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In recent decades there has been a rapid development of methods to experimentally control in-
dividual quantum systems. A broad range of quantum control methods has been developed for
two-level systems, however the complexity of multi-level quantum systems make the development of
analogous control methods extremely challenging. Here, we exploit the equivalence between multi-
level systems with SU(2) symmetry and spin-1/2 systems to develop a technique for generating new
robust, high-fidelity, multi-level control methods. As a demonstration of this technique, we develop
new adiabatic and composite multi-level quantum control methods and experimentally realise these
methods using an 171Yb+ ion system. We measure the average infidelity of the process in both
cases to be around 10−4, demonstrating that this technique can be used to develop high-fidelity
multi-level quantum control methods and can, for example, be applied to a wide range of quantum
computing protocols including implementations below the fault-tolerant threshold in trapped ions.

I. INTRODUCTION

Quantum control methods are essential in many ar-
eas of experimental quantum physics, including trapped
atoms, ions and molecules and solid state systems [1–
3]. Although the focus is often on two-level systems, in
nearly all experimental realisations a larger number of
states need to be taken into consideration, for example
to prepare a qubit in a two-level subspace of the system
or to read out the state at the end of an experiment.
In addition, the unique features of multi-level systems
have led to new fields of research including electromag-
netically induced transparency [4] and single photon gen-
eration [5]. Multi-level systems are also widely used in
quantum computing, with applications such as the prepa-
ration and detection of dressed-state qubits [6, 7]. A va-
riety of multi-level methods including stimulated Raman
adiabatic passage (STIRAP) [8], multi-state extensions
of Stark-chirped rapid adiabatic passage (SCRAP) [9]
and other adiabatic methods involving chirped laser fields
[10–12] have been developed, in addition to numerical al-
gorithms for optimised quantum control [13]. However
the development of new control methods for multi-level
systems (especially for high-fidelity operations) is chal-
lenging and often inhibited by the mathematical com-
plexity of such higher-dimensional Hilbert spaces. Previ-
ous investigations into multi-level dynamics have studied
coherent excitation of multi-level systems under the ac-
tion of SU(2) Hamiltonians [14–18]. They showed that
for a Hamiltonian with this symmetry there exists an
equivalent Hamiltonian acting on a two-level system, and
the dynamics of this two-level Hamiltonian can then be
used to find solutions for the dynamics of the higher-
dimensional system.
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Here, we apply this insight to find states in a two-
level system that are equivalent to the states we wish
to transform between in the multi-level system. This is
key for practical quantum control methods where it is
often necessary to transfer population between two par-
ticular states with high fidelity [1]. If such states exist,
any method to move between them can be transformed
into the multi-level case. Thus, we can transform ro-
bust, high-fidelity two-level methods into new multi-level
methods which also possess these desirable properties.
We experimentally implement two novel control methods
for trapped ions generated using the technique, demon-
strating their high-fidelity and robustness.

The manuscript is organized as follows. In section II,
we introduce the Majorana decomposition and detail how
to design multi-level control methods using equivalent
two-level methods. In section III we introduce a three-
level example system in 171Yb+ and discuss the mapping
to a two-level system for this specific case. In sections IV
and V, we demonstrate adiabatic and composite control
methods based on the Majorana decomposition in our
trapped ion system. Finally, in section VI, we present a
measurement of the fidelity of the two control methods.

II. MAJORANA DECOMPOSITION

The Majorana decomposition was originally devised as
a way of simplifying the dynamics of a spin-j system in an
inhomogeneous magnetic field, by reducing the dynamics
to that of an effective two-level system [14, 15, 19, 20].
Consider a Hamiltonian that takes the same form as a
spin in a magnetic field, that is Hj = Λ(t) · J where
J = Jxx̂ + Jyŷ + Jz ẑ, Ji being the angular momen-
tum operators of a spin-j particle, and Λ(t) is a three-
component vector specifying the control fields that we
apply to our system. Such a system can be said to have
SU(2) symmetry [17]. Majorana showed that the dy-
namics of such a system can be mapped exactly onto
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FIG. 1. Use of an effective two-level system to generate three-level control methods. a, We wish to implement a
control method which transforms an initial state

∣∣ψ1/2

〉
i

on the effective two-level Bloch sphere (which here we take to be |↓〉),
into a final state

∣∣ψ1/2

〉
f

= e−iθû·S ∣∣ψ1/2

〉
i
, where û is the axis of rotation and θ is the angle, (equivalent to |ψj〉f = e−iθû·J |ψj〉i

in the real multi-level system). b, In the effective two-level system, most control methods are implemented by applying a
single control field of Rabi frequency Ω1/2(t), instantaneous detuning δ1/2(t) and phase χ(t). c, By inverting the Majorana
decomposition, we derive the control fields that we must apply to our real physical system, namely two fields of equal Rabi
frequency Ω(t) and equal and opposite detunings and phases ±δ(t) and ±χ(t) respectively.

the dynamics of a spin-1/2 particle, acted upon by the
Hamiltonian H1/2 = Λ(t) ·S, S being the spin-1/2 angu-
lar momentum operator. This decomposition has been
used to develop analytical solutions for the dynamics of
a multi-level system [16, 17]. Here we apply these ideas
to generate new high-fidelity multi-level quantum con-
trol methods. First we use the Majorana decomposition
to transform a multi-level problem into its much sim-
pler two-level equivalent, for which a multitude of con-
trol methods are readily available. By then inverting the
Majorana decomposition, we obtain the control fields for
a new equivalent multi-level method.

In order to describe this technique, we introduce the
following mathematical framework, which expresses each
step of the process in simple, geometrical terms. First,
consider an initial and final state in a multi-level sys-
tem which we require to be related by a rotation |ψj〉f =

e−iθû·J |ψj〉i, where û and θ specify the axis and angle
of rotation. The Majorana decomposition tells us that
there will be an equivalent transformation in the spin-
1/2 system:

∣∣ψ1/2

〉
f

= e−iθû·S
∣∣ψ1/2

〉
i

(Fig. 1a), where

the choice of
∣∣ψ1/2

〉
i

is arbitrary. At this point we can
use any of the many robust two-level control methods
to carry out the transformation

∣∣ψ1/2

〉
i
→
∣∣ψ1/2

〉
f
. To

transform this two level method into the new multi-level
control method we apply the inverse of the Majorana
decomposition. Noting that any two-level Hamiltonian
can be written in the form H1/2 = Λ(t) · S, we obtain
the multi-level method by producing a Hamiltonian Hj

with the same control vector Λ(t). This will perform the
required multi-level state transformation |ψj〉i → |ψj〉f .
The new multi-level method will share desirable proper-
ties with the original two-level method, such as robust-
ness to certain parameter errors that also have SU(2)
symmetry.

As an example, suppose that we want to transfer pop-
ulation between eigenstates of two different angular mo-

mentum operators in different directions. The initial
and final states |ψj〉i and |ψj〉f are eigenstates of the
projection angular momentum operators along the di-
rections r̂i and r̂f respectively with the same eigenvalue
mJ . Any rotation that transforms r̂i to r̂f will suf-
fice. The simplest rotation (smallest rotation angle) is
given by θ = sin−1(|ri × rf |), û = ri × rf/|ri × rf |.
For example, consider the Jz and Jx eigenstates for the
j=1 three-level system. The Jz eigenstates are the ba-
sis states |+1〉, |0〉, and |−1〉, with eigenvalues +1, 0,
-1 respectively, while the three eigenstates of Jx are
|u〉 = 1

2 |+1〉+ 1
2 |−1〉+ 1√

2
|0〉, |D〉 = (|+1〉 − |−1〉)/

√
2,

and |d〉 = 1
2 |+1〉 + 1

2 |−1〉 − 1√
2
|0〉, again with eigen-

values of +1, 0, and -1. We can consider the effect of
consecutive rotations of π/2 about the y axis, that’s to
say applications of the rotation operator e−i(π/2)Jy . If we
start in the state |0〉, then ignoring global phases we get
the following sequence of states:

|0〉 → |D〉 → |0〉 → |D〉 → |0〉 (1)

where the ion is alternating between the m = 0 eigen-
states of the two angular momentum operators Jz and
Jx, since the mJ = 0 eigenstates of a projection operator
and its inverse are equal. If instead we start in |+1〉 we
get the sequence

|+1〉 → |u〉 → |−1〉 → |d〉 → |+1〉 , (2)

where the ion is moving between the ±1 eigenstates of the
Jz and Jx operators. Any two-level control method that
rotates by an angle π/2 about the y axis can therefore
be used to transform between states in the three-level
system linked in equations 1 and 2.

The method described in this section is a general tech-
nique to derive new robust quantum control methods for
multi-level systems based on the Majorana decomposi-
tion. In the following sections we will describe a specific
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physical system of interest, a three-level system in the
ground state of a single trapped ion, and demonstrate the
application of this method to robustly perform a specific
desired state transformation within this system.

III. THREE-LEVEL TRAPPED ION SYSTEM

To illustrate the technique described in section II,
we generate new control methods for the coherent ma-
nipulation of a three-level V-system. We demonstrate
these methods experimentally using a single trapped
171Yb+ ion, where the three levels |+1〉, |0〉 and |−1〉
correspond to the states |F = 1,mF = +1〉, |F = 0〉 and
|F = 1,mF = −1〉 of the 2S1/2 ground-state hyperfine
manifold respectively. The ion is confined in a linear Paul
trap, details of which are described in Refs. [21, 22]. A
magnetic field of B0 = 8.8305(4) G is applied using per-
manent magnets inside the vacuum system and external
current coils. The magnetic field splits the energies of the
states making up the F = 1 manifold. The transitions
from |0〉 to |±1〉 are driven by two microwave fields gen-
erated using an RF arbitrary waveform generator, which
creates a waveform with a bandwidth of ≈ 30 MHz cen-
tred around 100 MHz. Typically we set the Rabi frequen-
cies Ω1 and Ω2 of these applied fields to be equal, so that
the dark state |D〉 will be an eigenstate of the dressed
Hamiltonian (Eq. 4). The waveform is then frequency
mixed with a signal near 12.5 GHz, before being amplified
to 2 W and sent to a microwave horn positioned near a
viewport of the vacuum system, approximately 2 cm from
the ion. The ion is prepared in |0〉 using optical pumping
and a fluorescence measurement distinguishes between
|0〉 and {|−1〉 , |0′〉 , |+1〉}, where |0′〉 ≡ |F = 1,mF = 0〉
is an additional state in the F = 1 manifold that is not
used. A maximum likelihood method is used to normalise
the data against independently measured state detection
errors (Appendix A).

We would like to transfer the system from |0〉 to the

superposition state |D〉 ≡ (|+1〉 − |−1〉)/
√

2, which can
be protected against decoherence caused by fluctuating
magnetic fields by the application of a pair of dressing
fields [6, 7] and has been shown to be useful for quan-
tum computation [6, 7, 23–26] and magnetometry [27].
Previous methods to transfer population between these
states are either susceptible to errors from fluctuating
magnetic fields [6, 7] or require the use of the |0′〉 state,
which would ideally be reserved to form a qubit along
with |D〉 [23]. It would therefore be desirable to design a
robust method to transfer between these states with low
infidelity. The required population transfer corresponds
to the unitary transformation Uj=1 = e−i(π/2)Jy , a ro-
tation about the y-axis by π/2. Due to the Majorana
decomposition, this is equivalent to the transformation
|↓〉 → 1√

2
(|↓〉 + |↑〉) in a spin-1/2 system, as shown in

section II (Fig. 1a).
There are many ways to carry out this two-level pro-

cess, such as a simple π/2 pulse, or more robust methods

such as composite pulses and adiabatic passage. The vast
majority of two-level methods that can be implemented
use a single control field, with possibly time-varying am-
plitude, frequency and phase (Fig. 1b). Moving to an
interaction picture rotating at the frequency of the field,
and after making the rotating wave approximation, this
corresponds to a Hamiltonian

H1/2 =
~
2

(
−δ1/2(t) Ω1/2(t)eiχ(t)

Ω1/2(t)e−iχ(t) δ1/2(t)

)
(3)

(with the states ordered |↓〉 , |↑〉), which can be written
as H1/2 = ~(Ω1/2(t) cos(χ(t))Sx + Ω1/2(t) sin(χ(t))Sy +
δ1/2(t)Sz), where Ω1/2(t), δ1/2(t) and χ(t) are the time
varying Rabi frequency, instantaneous detuning, and
phase, respectively. Once the forms of Ω1/2(t), δ1/2(t)
and χ(t) have been chosen to perform the required trans-
formation |↓〉 → 1√

2
(|↓〉 + |↑〉), we can invert the Majo-

rana decomposition to determine what real-world control
fields we must apply to our physical three-level system
to move between the initial and final states |0〉 and |D〉.
The resulting three-level Hamiltonian is obtained by re-
placing the Pauli matrices in H1/2 above with the three-
level spin matrices Ji: Hj=1 = ~(Ω1/2(t) cos(χ(t))Jx +
Ω1/2(t) sin(χ(t))Jy + δ1/2(t)Jz). This Hamiltonian can
be written as

Hj=1 =
~
2

 −δ(t) Ω(t)eiχ(t) 0
Ω(t)e−iχ(t) 0 Ω(t)eiχ(t)

0 Ω(t)e−iχ(t) δ(t)

 (4)

(with the states ordered |−1〉 , |0〉 , |+1〉), which corre-
sponds to a pair of control fields, each of Rabi frequency
Ω(t) =

√
2Ω1/2(t), with opposite phases ±χ(t) and op-

posite detunings ±δ(t) = ±2δ1/2(t) (Fig. 1c).
Now that we have derived a transformation between

the effective two-level system and our physical three-level
system, we can design new control methods to achieve
the desired mapping based on existing two-level control
methods. Quantum control methods for two-level sys-
tems are often designed to protect against errors caused
by fluctuating parameters, such as detuning and Rabi fre-
quency. These errors in a two-level system will also have
equivalents in the multi-level case, and any protection of-
fered will carry over. In the 171Yb+ system used here,
two main sources of error are caused by magnetic field
noise and common mode Rabi frequency noise, the ef-
fects of which both have SU(2) symmetry and can there-
fore be countered by the appropriate choice of two-level
control method. In the following sections, we design and
demonstrate two such methods.

IV. ADIABATIC CONTROL METHOD

The first method is an adiabatic method following
on from the work of Hioe [16], which is the three-
level equivalent of the well-known two level process of
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FIG. 2. Adiabatic transfer to the dark state of a dressed three-level system. a, Energy eigenvalues and b, eigenstates
{|ξ1〉 , |ξ2〉} of H1/2 as a function of δ/Ω for χ = 0. b, Shows analytically calculated amplitudes of these eigenstates, all of which
can be defined as real numbers in this case. An avoided crossing is present at δ/Ω = 0, at which point the eigenstates are the
dressed states (|↓〉 ± |↑〉)/

√
2, which are separated in energy by ~Ω/

√
2. Therefore, by adiabatically varying the detuning and

Rabi frequency, the population can be coherently transferred from {|↓〉 , |↑〉} to (|↓〉± |↑〉)/
√

2. c-e, Demonstrating the method
using a single 171Yb+ ion. In the three-level system, the adiabatic procedure will transfer population from |0〉 to the dark state
|D〉 = (|+1〉 − |−1〉)/

√
2. c-d, The temporal profiles for the Rabi frequency Ω (solid green line in c) and the instantaneous

detuning δ (solid red line in d), where the relevant parameters are given in the text. e, Measured probability for the ion to be
in the 171Yb+ F = 1 state given by P (F = 1) = 1−P0 as a function of time. Each point is the average of 300 repetitions. The
theoretical probability for the ion to be in F = 1 as a function of time (solid red line) is obtained from a numerical simulation
of the system with no free parameters, which can be seen to agree well with the measured data.

rapid adiabatic passage described by the Landau-Zener-
Stuckelberg-Majorana model [28, 29]. Here, population
is transferred between two states by adiabatically moving
their energies to an avoided crossing. If the field is adia-
batically varied from the regime where Ω1/2/δ1/2 = 0, to
Ω1/2/δ1/2 =∞ with χ = 0 by turning the field on slowly
whilst chirping the frequency, the population will be
transferred from the initial eigenstate |↓〉 to (|↓〉+|↑〉)/

√
2

(see Fig. 2a,b). If we translate this into the three-level
picture, we obtain a Hamiltonian of the form shown in
equation 4. This describes a novel adiabatic process
involving chirped pulses and amplitude shaping which
transfers population from |0〉 to |D〉, similar to the ana-
lytical solution derived by Hioe [16].

A Blackman function [30] is used to define the form
of the time-varying detuning δ(t). This pulse shape was
chosen because in numerical simulations it produced the
lowest infidelity due to non-adiabaticities. For a Black-
man chirp profile starting at δ0 and finishing at zero de-
tuning, the required ‘instantaneous’ detuning is

δ(t) =
δ0
50

(
21 + 25 cos

(
πt

tδ

)
+ 4 cos

(
2πt

tδ

))
, (5)

where tδ is the detuning chirp time (Fig. 2,d). Due to the
choice of interaction picture chosen to derive equations
3 and 4, where the interaction frame is rotating at the
time-dependent frequency of the field, this is the detuning
used in these equations. In the lab frame, the required
frequency of the physical field is given by ω0+∆(t), where
ω0 is the resonant frequency and ∆(t) is the detuning.
However, ∆(t) is not equal to this instantaneous detuning
of the field. The instantaneous frequency of a sinusoidal
function at any given time is given by the time derivative
of its overall phase, which in our case is equal to δ(t) =
d(∆(t)t)/dt for χ(t) = 0. The required profile for ∆(t) is
therefore given by

∆(t) =
1

t

∫ t

0

δ(τ)dτ

=
δ0
50t

[
21t+

tδ
π

(
25 sin

(
πt

tδ

)
+ 2 sin

(
2πt

tδ

))]
.

(6)

The amplitude of the driving fields are also changed dur-
ing the first part of the detuning chirp. We again use a
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Blackman function, giving a Rabi frequency profile

Ω(t) =
Ω0

50

(
29− 25 cos

(
πt

tΩ

)
− 4 cos

(
2πt

tΩ

))
, (7)

where tΩ is the amplitude ramp time (Fig 2,c). The Rabi
frequency is then kept constant at Ω0 until the detuning
chirp is complete.

We implement this procedure experimentally in our
171Yb+ ion system. Fig. 2e shows the probability of mea-
suring the system in the 171Yb+ F = 1 level (1− P0) as
a function of time during the adiabatic procedure. First,
the transformation |0〉→|D〉 is performed. Next, the sys-
tem is left in the state |D〉, which is protected by the
control fields, for a ‘hold’ time th = 400µs. Finally, the
inverse transformation |D〉→|0〉 is performed by revers-
ing the amplitude shaping and chirped frequency pro-
files of the forward process. The optimal parameters
for the Blackman profiles were found by simulations to
be Ω0/2π = 40 kHz, δ0/2π = 60 kHz, tΩ = 200µs and
tδ = 300µs. Compression in the microwave amplifiers
slightly alters the amplitude envelope of the applied mi-
crowave radiation compared with that generated by the
arbitrary waveform generator. This effect, which has
been included in the numerical simulation, has a negli-
gible impact on the simulated fidelity. Plots of Ω(t) and
δ(t) in Fig. 2c,d, include these effects of compression.

V. COMPOSITE CONTROL METHOD

We have shown that our technique can be used to de-
velop a three-level adiabatic method similar to the two-
level method of rapid adiabatic passage. As a further
demonstration of our technique to develop novel multi-
level control methods, we implement a resonant control
method to transfer population from |0〉 to |D〉. We do
this by creating a three-level composite pulse sequence.
A widely used example of a two-level composite pulse
sequence is the BB1 pulse sequence by Wimperis [31],
which consists of four resonant Rabi pulses and can pro-
tect against pulse area errors. The four pulses of the BB1

sequence carry out four consecutive rotations of the type
R(θR, φR) each with a particular choice of rotation an-
gle θR and phase φR (corresponding to a rotation axis
û = cosφRx̂ + sinφRŷ). For a rotation from θ = φ = 0
to θ = π/2, φ = 0, it consists of four pulses and is given
by U(BB1) = R(π/2, π/2) · R(π, 3.267) · R(2π, 0.376) ·
R(π, 3.267), where R(θR, φR) is a rotation on the Bloch
sphere by polar angles θR and φR (see Fig. 3a).

Using our technique, we can produce an analogous con-
trol method for three-level systems which can robustly
transfer population from |0〉 to |D〉 (which we call the
TBB1 sequence). This method consists of a sequence of
simultaneous microwave pulses on the |0〉 to |±1〉 tran-

sitions, with parameters set such that Ω0t/
√

2 = θR,
χ = φR and δ = 0. Therefore the three-level TBB1

sequence consists of four pulses of length 17.7, 35.4, 17.7

and 8.8µs and phases ±1.63,±0.19,±1.63 and ±0.79 on
the |0〉 to |±1〉 transitions. Thus a rotation from |0〉 to

|D〉 (which again is |↓〉 to (|↓〉 + |↑〉)/
√

2 in the effec-
tive two-level system) is implemented. In order to pro-
tect the |D〉 state after the sequence, the control fields
are simply left on, with the relative phase χ set to 0.
Figure 3c shows the population in F = 1 as a func-
tion of time during the TBB1 pulse sequence for two
cases. In one case the Rabi frequency is set to the cor-
rect value such that ∆Ω = Ω − Ω0 = 0, while in the
second case the Rabi frequency is deliberately mis-set by
∆Ω = −2π × 10 kHz, which corresponds to a 25% er-
ror in the applied microwave amplitude. It can be seen
that in both cases the final population is almost entirely
transferred to the F = 1 manifold, demonstrating the
robustness of the composite sequence to substantial er-
rors in the pulse area. The TBB1 sequence is completed
in a time of 80µs compared to 300µs for the adiabatic
method, but both methods could be sped up by increas-
ing the applied microwave power (i.e. raising the Rabi
frequency). Figure 3d shows the population in F = 1
as a function of normalised pulse area for a single pulse
nominally driving a rotation R(π/2, π/2) in the effective
two-level system, as well as when the TBB1 pulse se-
quence is applied. The improvement in robustness of the
TBB1 sequence compared to the single pulse can clearly
be seen, demonstrating that composite quantum control
techniques developed for two-level systems give the same
advantages in the three-level case.

VI. FIDELITY MEASUREMENTS

Although the data presented in Figs. 2 and 3 show
a good agreement with theory, the florescence measure-
ment scheme used can only determine the values of the
quantities P0 and P+1 + P−1 + P0′ = 1 − P0, where
Pj = 〈j| ρ |j〉 and ρ is the measured state. This is not
sufficient to calculate the fidelity with which the state
|D〉 is prepared. Therefore a more complex method is re-
quired to fully characterise the state fidelity. The fidelity
of |D〉 is given by

FD ≡ 〈D| ρ |D〉 =
1

2
(P+1 + P−1) + |ρ±| cos(φ±), (8)

where we have written the off-diagonal matrix elements in
polar form as ρ+1,−1 ≡ |ρ±|eiφ± = ρ∗−1,+1. To measure
this fidelity, an additional resonant pulse on the |0〉 to
|±1〉 transitions (Eq. 4, Fig. 4a) is applied for a time
t = π/2Ω1/2 (we apply this pulse simply by leaving the
microwave fields on after the sequence and stepping the
phase by χ). If the phase χ is varied, the population in
|0〉 is given by

P0(χ) =
1

2
(P+1 + P−1) + |ρ±| cos(2χ+ φ±), (9)

where P+1, P−1, and ρ± are density matrix elements of
the state before the additional pulse is applied. Com-
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FIG. 3. Robust population transfer to the dark state using the TBB1 composite pulse sequence. a, The TBB1

composite pulse sequence represented on the effective two-level Bloch sphere. The sequence consists of four resonant pulses
with varying pulse area and phase which can be written as a sequence of rotations on the Bloch sphere of the form R(θR, φR).
Each of these rotations is represented as a coloured line on the Bloch sphere, in the order red, orange, green, blue (numbered
to show ordering). Above is the trajectory in the case of zero Rabi frequency error and below for the ∆Ω = −2π × 10 kHz
case. We implement both of these cases experimentally to demostrate the robustness of the method to pulse area errors. b,
The phase χ as a function of time implementing the TBB1 pulse sequence for a fixed Rabi frequency Ω0/2π = 40 kHz. An
extra phase change of −π/2 at the end ensures the population remains in |D〉 after the procedure. Therefore the total pulse
sequence is R(∗, 0) · R(π/2, π/2) · R(π, 3.267) · R(2π, 0.376) · R(π, 3.267). c, The measured population in F=1 as a function of
time with ∆Ω = 0 (a upper sphere, c light blue line (light grey when printed in greyscale)) and for a Rabi frequency error of
∆Ω = −2π× 10 kHz (a lower sphere, c black line), showing that the sequence is robust to such errors. d, Measured population
in F=1 as a function of pulse area for a square π/2 pulse (black) and the new TBB1 pulse sequence (light blue (light grey
when printed in greyscale)), demonstrating that the TBB1 sequence maintains the robustness to pulse area error of the original
two-level BB1 sequence. The pulse area is normalised such that the nominal pulse area for a π/2 rotation is 1. The solid lines
in c and d correspond to numerical simulations of the sequence with no free parameters.

paring with Eq. 8, it can be seen that the offset, am-
plitude and phase offset of the resulting sinusoidal curve
can be used to calculate FD. Fig. 4b shows the result of
such an experiment after a single adiabatic transfer oper-
ation from |0〉 to |D〉. The data is fitted using maximum
likelihood estimation (Appendix A) with the fit function
A0 +A cos(2χ+φ0), giving fit parameters A0 = 0.500(4),
A = 0.500(3) and φ0 = 3.16(3). This gives a map in-
fidelity of FD = 1.000(7). To obtain a more accurate
infidelity estimate we must average over a large number
of operations. The fidelity can be measured after N op-
erations for multiple values of N , from which the average
infidelity 1−FD can be calculated. This method is used
to calculate the average fidelities of both the adiabatic
and composite quantum control procedures. We mea-
sure an average infidelity per operation of 1.4(4)× 10−4

for the adiabatic method and 1.1(4)× 10−4 for the com-
posite pulse sequence [32].

The experimentally achieved fidelity of the adiabatic
control method is determined by two factors: the first is
infidelities introduced during the operation due to non-
adiabaticity of the frequency and amplitude modulation
and decoherence, and the second is the precision with
which the parameters of the applied radiation fields can
be set, as they determine the final state obtained, which
we call |ψdr〉. By repeatedly applying the forward and re-

verse adiabatic operations we can determine the first of
these infidelities, as to first order they will be amplified by
the number of repeats to a measurable level. We do not
attempt to measure the second infidelity 1− | 〈D|ψdr〉 |2
as we do not have a process to amplify this infidelity,
and any direct measurement is subject to the same inac-
curacies in parameter setting. Instead we can estimate
the size of this infidelity given the precision we can set
the parameters of the radiation fields. The parameters in
question are how equal the Rabi frequencies of the two
fields can be set, and the accuracy to which the detun-
ing of the two radiation fields can be set to zero. We
determined that we set the fractional accuracy of the
Rabi frequencies |Ω1 −Ω2|/(Ω1 + Ω2) < 0.0015 and that
each of the detunings are set such that |δ| < 3 Hz. From
simulations, this leads to an infidelity of preparing |D〉 of
< 10−4. We also note that for many applications, such as
the use of the |D〉 and |0′〉 states as a qubit, this second
infidelity only has a small effect on the overall fidelity
of qubit operations. This ‘dressed-state qubit’ is used
because the coherence of the qubit is protected against
magnetic field fluctuations [6, 7]. In the event of a slight
Rabi frequency mismatch or detuning error, the dressed
state produced will not be exactly |D〉, but this state
and |0′〉 will still form a valid qubit which will still be
insensitive to magnetic field noise to first order.
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FIG. 4. Measuring the fidelity. a, The fidelity with which
we produce the |D〉 state can be obtained by applying two
fields resonant with the |0〉 ↔ |+1〉 and |0〉 ↔ |−1〉 transi-
tions with equal Rabi frequency Ω, and varying the phase χ
of the two fields in equal and opposite directions. b, The
measured population in |0〉 as a function of χ after a single
adiabatic operation (black points), which can be fitted to the
function A0 +A cos(2χ+ φ0) (solid red curve) to extract the
mapping fidelity using a maximum likelihood fitting method
(Appendix A). Each point is the average of 200 repetitions. c,
The fidelity as a function of the number of applications of the
adiabatic method (black) and resonant TBB1 sequence (light
blue (light grey when printed in greyscale)). For the adiabatic
method, the population transfer back to |0〉 begins immedi-
ately after it reaches |D〉 (th = 0). A linear least squares
fit to the data gives an average infidelity per operation of
1.4(4)× 10−4 for the adiabatic method and 1.1(4)× 10−4 for
the composite pulse sequence.

The measured infidelities are consistent with the life-
time of the |D〉 state, which was measured in a separate
experiment to be 2.6(4) s. The lifetime of |D〉 is limited
by ambient magnetic field noise with frequency close to
the dressed-state energy splitting. Since ambient noise
generally scales as ∼ 1/f , increasing the dressing field
Rabi frequency is expected to improve this result [7]. We
have also verified that the coherence of a {|0′〉 , |D〉} qubit
is preserved throughout such an adiabatic transfer (Ap-
pendix C).

VII. CONCLUSION

In this article, we have used the Majorana decomposi-
tion to develop a technique for generating new coherent
control methods to transform between two desired multi-
level states, based on existing two-level methods. This
allows insights gained into robust control of two-level sys-
tems to be harnessed and applied to multi-level quantum
control in a rigorous and analytical way. We have ap-
plied this technique to two well known composite pulse

and adiabatic methods to create new three-level methods
and have implemented these experimentally with high fi-
delity. These methods may be particularly important for
the implementation of scalable quantum computing [33].
The technique we use to generate quantum control meth-
ods is general and can be applied to different quantum
systems with arbitrary numbers of levels (Appendix D).
Furthermore, we have shown that the control methods
generated can be robust and applied with high-fidelity.
Therefore we believe this approach shows great promise
for high-fidelity quantum control across a broad range of
physical systems.
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Appendix A: Statistical methods

To normalise the data against state detection errors,
before each experiment a histogram of fluorescence mea-
surements is taken after preparing the ion in both the
|0〉 and |0′〉 states, corresponding to dark and bright ex-
pected results respectively. Using a threshold of 2 pho-
tons, the detection fidelity is typically measured to be
around 97%. A linear map can then be extracted from
the measured errors, which gives the probability to mea-
sure a bright event as pb(p) = P (b|1)p + P (b|0)(1 − p),
where p is the probability that the population was in the
F = 1 manifold and P (b|1) and P (b|0) are the probabil-
ities for a bright measurement given that the ion was in
the F = 1 and F = 0 manifolds, respectively. The data
is scaled using a maximum likelihood method based on a
binomial distribution. This maximises the log-likelihood
function for a beta probability density function, given by
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fB =

N∑
i=1

log

(
(n+ 1)n!pb(pi)

ki(1− pb(pi))n−ki
ki!(n− ki)!

)
,

(A1)
where n is the number of repetitions per data point, N
is the number of data points and ki is the number of
bright events for the ith data point. For individual data
points, N = 1 and therefore p1 is found by maximising
fB for k1. To fit the fidelity measurements shown in
Fig. 4, the probabilities are replaced by a fit function
pi = A0 +A cos(2χi + φ0). In this case, fB is maximised
over all N data points for different χi, and the best fit
parameters for A0, A and φ0 are extracted. The state
fidelity is then given by FD = A0 − A cos(φ0), which is
plotted as a function of the number of maps in Fig 4c. A
linear least squares fit is then applied with the fit function
1−xεm, where x is the number of maps and εm = 1−FD
is the average infidelity per map.

Appendix B: Spin-j representation of arbitrary
spin-1/2 unitaries

As well as the mapping between initial and final states,
it is also useful to derive a theoretical solution for the
intermediate state of the multi-level system during ap-
plication of the control fields. One option is to consider
at arbitrary times during the transformation the equiva-
lent rotation matrix in the multi-level system. However
rather than doing this explicitly, the unitary operation
in the multi-level system can be directly calculated from
the unitary operation in the two-level system. The spin-
1/2 state

∣∣Ψ1/2

〉
= a |↓〉 + b |↑〉 is obtained by applying

the general unitary

U
1
2 =

(
a −b∗
b a∗

)
(B1)

to the initial state |↓〉. From this unitary, the unitary
in the multi-level system can be calculated directly. For
the general spin-j system, the matrix elements of Uj are
given by [15, 34]

U jrs =

qmax∑
q=qmin

√
Cr−1
q Cs−1

q C2j+1−r
s−1−q C

2j+1−s
r−1−q

× a2j+2−r−s+q(a∗)qbs−1+q(−b∗)r−1+q,

(B2)

where qmin = max[0, r+s−2j] and qmax = min[r−1, s−1]
and Cnk = n!/[k!(n− k)!] is the binomial coefficient. For
the j = 1 case, this results in the unitary transformation
[16]

U j=1 =

 a2 −ab∗
√

2 b∗2

ab
√

2 |a|2 − |b|2 −a∗b∗
√

2

b2 a∗b
√

2 a∗2

 . (B3)

Appendix C: Dressed state qubit mapping

In the context of a scalable microwave-driven trapped
ion quantum computing architecture [25, 33], it is useful
to map the state of a qubit stored in the {|0〉 , |0′〉} basis
of an 171Yb+ ion to the {|D〉 , |0′〉} basis. This can be
done by implementing either the adiabatic or the reso-
nant method to transfer any population in state |0〉 to
|D〉. While we have verified that this population transfer
process can be implemented with high fidelity, this does
not necessarily indicate that the coherence of the qubit is
maintained throughout the population transfer process.
Therefore we carried out a Ramsey-type experiment to
measure the coherence of the qubit before and after the
mapping, in the case of the adiabatic transfer method.

In these Ramsey experiments, we start with a resonant
π/2 pulse on the |0〉 to |0′〉 ‘clock’ transition to put the

ion in the state (|0〉+ |0′〉)/
√

2. Then we carry out N/2
adiabatic processes to map population back and forth be-
tween |0〉 and |D〉, followed by a spin echo π pulse on the
clock transition, followed by N/2 adiabatic transfers. We
then apply a final π/2 analysis pulse with varying phase
and carry out a florescence measurement. As the phase
is varied, we will see fringes in the measured population,
just as in a standard Ramsey experiment. If there is any
decoherence of the stored qubit, the amplitude of the
fringes will decay. By fitting the population in F = 1 as
a function of the phase of the final pulse, we can obtain
the fidelity with which the qubit state is preserved. The
decay of the fidelity with increasing N is then measured
in a similar way to before. This allows us to extract the
average infidelity of the qubit mapping process, which is
found to be 1−F = 1.8(4)× 10−4.

Appendix D: Applications to other d-level systems

The technique described in this paper is general and
can be applied to systems of arbitrary numbers of levels
in a variety of quantum control applications. To illustrate
this we provide two examples of potential applications in
different quantum systems.

First we refer to the work of Liu et al. [35], who pro-
posed a method to transfer the state of one d-level su-
perconducting qudit to another in circuit QED. They il-
lustrate their method in detail for the five-level case and
show that it can be generalised to any number of levels.
The method involves successively swapping over the pop-
ulation of different levels from one qudit to another via a
cavity mode. By the end of step IV of their process (Fig-
ure 2 of [35]) they have transferred the population of each
individual state to the second qubit, but the states are
in the wrong order. Therefore, in the final step of their
process, Liu et al. apply a succession of pulses on dif-
ferent transitions within the qudit to rearrange the state
populations so that they are in the exact reverse order
compared to where they started. At this point the qudit
transfer process is complete.
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Here we show that, using our technique, a multi-level
control method can instead be found to put the state
populations back in their original order (not reversed) in
a single step. Specifically, one must apply this four-level
method to the top four levels of the second qudit (Figure
2 of [35]) so as to reverse the order of their amplitudes.
The required unitary matrix to carry out this operation
is as follows:

U j=
3
2 =

 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , (D1)

and we are looking for a quantum control method to
implement this unitary operation. This unitary trans-
formation is (up to a global phase which can be easily
accounted for by changing the phases of the other pulses
in the sequence) equal to e−iπJx , which is a rotation of
exactly the form we need to derive multi-level quantum
control method using our technique. The equivalent two-
level rotation is simply e−iπSx , which can be achieved by
a variety of quantum control methods: for example a sim-
ple Rabi π-pulse or, if more robustness is required, more
complex composite pulse or adiabatic schemes. The exact
form of the control fields used to execute this transfor-
mation will depend on the exact control method used to
implement the effective two level rotation. In general, for
a single control field applied to a two-level system, the
two-level Hamiltonian of equation 3 must be transformed

into a new four-level Hamiltonian using the spin-3/2 ma-
trices. Physically, this Hamiltonian, which represents the
desired quantum control method, will correspond to three
different control fields on the four level-system, of varying
Rabi frequencies and detunings.

Liu et al. discuss in their work how their method gen-
eralises to d levels. Our four-level method also has a
d-level equivalent which can reverse the populations of
any number of states. One can verify this by noting that
if you substitute a = 0, b = i into equation B2 you obtain

U jrs = id+1δd+1,r+s, (D2)

where d = 2j+1 is the number of levels and δij is the Kro-
necker delta. This is indeed a unitary operation which
reverses the order of the amplitudes for a d-level system.

Finally we consider the efficient Toffoli gate scheme
discussed in Refs. [36, 37]. Here the three-level unitary
operation

Xa =

 0 0 1
0 1 0
1 0 0

 (D3)

is applied to a qutrit as part of the scheme. It is easy to
verify that Xa is in fact equal to U jrs in equation D3 in
the case where d = 3 (up to an irrelevant global phase),
showing that this control operation is also amenable to
the techniques described in this paper.
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