,kν

mi ,

J−z q,kνim = Jz− q,kνmi , (C.4)

bz q,kνim = Kq,kν
↑↑,↑↑ im −K

q,kν
↓↓,↓↓ im +Kq,kν

↑↓,↑↓ im −K
q,kν
↓↑,↓↑ im =

=
∑

M=m̃,m′

(−1)l

 2
∣∣∣V iqm,↑;M,↓

∣∣∣2
EM − Em − Espin

−
2
∣∣∣V iqm,↓;M,↑

∣∣∣2
EM − Em + Espin

+

2

(∣∣∣V iqm,↑;M,↑

∣∣∣2 − ∣∣∣V iqm,↑;M,↑

∣∣∣2)
EM − Em

+ (C.5)

+

(
V iqm,↑;M,↑ − V

iq
m,↓;M,↓

)((
V mqm,↑;M,↑

)∗
+
(
V mqm,↓;M,↓

)∗)
EM − Em

+ c.c.

 ,

b+ q,kν
im = Kq,kν

↑↑,↓↑ im +Kq,kν
↑↓,↓↓ im =

∑
M=m̃,m′

(−1)l


(
V iqm,↓;M,↓ + V mqm,↓;M,↓

)
2

×

×
(
V iqm,↑;M,↓

)∗( 1

EM − Em
+

1

EM − Em − Espin

)
+

+
V iqm,↓;M,↑

((
V iqm,↑;M,↑

)∗
+
(
V mqm,↓;M,↓

)∗)
2

(
1

EM − Em
+

1

EM − Em + Espin

)
+ c.c.

+

+

V iqm,↓;m,↑

((
V iqm,↑;m,↑

)∗
+
(
V mqm,↓;m,↓

)∗)
Espin

−

(
V iqm,↓;m,↓ + V mqm,↓;m,↓

)(
V iqm,↑;m,↓

)∗
Espin

+ c.c.

 , (C.6)



21

bq,kν0 im =
1

4

(
Kq,kν
↑↑,↑↑ im +Kq,kν

↓↓,↓↓ im +Kq,kν
↑↓,↑↓ im +Kq,kν

↓↑,↓↑ im

)
=

=
∑

ξ,η=i,m

∑
M=m̃,m′

(−1)l

4

V ξqm,↑;M,↑

(
V ηqm,↑;M,↑

)∗
EM − Em

+

+
V ξqm,↓;M,↓

(
V ηqm,↓;M,↓

)∗
EM − Em

+

∣∣∣V ξqm,↑;M,↓

∣∣∣2
EM − Em − Espin

+

∣∣∣V ξqm,↓;M,↑

∣∣∣2
EM − Em + Espin

+

+

∣∣∣V iqm,↑;M,↑ + V mqm,↓;M,↓

∣∣∣2
EM − Em

+

∣∣∣V iqm,↓;M,↓ + V mqm,↑;M,↑

∣∣∣2
EM − Em

+

+

(∣∣∣V iqm,↑;M,↓

∣∣∣2 +
∣∣∣V mqm,↑;M,↓

∣∣∣2)
EM − Em − Espin

+

(∣∣∣V iqm,↓;M,↑

∣∣∣2 +
∣∣∣V mqm,↓;M,↑

∣∣∣2)
EM − Em + Espin

 , (C.7)

where l is the orbital quantum number of the M state.

Appendix D

The Hamiltonian, acting only on effective spins can
be obtained by taking the expectation value of Eq.(10)
with respect to an unperturbed initial state of the medi-
ator atoms. As a first example we consider the mediator
atoms prepared in a Rydberg |ns, k0 ν0〉 superatom state:

|Ψ〉sat =

Na∑
q=1

∑
k′,k0
ν′,ν0

∏
q′ 6=q

ck′
ν′ ,k0 ν0√
Na

φgq′
(
Xq′ , k

′
ν′ q′

)
× Φnsq (Xq, k0 ν0 q)

∣∣g1, ...(ns1/2,mj)q, ..., gNa
〉
,

(D.1)

where φgq′
(
Xq′ , k

′
ν′ q′

)
is the spatial wave function of a

q’th atom in the ground state; Φnsq (Xq, k0 ν0 q) is the

spatial wave function of the qth atom in the |ns〉 state;
in the general case the atoms in the ground and Rydberg
states are assumed to be prepared in a wave packet of
Bloch states with quasimomenta k′ν′ and k0 ν0 , respec-
tively, weighted by the coefficients ck′

ν′ ,k0 ν0
. In this case

the spin Hamiltonian takes the form:

V̂ nseff spin = 〈Ψsat| V̂ nseff |Ψsat〉 = (D.2)

=

N∑
i,m=1

(
JzzimŜ

z
i Ŝ

z
m +

J⊥im
2

(
Ŝ+
i Ŝ
−
m + Ŝ−i Ŝ

+
m

)
+

+bzimnmŜ
z
i + b0 imninm

)
,

with the averaged interaction coefficients:

J
zz(⊥)
im =

1

Na

Na∑
q=1

∑
k,k′,k0,k

′
0

ν,ν′,ν0,ν
′
0

ck′
ν′ ,k

′
0 ν′0

(ck′
ν′ ,k0 ν0

)∗×

×Jzz(⊥) q,kν
im

∫
dXqΦ

∗
nsq (Xq, k0 ν0 q)φ(Xq, kν q)×

×
∫
dXqΦnsq (Xq, k

′
0 ν′0 q

)φ∗(Xq, kν q), (D.3)

where φ(Xq, kν q) is the spatial part of the mediator atom

wave function in the P̂ns projector Eq.(8). The averaged
effective magnetic field bzim and b0 im satisfy the same
relation.

Next, we use the assumption that initially the media-
tor atoms are prepared in a superposition of Bloch states
and write explicitly Bloch functions as the spatial parts
of the mediator atom wavefunction Φnsq (Xq, k0 ν0 q) =

u
(ν0)
k0

eik0Xq , φ(Xq, kν q) = u
(ν)
k eikXq . In this case∫

Φ∗nsq (Xq, k0 ν0 q)u
(ν)
k eikXq = δk,k0δν,ν0 , giving the av-

eraged interaction coefficients (same for bzim, b0 im):

J
zz(⊥)
im =

1

Na

Na∑
q=1

∑
k′,k0
ν′,ν0

|ck′
ν′ ,k0 ν0

|2Jzz(⊥) q,k0 ν0
im =

=
1

Na

Na∑
q=1

∑
k0,ν0

|ck0 ν0 |
2J

zz(⊥) q,k0 ν0
im , (D.4)

where |ck0 ν0 |
2 =

∑
k′,ν′ |ck′ν′ ,k0 ν0 |

2. In particular, for

mediator atoms initially prepared in a stationary BEC
k0 = 0, ν0 = 1 the averaged interaction coefficients are

J
zz(⊥)
im = 1

Na

∑Na
q=1 J

zz(⊥) q,k0=0ν0=1

im [37]. In a more gen-
eral case the initial superatom state is a superposition of
Bloch states with quasimomenta k0 and Bloch bands ν0,
determined by the distribution |ck0 ν0 |

2.
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Another possible initial mediator state is the Rydberg
dressed state

|Ψ〉dress =

Na∏
q=1

∑
k′,k0
ν′,ν0

ck′
ν′ ,k0 ν0

(
cgφgq (Xq, k

′
ν′ q) |g〉q +

+cnsΦnsq (Xq, k0 ν0 q) |ns〉q

)
,

(D.5)

created when all mediator atoms interact with
a dressing laser field of Rabi frequency Ω
and detuning ∆ from the Rydberg state, and

cg =
√√

∆2/4 + Ω2 + ∆/2/[
√

2
(
∆2/4 + Ω2

)1/4
],

cns =
√√

∆2/4 + Ω2 −∆/2/[
√

2
(
∆2/4 + Ω2

)1/4
]. Here

φgq (Xq, kν q) is the spatial wave function of a qth atom
in the ground state; Φnsq (Xq, k0 ν0 q) is the spatial wave

function of the qth atom in the Rydberg ns state.
In this case the spin Hamiltonian takes the same form

as Eq.(D.2) with the averaged interaction coefficients
(the same for bzim, b0 im):

J
zz(⊥)
im = |cns|2

Na∑
q=1

∑
k,k′,k0,k

′
0

ν,ν′,ν0,ν
′
0

ck′
ν′ ,k

′
0 ν′0

(ck′
ν′ ,k0 ν0

)∗×

×Jzz(⊥) q,kν
im

∫
dXqΦ

∗
nsq (Xq, k0 ν0 q)φ(Xq, kν q)×

×
∫
dXqΦnsq (Xq, k

′
0 ν′0 q

)φ∗(Xq, kν q), (D.6)

where we again consider a case when initially the ground

and Rydberg state atoms are prepared in a superposition
of Bloch states determined by the weights |ck′

ν′ ,k0 ν0
|2.

Plugging the Bloch functions for the Rydberg and ground
states motional wavefunctions, their averages will be
given by the following expression:

J
zz(⊥)
im = |cns|2

Na∑
q=1

∑
k′,k0
ν′,ν0

|ck′
ν′ ,k0 ν0

|2Jzz(⊥) q,k0 ν0
im

= |cns|2
Na∑
q=1

∑
k0,ν0

|ck0 ν0 |
2J

zz(⊥) q,k0 ν0
im . (D.7)

In particular, for the case of an initial BEC with k0 = 0,
ν0 = 1 we have

J
zz(⊥)
im = |cns|2

Na∑
q=1

J
zz(⊥) q,k0=0ν0=1

im .

The expressions (D.3), (D.6) are also valid in the case of
a single mediator atom corresponding to Na = 1.

Appendix E

A. Calculation of V mqm0,α;m′,β
matrix elements for

charge-dipole interaction

The interaction matrix elements for the charge-dipole
interaction between an mth spin, encoded in polar
molecule rotational states, and a qth mediator Rydberg
atom have the form

V mqm0,α;m′,β =
〈
ns1/2,mj , k0 ν0

∣∣
q
〈α|m V̂cd |β〉m

∣∣npj′ ,m′j′ , kν〉q =

= −e 〈α|m ~dspin |β〉m
∫
dXqΦ

∗
ns q(Xq, k0 ν0 q) 〈ns,mj |

~Rqm − ~r∣∣∣~Rqm − ~r∣∣∣3
∣∣npj′ ,m′j′〉φ(Xq, kν q) =

= −e 〈α|m ~dspin |β〉m e
−i(k−k0)Xm

∫
dXqmu

(ν0)∗
k0

(Xm +Xqm) 〈ns,mj |
~Rqm − ~r∣∣∣~Rqm − ~r∣∣∣3

∣∣npj′ ,m′j′〉u(ν)
k (Xm +Xqm)e−i(k−k0)Xqm =

= cmqm0,α;m′βe
−i(k−k0)Xm .

(E.1)

Assuming for concreteness that the mediator atom is ini-
tially excited to the

∣∣ns1/2,mj = 1/2
〉

state, the matrix
elements Eq.(E.1) will be non-zero for virtual excitations

only to the m′j = ±1/2, 3/2 sublevels of the npj′ = 99p3/2

state, which can be expanded in terms of the l,ml states
as follows:
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∣∣np3/2,mj = 3/2
〉

=

∣∣∣∣n, l = 1,ml = 1; s =
1

2
,ms =

1

2

〉
,∣∣∣∣np3/2,mj =

1

2

〉
=

√
2

3

∣∣∣∣n, l = 1,ml = 0; s =
1

2
,ms =

1

2

〉
+

√
1

3

∣∣∣∣n, l = 1,ml = 1; s =
1

2
,ms = −1

2

〉
,∣∣∣∣np3/2,mj = −1

2

〉
=

√
1

3

∣∣∣∣n, l = 1,ml = −1; s =
1

2
,ms =

1

2

〉
+

√
2

3

∣∣∣∣n, l = 1,ml = 0; s =
1

2
,ms = −1

2

〉
, (E.2)

which can be used to calculate cqmm0,α;m′,β coefficients.
The interaction coefficient corresponding to

the resonance between the
∣∣99p3/2,mj = 1/2

〉
↔∣∣99s1/2,mj = 1/2

〉
transition of the qth atom and the

spin transition of the mth molecule are given by the
expression

cmqm0,↑;m′,↓ =

=
e
√

2 〈↑| ~dspin |↓〉m√
3

∫
dXqm 〈ns|

~Rqm − ~r
|~Rqm − ~r|3

|np,ml = 0〉×

×u(ν0)∗
k0

(Xm +Xqm)u
(ν)
k (Xm +Xqm) e−i(k−k0)Xqm ,

(E.3)

where the Bloch functions are normalized as∫
φ∗(Xq, kν q)φ(Xq, k

′
ν′ q)dXq = δν,ν′δk,k′ . Let us

first analyze the integral over Rydberg electron’s
coordinates:

Imqns;np,0 = −e 〈↑| ~dspin |↓〉m 〈ns|
~Rqm − ~r∣∣∣~Rqm − ~r∣∣∣3 |np,ml = 0〉 .

For the effective spin states |↓〉 = |J = 0,mJ = 0〉 and
|↑〉 = |J = 1,mJ = 0〉 the spin dipole moment has only

the z component 〈↑| ~dspin |↓〉 = ~ez 〈↑| dz spin |↓〉. One then
can use the following expression [58]:

−e 〈↑| dz spin |↓〉m

(
~Rqm − ~r

)
z∣∣∣~Rqm − ~r∣∣∣3 = 4πe 〈↑| dz spin |↓〉m cos η×

×


∑∞
l′′=0−

l′′+1
2l′′+1

rl
′′

Rl
′′+2
qm

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m
′′ ∗

l′′ (η, χ) for r < Rqm∑∞
l′′=0

l′′

2l′′+1

Rl
′′−1
qm

rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m
′′ ∗

l′′ (η, χ) for r > Rqm

−4πe 〈↑| dz spin |↓〉m
sin η

Rqm
×

×


∑∞
l′′=0

1
2l′′+1

rl
′′

Rl
′′+1
qm

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)
∂Ym

′′ ∗
l′′ (η,χ)

∂η for r < Rqm∑∞
l′′=0

1
2l′′+1

Rl
′′
qm

rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)
∂Ym

′′ ∗
l′′ (η,χ)

∂η for r > Rqm

, (E.4)

where θ and φ are the Rydberg electron’s angular coor-
dinates with respect to the ionic core, η and χ are the

angular coordinates of the core-molecule vector ~Rqm with
respect to the quantization axis, chosen to be perpendic-
ular to the spin and mediator lattices and parallel to ~ρ
(see Fig.9). When calculating the matrix element Imqns;np,0
between the |ns〉 and |np,ml = 0〉 states, there will be
integrals over three spherical harmonics, expressed via
3j-symbols ∫ 2π

0

dφ

∫ π

0

sin θdθY 0 ∗
0 Y m

′′

l′′ Y 0
1 =

=

√
3(2l′′ + 1)

4π

(
0 l′′ 1
0 0 0

)(
0 l′′ 1
0 m′′ 0

)
, (E.5)

which are non-zero only for l′′ = 1,m′′ = 0,
with the corresponding integral given by∫ 2π

0
dφ
∫ π

0
sin θdθY 0 ∗

0 Y 0
1 Y

0
1 = 1/

√
4π.

As a result,
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Imqns;np,0 = 4πe 〈↑| dz spin |↓〉m cos ηY 0 ∗
1 (η, χ)

(
− 2

3
√

4πR3
qm

∫ Rqm

0

r3RnsRnpdr +
1

3
√

4π

∫ ∞
Rqm

RnsRnpdr

)

−4πe 〈↑| dz spin |↓〉m
sin η

Rqm

∂Y 0 ∗
1

∂η

(
1

3
√

4πR2
qm

∫ Rqm

0

r3RnsRnpdr +
Rqm

3
√

4π

∫ ∞
Rqm

RnsRnpdr

)
,

where
∂Y 0 ∗

1

∂η = − 1
2

(√
2
(
Y −1

1

)∗
e−iχ −

√
2
(
Y 1

1

)∗
eiχ
)

=

− 1
2

√
3
π sin η, and Y 0

1 = 1
2

√
3
π cos η, Y ±1

1 =

∓ 1
2

√
3

2π sin ηe±iχ. After rearrangement,

Imqns;np,0 =
e 〈↑| dz spin |↓〉m√

3
×

×

(
sin2 η − 2 cos2 η

R3
qm

∫ Rqm

0

r3RnsRnpdr +

∫ ∞
Rqm

RnsRnpdr

)
,

(E.6)

where cos2 η = ρ2

R2
qm

, sin2 η =
(Xqm)2

R2
qm

.

This gives the following expression for the cqm coef-
ficient for the

∣∣99p3/2,mj = 1/2
〉
↔
∣∣99s1/2,mj = 1/2

〉
transition

cqmm0,↑;m′,↓ =
e
√

2 〈↑| dz spin |↓〉m
3

∫
dXqm

(
sin2 η − 2 cos2 η

R3
qm

∫ Rqm

0

r3RnsRnpdr+

+

∫ ∞
Rqm

RnsRnpdr

)
u

(ν0)∗
k0

(Xm +Xqm)u
(ν)
k (Xm +Xqm) e−i(k−k0)Xqm . (E.7)

For the distances between spin and mediator arrays ρ ∼
1.5 µm, which we consider, the 1

R3
qm

∫ Rqm
0

r3RnsRnpdr

term will be much larger than the
∫∞
Rqm

RnsRnpdr term,

such that the latter can be neglected. At these dis-

tances one can also approximate
∫ Rqm

0
r3RnsRnpdr ≈∫∞

0
r3RnsRnpdr. As a result, the dependence on the me-

diator position of the cqm coefficients will be given by the
factor (sin2 η − 2 cos2 η)/R3

qm, which shows that at such
distances the charge-dipole interaction can be approxi-
mated by the dipole-dipole one.

Next, we calculate the cqm coefficients for the spin-
mediator interaction involving the |↓〉 − |↑〉 and the∣∣99p3/2,mj = −1/2

〉
↔
∣∣99s1/2,mj = 1/2

〉
transitions

cmqm0,↑;m′,↓ =
e 〈↑| ~dspin |↓〉m√

3

∫
dXqm 〈ns|

~Rqm − ~r
|~Rqm − ~r|3

|np,ml = −1〉 ×

×u(ν0)∗
k0

(Xm +Xqm)u
(ν)
k (Xm +Xqm) e−i(k−k0)Xqm . (E.8)

When averaging the −
4πe〈↑|dz spin|↓〉m(~Rqm−~r)

z

|~Rqm−~r|3 func-

tion over |ns〉, |np,ml = −1〉 states the integral over
three spherical harmonics Eq.(E.5) will have the form∫ 2π

0
dφ
∫ π

0
sin θdθY 0 ∗

0 Y m
′′

l′′ Y −1
1 , which is non-zero only for

l′′ = 1,m′′ = 1. Following the same steps as above one

obtains

Imqns;np,−1 = −e 〈↑| dz spin |↓〉m 〈ns|

(
~Rqm − ~r

)
z∣∣∣~Rqm − ~r∣∣∣3 |np,ml = −1〉 =

= −e 〈↑| dz spin |↓〉m cos η sin ηe−iχ
1

R3
qm

√
3

2

∫ Rqm

0

r3RnsRnpdr,

(E.9)
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FIG. 9: Angles of the vectors ~Rqm and ~r in the case of a
general orientation of the Rydberg atom with respect to the
molecule.

resulting in

cmqm0,↑;m′,↓ = −
e 〈↑| dz spin |↓〉m√

2
×

×
∫
dXqm

(
sin η cos ηe−iχ

1

R3
qm

∫ Rqm

0

r3RnsRnpdr

)
u

(ν0)∗
k0

(Xm +Xqm)u
(ν)
k (Xm +Xqm) e−i(k−k9)Xqm (E.10)

for the
∣∣99p3/2,mj = −1/2

〉
↔
∣∣99s1/2,mj = 1/2

〉
tran-

sition.
Similarly, the coefficients for the interaction involving

the spin |↓〉− |↑〉 and the mediator
∣∣99p3/2,mj = 3/2

〉
↔∣∣99s1/2,mj = 1/2

〉
transitions will have the form:

cmqm0,↑;m′,↓ = e 〈↑| ~dspin |↓〉m
∫
dXqm 〈ns|

~Rqm − ~r
|~Rqm − ~r|3

|np,ml = 1〉 ×

×u(ν0)∗
k0

(Xm +Xqm)u
(ν)
k (Xm +Xqm) e−i(k−k0)Xqm (E.11)

with the corresponding

Imqns;np,1 = −e 〈↑| dz spin |↓〉m 〈ns|

(
~Rqm − ~r

)
z∣∣∣~Rqm − ~r∣∣∣3 |np,ml = 1〉 =

= e 〈↑| dz spin |↓〉m cos η sin ηeiχ
1

R3
qm

√
3

2

∫ Rqm

0

r3RnsRnpdr,

(E.12)

where in the average of the −
4πe〈↑|dz spin|↓〉m(~Rqm−~r)

z

|~Rqm−~r|3 fac-

tor over |ns〉 and |np,ml = 1〉 states the integral over
three spherical harmonics Eq.(E.5) will be non-zero only
for l′′ = 1, m′′ = −1. This gives the coefficient:
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cmqm0,↑;m′,↓ =
e
√

3 〈↑| dz spin |↓〉m√
2

×

×
∫
dXqm

(
sin η cos ηeiχ

1

R3
qm

∫ Rqm

0

r3RnsRnpdr

)
u

(ν0)∗
k0

(Xm +Xqm)u
(ν)
k (Xm +Xqm) e−i(k−k9)Xqm . (E.13)

In the 1D case χ = 0 and cmqns,1/2,↑,k0 ν0 ;np3/2,3/2,↓,kν =

−
√

3cmqns,1/2,↑,k0 ν0 ;np3/2,−1/2,↓,kν .

Here again one can approximate
∫ Rqm

0
r3RnsRnpdr ≈∫∞

0
r3RnsRnpdr, which will give the dependence on the

mediator position under the integral in the form of
sin η cos η/R3

qm.
Finally, we discuss the interaction matrix ele-

ments for transition in which the mediator does not
change its internal state, allowed by the change-
dipole interaction, V mqm0,↑;m̃,↑ = V mqns,k0 ν0 ,↑;ns,kν ,↑

=

cmqns,k0 ν0 ,↑;ns,kν ,↑
e−i(k−k0)Xm matrix elements, where

cmqns,k0 ν0 ,↑;ns,kν ,↑
=

= e 〈↑| ~dspin |↑〉m
∫
dXqm 〈ns|

~Rqm
R3
qm

−
~Rqm − ~r∣∣∣~Rqm − ~r∣∣∣3 |ns〉×

×u(ν0)∗
k0

(Xm +Xqm)u
(ν)
k (Xm +Xqm) e−i(k−k0)Xqm .

(E.14)

The integral over Rydberg electron’s coordinates

Imqns;ns = e 〈↑| ~dspin |↑〉m 〈ns|
~Rqm
R3
qm

−
~Rqm − ~r∣∣∣~Rqm − ~r∣∣∣3 |ns〉

(E.15)

can be calculated using the expansion (E.4) since

〈↑| ~dspin |↑〉 = ~ez 〈↑| dz spin |↑〉 also has only the z com-
ponent. As a result,

Imqns;ns =
e 〈↑| dz spin |↑〉 ρ

R3
qm

(
1−

∫ Rqm

0

R2
ns(r)r

2dr

)
.

(E.16)

We can estimate the term
∫ Rqm

0
R2
ns(r)r

2dr >∫ ρ
0
R2
ns(r)r

2dr ≈ 0.999999999 for 99s of Rb and ρ = 1.5

µm, resulting in Imqns;ns ≈ 10−10eρ 〈↑| dz spin |↑〉 /R3
qm.

This shows that the effective dipole moment of the
ns state is eρ

(
1−

∫ ρ
0
R2
ns(r)r

2dr
)
≈ 10−10eρ ≈

3 · 10−6 a.u. If the |↑〉 state is coupled to a
|J = 2,mJ〉 state by a detuned MW field with a

Rabi frequency Ω̃ and detuning ∆̃, the dipole mo-
ment of the |↑〉 state induced by the MW field is

〈↑| dz spin |↑〉 ∼
(

Ω̃/∆̃
)
dspin. The interaction coeffi-

cients can then be estimated as cmqns,1/2,k0 ν0 ,↑;ns,1/2,kν ,↑
.

10−10eρ 〈↑| dz spin |↑〉 /ρ3 ∼ 10−10eρ
(

Ω̃/∆̃
)
dspin/ρ

3 ∼
10−3 Hz for Ω̃/∆̃ ∼ 0.1. It shows that the
|V mqns,1/2,k0,↑;ns,1/2,kν ,↑| = |cmqns,1/2,k0 ν0 ,↑;ns,1/2,kν ,↑| �
(Ens(kν) − Ens(k0 ν0=1)) ∼ 4Erec/N

2
at latt ≈ 0.87 Hz and

|Jzz q,k0 ν0im | ∼ |V mqns,k0 ν0 ,↑;ns,kν ,↑
|2/(4Erec/N

2
at latt) ∼ 10−8

Hz, which is much less than the |J⊥ qim |, |b
z q
i | terms in

Eq.(21).

B. cqmm0,α;med,β coefficients for the Rydberg spin
encoding

cmqm0,↑;med,↓ =
a↑b↓ + b↑a↓

3
dnp,nsdñp,ñsd±

∫
dXqmu

(ν0)∗
k0

(Xm +Xqm)
Xqmρ

R5
qm

u
(ν)
k (Xm +Xqm) eikXqm ,

cmqm0,↓;med,↑ = cmqm0,↑;med,↓,

cmqm0,↑;med,↑ =
2a↑b↑

9
dnp,nsdñp,ñsd±

∫
dXqmu

(ν0)∗
k0

(Xm +Xqm)
1− 3ρ2/R2

qm

R3
qm

u
(ν)
k (Xm +Xqm) eikXqm ,

cmqm0,↓;med,↓ = −2a↓b↓
9

dnp,nsdñp,ñsd±

∫
dXqmu

(ν0)∗
k0

(Xm +Xqm)
1− 3ρ2/R2

qm

R3
qm

u
(ν)
k (Xm +Xqm) eikXqm ,
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with the corresponding dipole moments between the∣∣ns1/2,mj = 1/2
〉

and the |±〉med states:〈
ns1/2,mj =

1

2

∣∣∣∣ ~dRydb |+〉med = −d+dnp,ns~ez
3

,〈
ns1/2,mj =

1

2

∣∣∣∣ ~dRydb |−〉med = −d−dnp,ns~ez
3

, (E.17)

C. Averaging over atomic motional states

In order to calculate the cmqm0,α;m′,β and cmqm0,α;med,β co-
efficients energies and wavefunctions of mediator atoms
Bloch states are needed. In this section we numerically
calculate the Bloch functions by analyzing atomic mo-
tion in a 1D optical lattice described by the trapping
potential V (Xq) = V0 cos2KatXq with the lattice mo-
mentum Kat = π/Lat and V0 = −Erec, where Erec =
~2(Kat)

2/2Mat is the atomic recoil energy in the lattice,
Mat is the atomic mass, Lat is the mediator atom lattice
period. The Bloch states and energies can be found by
solving the Schrodinger equation for atomic motion in
the 1D lattice:

− ~2

2Mat

d2φ(Xq, kν q)

dX2
q

+ V0 cos2(KatXq)φ(Xq, kν q) =

= E(ν)(k)φ(Xq, kν q),
(E.18)

where the wavefunction corresponding to the νth Bloch
band and the quasimomentum k is φ(Xq, kν q) =

u
(ν)
k (Xq)e

ikXq . The periodic function uk can be ex-
panded in terms of the harmonics of the lattice momen-

tum: u
(ν)
k (Xq) =

∑Smax

s=−Smax
c
(ν)
s (k)e2isKatXq with the ex-

pansion truncated at some Smax. The periodic boundary
conditions φ(Xq, kν q) = φ(Xq +Nlatt atLat, kν q) require
k = 2πκ/LatNlatt at and κ = −Nlatt at/2, ..., Nlatt at/2,
where Nlatt at is the number of unitary cells in the me-

diator atoms lattice. The coefficients c
(ν)
s (k) and Bloch

energies E(ν) can be calculated by numerically solving
Eq.(E.18):

(
κ

Nat
+ s

)2

c(ν)
s +

V0

4Erec

(
c
(ν)
s−1 + c

(ν)
s+1

)
=
E(ν) − V0/2

Erec
c(ν)
s .

(E.19)

Fig.10 shows energies of the five lowest Bloch bands in the
case V0 = −Erec assuming that the lattice has Nlatt at =
100 unitary cells. The expansion of uk was truncated at
Smax = 10.

We numerically calculated the u
(ν)
k (Xq) functions for

five lowest Bloch bands and used them for obtaining the
cmq coefficients discussed in the subsections A, B.
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