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We present two methods for computing the Rayleigh and Raman scattering cross sections for
photon scattering on atomic hydrogen, or hydrogen like systems. Both methods are applicable for
incident photon energies above the ionization threshold. The first method implements the well known
Gaussian quadrature approach to deal with principle value integration, and relies on evaluation of
the exact eigenfunctions of hydrogen. The second, more computationally efficient approach, uses a
finite L2 basis expansion of the target, and applies complex exterior scaling methods to accurately
account for the contribution of the intermediate continuum states. This method is much more
general in that it does not rely on analytic solutions to the Hamiltonian, nor evaluation of any special
functions, and is expected to be applicable to more complex systems where exact wavefunctions are
cumbersome to evaluate. Both methods are in complete agreement with previous work based on
analytical representations of the Green’s function or the dipole matrix elements. Rayleigh, Raman,
and photoionization cross sections for scattering on the first few excited states of atomic hydrogen
are presented and compared with previous results where available.

PACS numbers:

I. INTRODUCTION

The problem of photon-atom scattering using a fully
quantum approach has been well understood since the
mid 1920s. The development of the Kramers-Heisenberg-
Waller (KHW) matrix elements [1–3] provided a clear
description of photon scattering processes up to second
order in perturbation theory (PT). In turn, it established
the foundation for various applications of photon scatter-
ing processes, such as Raman spectroscopy [4], radiation
transport and opacity [5, 6], and more recently quantum
illumination and radars [7, 8].

The calculation of the KHW matrix elements is com-
plicated by contributions from the continuum, and, for
incident photon energies above the ionization threshold,
the need to correctly deal with the pole terms. Most
calculations are restricted to the case where the Green’s
function may be given analytically, or where the bound-
bound and bound-free dipole matrix elements are known
analytically. For example Gavrila [9] presented analytical
expressions for the elastic scattering of photons from the
ground state. Saslow and Mills [10] presented analytic ex-
pressions for the 1s → 2s Raman scattering transitions,
and discussed the importance of the continuum interme-
diate states. Sadeghpour and Dalgarno [11] calculated
Rayleigh and Raman scattering by hydrogen and cae-
sium using numerical solutions to the response functions
to avoid the infinite summation in the KHW matrix ele-
ments. Many other publications which consider Rayleigh
and Raman scattering restrict their calculations to below
the ionization threshold. For example Drühl [12] consid-
ered Raman scattering on Iodine using only small inci-
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dent photon energies, and was thus able to approximate a
sum over all intermediate states using dipole summation
rules. Delserieys et al. [13] considered Raman scattering
on Mg using only contributions from a small number of
bound states, and assumed that contributions from all
other states are negligible.

A recent publication by Bachau et al. [14] considered
scattering of short laser pulses on the metastable 2s state
of hydrogen, and showed that for the intensity considered
(3.51× 1016 W cm−2), results from solving the time de-
pendent Schrödinger equation were in good agreement
with the KHW matrix element calculation using PT. In
order to calculate the KHW matrix element they consid-
ered two different analytic approaches, the first requiring
the evaluation of Appell functions, and the second us-
ing an inhomogeneous differential equation type method.
This is in contrast to the relative simplicity of the equa-
tions for scattering from the 1s state [15], and shows that
the complexity of the analytic forms grows when consid-
ering scattering from higher excited states.

Here we present two computational approaches for
scattering of photons on hydrogen atoms at low and in-
termediate incident energies. These techniques do not
rely on analytical evaluation of the Green’s function or
the dipole matrix elements. The first method provides
a direct numerical calculation of the KHW matrix ele-
ment for particular transitions using the exact eigenfunc-
tions to calculate the dipole matrix elements. The second
method uses a finite L2 basis and complex exterior scal-
ing [16–18] to accurately account for contributions from
all intermediate states, and provides a computationally
efficient and accurate method for calculating the KHW
matrix element for transitions between any two states at
arbitrary photon energies.
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II. THEORY

A. Photon-atom scattering

Within this paper we use atomic units. The non-
relativistic atom-field interaction Hamiltonian is written
in the Coulomb gauge as,

Hint =
A2

2c2
− A · p

c
. (1)

By considering only the first order contributions of the
seagull term, A2, and second order contributions of the
A · p term, the differential cross section for photon scat-
tering between two states is given by,

dσfi
dΩ

= r20
ω′

ω
|Mfi|2, (2)

where r0 is the classical electron radius, ω and ω′ denote
the energy of the incident and outgoing photons. Mfi is
the well known Kramers-Heisenberg-Waller (KHW) ma-
trix element [1, 2],

Mfi = ε · ε′∗ 〈f |ei(k−k
′)·r|i〉

−
∑∫
t

[
〈f |e−ik′·r(ε′∗ · p)|t〉 〈t|eik·r(ε · p)|i〉

Et − Ei − ω − i0

+
〈f |eik·r(ε · p)|t〉 〈t|e−ik′·r(ε′∗ · p)|i〉

Et − Ei + ω′

]
, (3)

where ε (ε′) and k (k′) denote the incident (outgoing)
photon polarization and momenta respectively, Et de-
notes the energy of the state |t〉, and the sum represents
a sum over all intermediate bound states as well as an in-
tegral over the continuum. The outgoing photons satisfy
the energy conservation condition Ei + ω = Ef + ω′. As
we are considering Rayleigh and Raman scattering to low
lying (i.e. not Rydberg) states, it is reasonable and con-
venient to apply the dipole approximation, equivalent to
setting k = k′ = 0. We also limit our calculations to rel-
atively low photon energies, ω < 10 a.u., where the A ·p
terms are dominant [15]. Using the dipole approximation
the KHW matrix element may be rewritten as,

Mfi = ωω′
∑∫
t

[
〈f |ε′∗ ·D|t〉 〈t|ε ·D|i〉
Et − Ei − ω − i0

+
〈f |ε ·D|t〉 〈t|ε′∗ ·D|i〉

Et − Ei + ω′

]
, (4)

where D is the length form of the dipole operator. It has
been shown that the scattering matrix for non-oriented
systems, i.e. those in which the initial magnetic sub-
levels are averaged and the final magnetic sub-levels are
summed over, may be written as a sum of irreducible
tensor components [12, 19]. We use the notation of

Delserieys et al. [13] and write the scattering cross sec-
tion for a non-oriented target as,

dσn′l′nl

dΩ
= r20

ωω′3

3

1

2l + 1

[
|A(0)
n′l′nl|

2|ε′∗ · ε|2

+
3

2
|A(1)
n′l′nl|

2(1− |ε′ · ε|2)

+
3

2
|A(2)
n′l′nl|

2

(
1 + |ε′ · ε|2 − 2

3
|ε′∗ · ε|2

)]
,

(5)

that implicitly depends on photon polarization ε (ε′). In
what follows we use compound notations |i〉 ≡ |nlm〉,
|f〉 ≡ |n′l′m′〉, |t〉 ≡ |ntltmt〉, where n stands for the
principle quantum number, l for the orbital angular mo-
mentum and m for its projection. The tensor expansion

coefficients A
(κ)
n′l′nl are given by

A
(κ)
n′l′nl = (−1)l+l

′+κ
∑∫
t

{
l l′ κ
1 1 lt

}
× 〈n′l′||D||ntlt〉 〈ntlt||D||nl〉

×
[

1

Entlt − Enl − ω − i0
+

(−1)κ

Entlt − Enl + ω′

]
,

(6)

where 〈· · · ||D|| · · ·〉 are reduced matrix elements [20]. If
we are not interested in the polarization of the photons
we may sum over the final polarizations and average over
the initial polarization to give the unpolarised scattering
cross section,

dσn′l′nl

dΩ
= r20

ωω′3

6

1

2l + 1

[
|A(0)
n′l′nl|

2
(
1 + cos2 θ

)
+

3

2
|A(1)
n′l′nl|

2(2 + sin2 θ)

+ |A(2)
n′l′nl|

2

(
13

2
+

1

2
cos2 θ

)]
, (7)

where θ denotes the scattering angle. Integrating over
all solid angles dΩ gives the total integrated cross section
for Raman or Rayleigh scattering,

σn′l′nl = σT
ωω′3

3(2l + 1)

∑
κ

(2κ+ 1)|A(κ)
n′l′nl|

2, (8)

where σT = 8πr20/3 ≈ 6.652 × 10−29 m2 is the Thomp-
son cross section. As in [13] the κ = 0 component is
proportional to the polarisability,

A
(0)
nlnl =

√
3(2l + 1)αnl(ω), (9)

which allows for calculation of the total photoionization
cross section,

σInl =
1

2
σT c

3ω=
{
A

(0)∗
nlnl

}√ 3

2l + 1
. (10)

In Appendix B we show how the scattering cross sections
may be calculated in the velocity gauge.



3

FIG. 1: Schematic diagram for the different resonant pro-
cesses in photon scattering. In (a) the emission then ab-
sorption term is resonant if the detuning ∆e, defined by
∆e = Et − Ei + ω′, is small. In (b) the absorption then
emission term is resonant if the detuning ∆a, defined by
∆a = Et − Ei − ω, is small, and |t〉 is a bound intermedi-
ate state.

B. Resonance behaviour

In Eq. (3), and those which follow from it, it is clear
that the KHW matrix element becomes infinite when the
quantities ∆a = Et − Ei − ω or ∆e = Et − Ei + ω′ be-
come 0. If |t〉 is a continuum state then this is formally
handled through contour integration around the singu-
lar point, and no unphysical results arise. If however |t〉
is a bound state then unphysical resonances occur due
to neglecting the finite lifetimes of the states [3, 21]. In
Fig. 1 we schematically show how these processes oc-
cur. One standard approach for calculation of the KHW
matrix elements at or near these singularities involves
introduction of a complex damping term [3], which can
be achieved through the substitution Et → Et − iΓt/2,

where Γt is the linewidth of the state |t〉. Wijers [22] has
argued that the introduced terms should in fact be fre-
quency dependent to ensure that the damping term goes
to 0 as ω → 0. For multiphoton processes where reso-
nances occur the method of resolvent equations is also
often applied [23]. Presently, we choose to not explicitly
deal with resonant behaviour, as we are more interested
in demonstrating the capabilities of the methods. This
allows us to directly compare our calculations with pre-
viously published analytical results.

III. CALCULATION METHODS

In this section we outline two computational methods
for calculating Rayleigh and Raman scattering. In sec-
tion III A we present an approach which calculates the
KHW matrix elements for particular transitions and in-
cident photon energies by generating a suitable set of
true hydrogen eigenfunctions. In section III B we present
a new method for calculation of Rayleigh and Raman
cross sections using complex exterior scaling [18].

A. Principal value approach

The first method we consider for calculating the cross
section is a straightforward explicit calculation of the ma-
trix elements using the true bound and continuum eigen-
states of hydrogen, we will refer to this method through-
out the text as the principal value (PV) method. The
sum in Eq. (6) is broken into a sum over bound states,
a principal value integral over the continuum, and an
imaginary contribution from the pole term,

A
(κ)
n′l′nl = (−1)l+l

′+κ
∑
lt

{
l l′ κ
1 1 lt

} Nb∑
nt=lt+1

〈n′l′||D||ntlt〉 〈ntlt||D||nl〉
[

1

Entlt − Enl − ω
+

(−1)κ

Entlt − Enl + ω′

]

+ P
∫
dE
〈n′l′||D||Elt〉 〈Elt||D||nl〉

E − Enl − ω
+ iπ 〈n′l′||D||(Enl + ω)lt〉 〈(Enl + ω)lt||D||nl〉

+ (−1)κ
∫
dE
〈n′l′||D||Elt〉 〈Elt||D||nl〉

E − Enl + ω′

. (11)

Here the states |ntlt〉 refer to the bound states, while
|Elt〉 refer to continuum states of energy E. Formally
Nb = ∞, however practically we may choose sufficiently
large Nb so that the sum converges. If the incident pho-
ton energy is such that Enl + ω < 0 then the imagi-
nary part of the second line of Eq. (11) is ignored, and
the principal value integral reduces to a regular integral.
When Enl + ω > 0 the principal value integral is cal-
culated using the gaussian quadrature approach outlined

by Bray and Stelbovics [24], which has been applied to
a large variety of collision problems involving electrons
and positrons scattering from atoms, ions, and molecules
[25, 26]. This approach provides a clear representation of
the problem, and allows us to test convergence of our re-
sults by increasing the number of bound states included
and the number of points in the quadrature. The method
however is computationally inefficient, as the quadrature
chosen depends on the location of the singularity, which
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is fixed by both the energy of the initial state, and the
energy of the incident photon. Thus in order to calculate
the energy dependent scattering cross section we are re-
quired to calculate a new quadrature for each photon en-
ergy (above the ionization threshold), and must also cal-
culate the continuum wavefunctions at these new points.
The procedure outlined in this section also relies on the
ability to obtain, either numerically or analytically, the
exact wavefunctions for the target. This is not easily gen-
eralisable to more complex systems, particularly in the
case of the continuum wavefunctions.

B. Complex exterior scaling method

In this section we present a new approach to calcula-
tion of the photon scattering matrix. This approach was
inspired by the work of Rescigno and McKoy [18], who
used the complex rotation method (commonly referred
to as the complex scaling method, or complex exterior
scaling) in order to calculate the photoionization cross
section for hydrogen. Their approach has many enticing
benefits, such as the use of a finite L2 basis, the sim-
plicity with which the contribution from the pole term is
accounted for, and the capability for calculations over a
broad range of incident photon energies. Finite L2 meth-
ods are also more easily generalisable to complex systems
such as atoms and molecules, see for example Han and
Yarkony [27]. Throughout we will refer to this as the
complex exterior scaling (CES) method. To outline the
method we first consider the simpler problem of calculat-
ing the following sum,∑∫

t

〈n′l′m′|Dρ|ntltmt〉 〈ntltmt|Dσ|nlm〉
Entlt − Enl − ω − i0

, (12)

where Dρ is the ρth component of the dipole operator,
and we find it convenient to use spherical basis vectors so
that Dρ is an irreducible tensor of rank 1. If we choose to
use finite L2 methods then the sum and integral over all
intermediate states is approximated by a sum over pseu-
dostates. For incident photon energies above the ioniza-
tion threshold such methods would contain unphysical
singularities [18]. Following the approach of Rescigno
and McKoy we rewrite the sum as,

〈n′l′m′|Dρ
1

H − Enl − ω
Dσ |nlm〉 =∫

d3rψ∗n′l′m′(r)Dρ(r)
1

H(r)− Enl − ω
Dσ(r)ψnlm(r),

(13)

where H is the Hamiltonian of the atom. Here we are
considering scattering from hydrogen, so that the wave-
functions ψ may be written as

ψnlm(r) =
1

r
unl(r)Y

m
l (r̂). (14)

We then analytically continue the radial coordinates of
the Hamiltonian by taking r → rθ, where θ = eiϕ and
0 < ϕ < π/2. This leads to,

θ3
∫
d3rψ†n′l′m′(rθ)Dρ(rθ)

1

Hθ − Enl − ω
Dσ(rθ)ψnlm(rθ),

(15)

where Hθ ≡ H(rθ), and the dagger indicates complex
conjugation of the angular components of the wave-
function, but not of the radial component. The prop-
erties of such analytically continued Hamiltonians have
been described in the fundamental work by Balslev and
Combes [16] as well as Simon [17], and have typically
been used to study resonances in atoms and molecules
[28]. In performing the CES we require that the initial
and final states of the system decrease sufficiently rapidly
at infinity, especially under analytic continuation. Fol-
lowing the procedure of Rescigno and McKoy [18] we
wish to diagonalise the complex symmetric Hamiltonian
Hθ in a finite L2 basis. Here we choose the radial La-
guerre functions, used commonly in the CCC formalism
[25, 26],

ξkl(r) =

√
αl(k − 1)!

(k + l)(k + 2l)!
(2αlr)

l+1

× exp(−αlr)L2l+1
k−1 (2αlr), (16)

where Lnk are the associated Laguerre polynomials. Un-
der complex exterior scaling the atomic Hamiltonian H,
provided that the potentials are Coulombic, transforms
as

H = K + V → Hθ = θ∗2K + θ∗V. (17)

As the matrix elements 〈ξkl|K|ξk′l〉 and 〈ξkl|V |ξk′l〉 are
known analytically it is simple to extend these results
to calculation of the matrix elements 〈ξkl|Hθ|ξk′l〉. We
then diagonalise the complex symmetric matrix to find
pseudostates which are written as a sum over the non-
rotated basis functions,

χθnlm(r) =
1

r
vθnl(r)Y

m
l (r̂), vθnl(r) =

∑
k

ankξkl(r),

(18)
where the ank are complex numbers found in the diag-
onalization process, and the superscript θ denotes that
the states are pseudostates of the complex exterior scaled
Hamiltonian. The pseudostates satisfy,

(χθnlm|Hθ|χθn′l′m′) = Wnl(χ
θ
nlm|χθn′l′m′), (19)

where we use the c-norm described by Moiseyev et al. [28]
given by,

(χθnlm|χθn′l′m′) =

∫
d3rχθ†nlm(r)χθn′l′m′(r), (20)

and Wnl are the complex eigenvalues. Giraud and Katō
[29] provided a proof of the completeness of complex
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scaled Hamiltonians, however Moiseyev et al. [28] noted
that incompleteness pathologies may still arise when per-
forming finite basis calculations. As a precaution, within
our code we check that all pseudostates are indeed c-

normalisable, allowing us to approximate the Green’s
function using the sum over all pseudostates. We are
now able to write the sum (12) as,

θ3
∑
t

∫
d3rψ†n′l′m′(rθ)Dρ(rθ)χ

θ
ntltmt

(r)
∫
d3rχθ†ntltmt

(r)Dσ(rθ)ψnlm(rθ)

Wntlt − Enl − ω
. (21)

The procedure described above was used by Rescigno and
McKoy [18] in the case where the initial and final states
were the ground state of hydrogen, and only the z com-
ponent of the dipole operators was considered. The gen-
erality of our consideration now allows us to apply the
Wigner-Eckart theorem to the angular components of the
above, noting that only the radial part of the calculation
has been altered by the complex scaling, we may write,

(ψnlm|Dρ|χθntltmt
)θ ≡

∫
d3rψ†nlm(rθ)Dρ(rθ)χ

θ
ntltmt

(r)

= (−1)l−m
(

l 1 lt
−m ρ mt

)
(ψnl||D||χθntlt)θ.

(22)

We note that the inner product defined above makes a
distinction between the state on the left, which is an
eigenstate of the real Hamiltonian, and the state on
the right, which is an eigenstate of the complex exte-
rior scaled Hamiltonian. The reduced matrix elements of
this inner product are given by,

(ψnl||D||χθntlt)θ = (−1)l
√

(2l + 1)(2lt + 1)

(
l 1 lt
0 0 0

)
×
∫
dr unl(rθ)rθv

θ
ntlt(r). (23)

The same arguments presented in [12, 13, 19] then allow
the scattering cross section to be written exactly as in

Eq. (5), where now the A
(κ)
n′l′nl are defined as

A
(κ)
n′l′nl = θ(−1)l+κ

∑
t

{
l l′ κ
1 1 lt

}
× (ψn′l′ ||D||χθntlt)θ(ψnl||D||χ

θ
ntlt)θ

×
[

1

Wntlt − Enl − ω
+

(−1)κ

Wntlt − Enl + ω′

]
.

(24)

The sum is now a finite sum over the complex rotated
pseudostates, and converges to Eq. (6) as the basis size
increases. Using Eqs. (9) and (10) we recover the results
of Rescigno and McKoy, and generalise it to the case
where the ground state (or excited state of interest) is
not an s state.

As an interesting additional result we consider the
imaginary part of the κ = 0 component of Eq. (6) and
note that this directly relates to the bound-free matrix
elements. To exploit this we define a new quantity for
the case of elastic scattering on a state nl, where we sum
only over the subspace of intermediate states of fixed lt,

Altnl(E) = (−1)lt−l
∑∫
nt

〈nl||D||ntlt〉 〈ntlt||D||nl〉
Entlt − E − i0

. (25)

We find that the imaginary part of this quantity is,

=
{
Altnl(E)

}
= π| 〈nl||D||Elt〉 |2. (26)

Similar to Eq. (24) we may now calculate the sum and in-
tegral over all intermediate states using complex exterior
scaled pseudostates, giving

Altnl(E) = θ
∑
nt

(ψnl||D||χθntlt
)2θ

Wntlt − E
, (27)

which will converge to Eq. (25) as the basis size increases.
As the Laguerre functions approximate a complete set of
intermediate states for the subspace of each value of an-
gular momentum, Eq. (27) provides an accurate method
for calculation of Eq. (26) from any initial state, and al-
lows calculation of the bound-free matrix elements with-
out the need for explicit calculation of the true continuum
state.

We now also make note of the form of the complex
scaled initial and final states. We may obtain unl(rθ)
and un′l′(rθ) either from complex scaling of the analytical
solutions to H, or from coefficients obtained by diagonal-
ization of the real Hamiltonian H using basis functions
ξkl(r), and then applying the complex scaling to the ba-
sis functions. We choose to apply the second method,
as it is more likely to generalise to complex atoms, and
provides very little computation overhead. The inter-
mediate states may only be obtained by diagonalization
of the complex rotated Hamiltonian Hθ using real ba-
sis functions, which is done using the LAPACK routine
zggev [30].

In Appendix C we show the velocity form of the CES
method, allowing for comparison of the length and veloc-
ity forms of the scattering cross sections.
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FIG. 2: Rayleigh scattering from the ground state of hydrogen
calculated using the present CES and PV methods. Compar-
ison is made of the elastic 1s results with those of Gavrila
[9]

IV. RESULTS

Due to the versatility of the CES method we are able to
generate scattering cross sections for transitions between
any low lying states of interest for incident photons at
essentially any energy. We present scattering cross sec-
tions for Rayleigh and Raman scattering from the ground
state and the first few excited states to demonstrate, and
compare to several analytic results. It is also possible
to calculate differential cross sections for any particular
transition at any given energy using Eqs. (5) or (7).
We find it more interesting to demonstrate the energy
dependence of the integrated cross sections. All results
are presented for the length gauge formulation, however,
we have verified the results using the velocity gauge and
found full agreement.

For calculations using the PV method we found that
for transitions from the 1s, 2s, and 3s states it was suf-
ficient to include Nb = 40 bound states. However, for
other calculations, such as the 3p → 2p Raman transi-
tions (which include contributions from the intermediate
d states), up to 100 bound state functions were required
for convergence. The positive energy spectrum used for
the integration was dependent on the particular transi-
tion and incident energies. For calculations using the
CES method we chose to use Nl = 125 − l Laguerre
functions for each angular momentum l, and αl of 0.65,
and 0.645 for l = 0 and 1 respectively. If higher angu-
lar momentum intermediate states were required, e.g. in
1s → 3d transitions, we chose αl = 0.64 for l > 1. We
also chose the angle of complex rotation to be 15◦. A
number of other choices were made to test convergence
of our results, and we found that the scattering cross

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

In
te

g
ra

te
d
 c

ro
s
s
 s

e
c
ti
o
n
/σ

T

ω (a.u.)

CES 2p
PV 2p

FIG. 3: Rayleigh scattering from the 2p state of hydrogen
calculated using the CES and PV methods.

sections converged quickly for all transitions, and photon
energies. Near the ionization threshold the cross sections
are less accurate as the pseudostates in that region do not
accurately represent highly excited target states. In such
regions resonance effects become more important and the
inaccuracy of our results near these points is irrelevant.

In Fig. 2 we present our calculations for Rayleigh scat-
tering on the ground state of hydrogen using both the
CES and PV methods. We compare our results with
those of Gavrila [9], and find perfect agreement at all
given energies.

In Fig. 3 we present the 2p Rayleigh scattering cross
section, again finding excellent agreement between our
two computational methods. We also make note of the
resonant behaviour which occurs above the ionization en-
ergy. This resonance corresponds to decay to the 1s state,
and is outlined in Fig. 1 (a).

In Figs. 4 and 5 we present the Raman cross sections
for scattering on the 1s and 3p states. The total Raman
cross section has been calculated by summing contribu-
tions from the first 10 scattering states allowed by the
dipole selection rules, and is convergent to better than
1%. We have compared our 1s → 2s results with an-
alytic results of Saslow and Mills [10] (as discussed in
Appendix A) and have found excellent agreement. We
do not present the results of Saslow and Mills [10] in Fig.
4 as they are indistinguishable from our own.

In Fig. 5 we make note of the large cross section which
occurs at low incident photon energies in the 3p → 2p
transition. If we consider the length form of the scat-
tering tensor (6) we see that the large cross section at
low energies corresponds to absorption type resonances,
see Fig. 1 (b), with the intermediate 3s or 3d states of
equal energy. If we instead consider the velocity form
of the scattering cross sections, where the 3p → 3s and
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FIG. 4: Raman scattering from the 1s state. Our results for
the 1s → 2s transition are indistinguishable with analytic
results of Saslow and Mills [10] which are omitted for clarity.
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FIG. 5: Raman scattering from the 3p state.

3p→ 3dmomentum matrix elements are 0, the behaviour
is instead attributed to the ω′/ω prefactor of Eq. (B2).

The total 3p Raman cross section shows two series of
resonances above the ionization threshold. The first, oc-
curring in the range 0.09 < ω < 0.13, corresponds to
resonant processes involving the intermediate 2s state,
while the second, occurring in the range 0.3 < ω < 0.5,
corresponds to processes involving the intermediate 1s
state. All resonant processes above the ionization energy
correspond to emission type resonances as shown in Fig.
1 (a). We also show an example of a Raman transition
between a p and an f state, which we have not found
elsewhere in the literature.
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FIG. 6: Elastic scattering from the 3s state, with comparison
to the analytic calculations of Florescu and Cionga [31].
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FIG. 7: Photoionization from the first few states of hydrogen
using the CES method. Comparison is made to the analytic
photoionization cross section from the 1s state [18].

In Fig. 6 we present the cross sections for elastic
scattering from the 3s state. We present both coher-
ent (3s → 3s) and incoherent (3s → 3d) cross sections,
and compare with the analytic results of Florescu and
Cionga [31], again showing excellent agreement with the
analytic results.

In Fig. 7 we present the (one-photon) photoionization
cross sections for ionization from the first 5 bound states
of hydrogen. As in [18] we find that only a small num-
ber of pseudostates are required for convergence of the
photoionization cross section.

For Figs. 4-7 we have only presented the results of
the CES method. We also performed calculations using
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the PV method of section III A, and found no difference
for all possible cross sections. The ability for the CES
method to produce all cross sections presented in this
paper within a single calculation shows its efficiency and
versatility, while comparison to the PV method allows us
to confirm the validity of the cross sections for all cases
where analytic results were unavailable.

V. CONCLUSION

We have presented two computational methods for
calculation of photon scattering from atomic hydrogen
in the non-relativistic dipole approximation. The PV
method involves straightforward evaluation of the KHW
matrix element through calculation of a large number of
bound eigenstates, and generation of continuum eigen-
states on an energy grid suitable for calculation of the
principal value integral. This method provides a direct
computation of the matrix elements, and is suitable for
testing the validity of our second more computationally
efficient method. The CES method involves calculation
of the pseudostates of the complex scaled Hamiltonian
in a finite L2 basis. It accurately captures the analytic
structure of the Green’s function and does not require
calculation of true bound and continuum eigenstates of
the target. This method allows for accurate and efficient
calculation of cross sections at any number of energies,
and with little computational overhead.

We expect that the versatility of the method, combined
with the use of finite L2 techniques, will allow general-
ization to more complicated systems and processes. The
ability for both the PV and the CES methods to calcu-
late scattering cross sections at energies above the ioniza-
tion threshold allows calculations in the extreme UV and
soft X-ray energy regimes. At such energies the dipole
approximation becomes progressively less accurate, and
the higher order terms of the eik·r expansion become rele-
vant. The extension of both methods to account for such

terms will be considered elsewhere.
For highly charged hydrogen like ions relativistic ef-

fects become important and, for the photon energies of
interest in this work, can well be described by the Dirac
equation [32]. The PV and CES methods developed here
allow for a straightforward generalization to the relativis-
tic case. For the PV method the exact bound and contin-
uum states of Dirac-Coulomb Hamiltonian are available.
Complex scaling methods have already been applied to
study resonances in Dirac Hamiltonians [33, 34], and so
for the CES method we can utilize the Dirac L-spinors
in exactly the same way as was done in the relativistic
formulation of the CCC method [35].
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Appendix A: Raman 1s-2s analytic calculations

Saslow and Mills [10] presented the analytic form of the
scattering matrix element for 1s→ 2s photon scattering
transitions. Their reduced matrix element M is related
to our form of the scattering tensor by,

M =
ωω′√

3
A

(0)∗
2s,1s, (A1)

which allows for comparison of our numerical calcula-
tions to their analytic results. Correcting a typo in [10],
we note that the full contribution from the continuum is
given by,

M (c) = −512
√

2

3

∫ ∞
0

dn
n3 exp [−2n arctan(1/n)− 2n arctan(2/n)]

(n2 + 1)(n2 + 4)2(1− exp[−2πn])

(
1

1 + 1
n2 − r + i0

+
1

1
4 + 1

n2 + r

)
. (A2)

The pole term occurs at n′ = (r − 1)−1/2. The form for
the imaginary contribution by the continuum is then,

=
{
M (c)

}
=

512
√

2

6

× πn′6 exp [−2n′ arctan(1/n′)− 2n′ arctan(2/n′)]

(n′2 + 1)(n′2 + 4)2(1− exp[−2πn′])
.

(A3)

Appendix B: Velocity form

If we consider the KHW matrix given in Eq. (3) in the
dipole approximation we have,

Mfi = ε · ε′∗ 〈f |i〉 −
∑
t

[
〈f |ε′∗ · p|t〉 〈t|ε · p|i〉
Entlt − Enl − ω − i0

+
〈f |ε · p|t〉 〈t|ε′∗ · p|i〉
Entlt − Enl + ω′

]
. (B1)
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It is useful to compare our calculations in the length
gauge to those in the velocity gauge. The two forms
are equivalent only when the complete set of intermedi-
ate states is used, and so comparison between the two
forms allows us to check the stability and accuracy of
our results. Bassani et al. [36] showed that the length
form converges faster when the true bound and contin-
uum states were used for calculation of the 1s→ 2s two
photon transition rate, and thus for approximate calcu-
lations where the complete set of states is not known the
length form is expected to be more accurate.

We first note that if we are considering Raman scatter-
ing, i.e. i 6= f , then we may follow the same arguments
used in taking Eq. (4) to Eq. (8) to write the total
integrated unpolarised cross section as,

σn′l′nl = σT
ω′

ω

1

3(2l + 1)

∑
κ

(2κ+ 1)|B(κ)
n′l′nl|

2, (B2)

where,

B
(κ)
n′l′nl = (−1)l+l

′+κ
∑∫
t

{
l l′ κ
1 1 lt

}
× 〈n′l′||p||ntlt〉 〈ntlt||p||nl〉

×
[

1

Entlt − Enl − ω − i0
+

(−1)κ

Entlt − Enl + ω′

]
.

(B3)

If we are considering Rayleigh scattering then taking into
account the 〈f |i〉 term gives,

σnlnl = σT

[
1 +

2√
3(2l + 1)

<
{
B

(0)
nlnl

}
+

1

3(2l + 1)

∑
κ

(2κ+ 1)|B(κ)
nlnl|

2

]
. (B4)

Finally, similar to Eq. (9) the polarisability may be given
by

B
(0)
nlnl =

√
3(2l + 1)ω2α(ω), (B5)

giving the photoionization cross section as,

σInl = σT
c3

2ω
=
{
B

(0)∗
nlnl

}√ 3

2l + 1
. (B6)

Appendix C: CES velocity form

We may follow the same arguments given in section
III B to apply the complex exterior scaling method to

calculation of the terms B
(κ)
n′l′nl. In this case the terms

are found using,

B
(κ)
n′l′nl = θ(−1)l+κ+1

∑
t

{
l l′ κ
1 1 ln

}
× (ψn′l′ ||∇||χθntlt)θ(ψnl||∇||χ

θ
ntlt)θ

×
[

1

Wntlt − Enl − ω
+

(−1)κ

Wntlt − Enl + ω′

]
.

(C1)

where,

(ψnl||∇||χθntlt)θ =
(−1)l

θ

√
(2l + 1)(2lt + 1)

(
l 1 lt
0 0 0

)
×
[∫

dr unl(rθ)

(
d

dr
+
cl,lt
r

)
vθntlt(r)

]
,

(C2)

and,

cl,l′ =
l′(l′ + 1)− l(l + 1)

2
. (C3)

For all scattering transitions presented in this paper we
produced the cross sections using both the length and
velocity forms of the CES method, and found that the
two forms were essentially indistinguishable.
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