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A comprehensive search for “broad” Feshbach resonances (FRs) in all possible combinations of
stable alkali-metal atoms is carried out, using a multi-channel quantum-defect theory assisted by
the analytic wave functions for a long-range van-der-Waals potential. A number of new “broad”
s-, p- and d-wave FRs in the lowest-energy scattering channels, which are stable against two-body
dipolar spin-flip loss, are predicted and characterized. Our results also show that “broad” FRs
of p- or d-wave type that are free of two-body loss do not exist between fermionic alkali-metal
atoms for magnetic field up to 1000 G. These findings constitute helpful guidance on efforts towards
experimental study of high-partial-wave coupling induced many-body physics.

PACS numbers: 34.10.4x, 34.50.Cx, 67.85.-d, 67.60.Bc

I. INTRODUCTION

Feshbach resonance (FR) enables versatile tuning of
effective interactions between ultracold atoms [1]. It has
facilitated a wealth of interesting studies on few- and
many-body physics using ultracold quantum gases. Of
particular interests to experiments are “broad” FRs with
open-channel dominated characteristics [1], where the
effective interaction between atoms can be modeled as
a single-channel scattering problem and the long-range
van-der-Waals universality applies [2].

Capitalizing on the “broad” [1, 2] s-wave FRs in
fermionic 6Li and 4°K, which feature small two-body and
three-body collision losses, tremendous advances have
been achieved in the study of BEC-BCS crossover and the
unitary Fermi gas [3-11]. The study of atomic gases near
“broad” FRs of nonzero partial waves, on the other hand,
has only witnessed limited activities, although they are
predicted to exhibit richer physics accompanied by quan-
tum phases nonexistent with s-wave interactions [12-16].
This dichotomy is mainly due to the fact that “broad”
high-partial-wave FRs which are stable against collision
losses have yet to be found. In fact, “broad” nonzero-
partial-wave FRs have so far only been reported in 8Rb-
8TRb mixtures [17-19] and “'K atoms [20]. However,
FRs studied in these systems exhibit substantial collision
losses due to the bosonic nature of the atoms.

In this paper, we summarize the main results from an
extensive search of “broad” s-, p- and d-wave FRs in all
possible combinations of stable alkali-metal atoms. In
particular, we focus on FRs in the lowest-energy scat-
tering channels where the exothermic two-body dipolar
spin-flip collision cannot occur. The search is carried out
using an analytic multi-channel quantum-defect theory
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(MQDT) [2, 21-23]. This theory provides the simplest
description of magnetic FRs in alkali-metal interactions,
using only three parameters for all partial waves. This
simplicity and efficiency make it ideal for exploring trends
and qualitative features in a large number of systems.

The main results of the current work can be summa-
rized as follows: First, new “broad” s-, p- and d-wave
resonances are predicted in many alkali-metal systems.
The systems that exhibit rich spectra of “broad” nonzero
partial-wave FRs include pure 'K gas, and *'K-37Rb,
39K-133Cg, 41K-133Cs, 3°Rb-8"Rb, 3Rb-133Cs mixtures.
Second, “broad” p- and d-wave FRs free of two-body
loss are not found in all fermionic alkali-metal gases (in-
cluding their mixtures) for magnetic field up to 1000 G.
Third, the 'K gas contains a unique and extraordinarily
“broad” d-wave shape resonance [20]. Unlike previously
discovered shape resonances which are accessible only at
certain collision energies, this shape resonance can be
tuned in or out using magnetic field at zero energy. It
could be of particular interest for studying d-wave inter-
action induced many-body physics.

The paper is organized as follows. Section II presents
the main results of our search, with Sec. IT A reporting
the FRs for the fermionic alkali-metal gases, and Sec. ITB
for the “broad” resonances of all other alkali-metal sys-
tems, including those between bosonic atomic species,
as well as between fermionic and bosonic species. The
“broad” d-wave shape resonance of 'K, which was first
studied in Ref. [20], is highlighted and discussed in detail
in Sec. ITC. Section III briefly describes the theoretical
model adopted for our study. It includes the essential
computation details needed for obtaining the results pre-
sented in this work. Sec. IV concludes this work. Ap-
pendixes A and B contain computation details and tabu-
late the optimized parameters we used for all alkali-metal
systems.
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II. MAIN RESULTS

This section reports the FRs predicted using our model
for all combinations of stable alkali-metal atoms. As our
main motivation is to find low-loss FRs that are poten-
tially useful for the study of many-body physics, we fo-
cus only on the lowest-energy scattering channels (open
channels) where exothermic two-body dipolar spin-flip
collisions are forbidden. Exceptions are made for pure
homonuclear fermionic gases, where we include both the
two lowest-energy scattering channels since two-body re-
laxations cannot occur in the excited one due to the Pauli
exclusion principle.

Furthermore, since we aim mainly at “broad” FRs
which arise from the strong electronic (Coulomb) cou-
pling between the open channel and the closed channel,
our model ignores the weak anisotropic magnetic dipole-
dipole [24, 25] and second order spin-orbit [26, 27] inter-
actions between the atoms. Consequently, all supposedly
“narrow” FRs arising from the coupling between open
and closed channels with different partial waves or with
different m, +my, would be missed out from our searches
[my, is the azimuthal spin of the magnetic-field-dressed
hyperfine state |f;my,) (i = 1,2) (Eq. (A5)) of the two
colliding atoms].

We characterize every predicted resonance by its posi-
tion By, resonance width Apg;, normalized background
scattering length aGpg1, differential magnetic moment be-
tween the molecular and atomic state du;, experimentally
measured position BSP" (if observed), and the resonance
strength parameter (os. The last parameter is of most
interest since it indicates whether a resonance is “broad”
(|€res| > 1) or “narrow” (|Gres] < 1) [2]. The detailed
definitions of the aforementioned parameters follow from
the notations of Gao [2], and can be found in Sec. III.

The accuracies of our predictions for the resonance po-
sitions are typically within a few percent, which are not as
high as those obtained using coupled-channel (CC) calcu-
lations based on full molecular potentials. Nevertheless,
it should be largely sufficient for identifying systems and
resonances of interest. For any particular system and/or
resonance, the description can be further refined when
necessary.

A. FRs in fermionic alkali-metal systems

FRs between fermionic atoms play a special role in the
experimental study of ultracold gases, not only because
Fermi statistics of the atoms are essential for quantum
simulation studies of condensed matter models, but also
because Fermi statistics help to suppress three-body and
many-body recombination [28], and to form long-lived
strongly interacting systems. The stable strongly inter-
acting Fermi gas near the 832-G “broad” s-wave reso-
nance of 5Li is perhaps the most celebrated example. By
the same token, it is highly desirable to find “broad”
high-partial-wave FRs in fermionic systems.

The only stable fermionic alkali-metal atoms are 5Li
and K. Table I presents all s-, p-, and d-wave FRs free
from two-body losses, predicted using our model for °Li-
611, 40K-40K and SLi-*°K within the magnetic-field range
from 0 to 1000 G. Except for the well-known “broad” s-
wave FRs at 832G in SLi|§, 1) + OLi[§, —3) (Gres = 142)
and that at 200G in “°K|2,—2) + 9K|2, -1} (Cres =
3.1), all other resonances are found to be very “narrow”
(IGres| < 1).

B. FRs in all other alkali-metal systems

In this subsection, all “broad” s-, p-, and d-wave FRs in
the lowest-energy scattering channels for all other alkali-
metal systems are presented. Taking the possible uncer-
tainty of (res (due to the approximations adopted in our
model) into consideration, we extend the range of listed
“broad” FRs to |(es| > 0.5. Table II shows the results for
homonuclear alkali-metal systems. “Broad” d-wave reso-
nances are found in bosonic 'K, 8"Rb and ¥3Cs atoms.

Table III, IV, V and VI show the results for alkali-
metal mixtures Li-X (X being isotopes of Li, Na, K, Rb
and Cs), Na-X (X being isotopes of K, Rb and Cs), K-X
(X being isotopes of K, Rb and Cs) and Rb-X (X being
isotopes of Rb and Cs), respectively. The systems that
exhibit “broad” p-wave resonances are " Li-*'K, "Li-87Rb,
7Li-133CS, 23Na—85Rb, 23Na—87Rb, 39}(_41}{7 39K—87Rb,
40K—85Rb, 41K—85Rb, 41}{_871%})7 39K—13308, 41K—13308,
85Rb-87Rb, 8°Rb-133Cs. In particular, a very “broad” p-
wave FR is predicted in the ' K-8"Rb mixture at 850.8 G
with |(res| = 244.8. The systems that possess “broad”
d-wave resonances include "Li-'33Cs, 23Na-3°Rb, 23Na-
87Rb, 23Na—133Cs, SQK—85Rb, SQK—87Rb, 41K—87Rb, 39K
13308, 85Rb-87Rb, SSRb—l?’?’CS.

For completeness, all FRs (“broad” and “narrow”) pre-
dicted by our model are tabulated in the Supplemental
Material.



TABLE L. s-, p-, and d-wave FRs free from two-body loss in the fermionic ®Li-°Li, °K-%°K, and 5Li-*°K systems, for magnetic
field in the range of 0-1000 G. The scattering channels of the systems are labeled in magnetic-field-dressed hyperfine basis

|f,my) (Eq. (A5)).

Scattering channel l B (G) Cres Api (G) | avg/ar | 6w/us | B5PH(G) |Remark/Reference
°Li|%, 1) + °Lil$, 1) P 159.2 -0.22 -44.4 -1.2 2.1 159.14 [29, 30]
°Lil$, 1) + °Li|i, —1) s 554.4 0.0012 0.098 2.0 2.0 543.25 [31]

5 832.5 142.0 -293.6 -40.6 3.6 832.18 [32]

P 185.2 -0.14 -26.3 -1.5 2.0 185.09 29, 30]

d - - - - not found
YK|2,-2) + “K|5,-2) P - - - - - not found
K2, -2) + K|S, -1y | s 200.3 3.1 8.0 2.7 1.7 202.1 3]

D - - - - - not found

d 60.4 -0.25 30.1 0.42 1.6 - -
°Lil3, 3) + “K|2,-2) 5 157.6 | 0.0035 0.14 1.6 1.7 157.6 (33, 34]

s 167.6 0.0028 0.11 1.6 1.8 168.2 (33, 34]

P 247.1 | -0.0013 0.45 3.4 0.15 249 [33, 34]

d - - - - - not found

TABLE II. “Broad” s-, p- and d-wave FRs in the lowest-energy scattering channels of the homonuclear alkali-metal systems.
Resonances with [(res| > 0.5 for magnetic field in the range of 0-1000 G are listed. Such “broad” FRs are not found in systems
of 8Li, 2Na and “°K atoms.

Scattering Channel l | Bo (G) Cres Ap (G) | avg/ar | du/1s BSP (G) Remark/Reference
"Lil1,1) 4 "Li|1,1) s | 7389 0.88 -182.0 | -0.55 2.1 736.8 [35]
K1, 1) + K1, 1) s 402.4 3.7 -54.4 -0.43 2.0 403.4 [36]
K1, 1) + YKL, 1) d 17.7 -203.7 | -146.5 10.0 -10.7° | 16.83/17.19/18.75" | shape resonance [20]
d | 510.6 -2.6 5.4 19.0 2.0 - -
85Rb|2,2) + ®*Rb[2,2) | s 849.0 6.4 -2.1 -5.2 2.0 852.3 [37]
8TRb|1,1) + 8"Rb|1,1) | d | 869.7 -0.9 -2.7 -2.9 2.8 930.02" [38]
133Cs|3,3) + 1*%Cs3,3) | s 572.4 456.9 14.6 24.2 1.9 549 [39]
s | 7704 | 1890.8 | 113.9 5.5 1.6 787 [39]
d | 820.8 -1.4 8.9 0.94 1.7 820.37° [39]

b The parameter dy; is the differential magnetic moment between the closed and open channels in a typical magnetic
Feshbach resonance [2]. For a shape resonance where the molecular state is also supported by the open channel, du; should be

read as an effective parameter.

ff The observed triplet structure of a d-wave FR.
§ When the triplet structure is not observed, the open channel of the FR, cannot be unambiguously confirmed to be d wave.
The observed feature can also come from the coupling between an s-wave open channel to a d-wave closed channel [19].



TABLE III. Same as Table II but for the °Li-X and “Li-X mixtures, X being isotopes of Li, Na, K, Rb, or Cs atom. “Broad”
s-, p-, and d-wave FRs in the lowest-energy scattering channels are not found in the mixtures of °Li-"Li, ®Li-23Na, "Li-?*Na,
Li-*K, °Li-*°K, °Li-"'K, "Li-*’K, °Li-**Rb, or °Li-*"Rb.

Scattering channel l By (G) Cres Api (G) | avg/ar | dpu/ps Bgfpt (G) |Remark/Reference
°Lil1/2,1/2) + '**Cs3,3) | s 841.4 1.0 -57.8 -0.67 2.2 843.5 [40]
"Li|1,1) + 3°K]|1,1) s 318.8 1.1 30.0 2.2 1.5 = -
"Lil1,1) + “'K]|1,1) P 765.3 -5.7 89.1 5.7 1.6 - -
"Li|1,1) + ®*Rb|2,2) s 143.1 0.64 -12.6 Sk} 3.2 - -
"Li|1,1) + 8"Rb|1, 1) s 652.9 5.8 -203.3 -1.4 2.5 649 [41]

p | 4335 -0.85 -32.1 -1.5 2.4 445.6 [41]
"Li|1,1) + '33Cs)3, 3) p | 409.1 -2.4 -57.9 -2.1 2.3 - -

d 25.4 -0.65 102.3 1.3 2.2 - =

TABLE IV. Same as Table II but for the 2*Na-X mixtures, X being isotopes of K, Rb, or Cs atom.

Scattering channel l By (G) Cres Ap; (G) | avg/ar | dwi/ps Bgz‘pt (G) |Remark/Reference
BNa|l1,1) + %K1, 1) s 441.8 5.6 -37.3 -1.8 2.0 - -
BNall,1) + “°K|9/2,-9/2) | s 7.7 0.98 -5.6 -3.9 2.0 78.3 [42]
s 88.7 14.0 -8.9 -20.4 2.3 88.2 [42]
BNal|l1,1) + “'K]1,1) s 73.1 2.3 4.6 5.1 2.3 - -
s | 470.6 3.1 6.2 5.6 2.1 - -
#Nal|1,1) + %Rb|2,2) s 314.3 0.83 5.5 1.5 1.7 - -
p | 173.8 -6.5 19.3 5.8 1.8 - =
p | 2196 55 37.8 2.0 1.6 - -
d | 1105 -0.67 -81.5 -0.50 1.7 - -
#Nal|1,1) + 5"Rb|1,1) s 346.3 0.70 3.7 1.4 2.2 347.8 [43]
p | 279.2 -2.4 20.1 1.5 2.2 |284.1/284.2° [43]
p | 396.8 -1.2 19.8 1.0 1.7 - -
d | 268.1 -0.77 -30.1 -1.8 1.7 - -
#Na|1,1) + *3Cs|3,3) d | 986.0 -1.4 14.3 3.8 2.4 - -

b The observed doublet structure of a p-wave FR.



TABLE V. Same as Table II but for the *°K-X, °K-X and *'K-X mixtures, X being isotopes of K, Rb, or Cs atom. “Broad”
s-, p-, and d-wave FRs in the lowest-energy scattering channels are not found in the mixtures of “°K-"K or “°K-*33Cs.

Scattering channel Il | Bo (G) Cres Api (G) | avgi/a | /s Bi®* (G) | Remark/Reference
K, 1) 4+ °K(9/2,-9/2) | s | 112.0 5.7 3.0 16.5 1.6 - -
s | 133.6 94.0 -43.1 - 1.9 - -
s | 143.6 1.3 -0.11 -76.4 1.7 - -
s | 796.5 3.1 -0.33 -28.3 3.8 - -
39K, 1) + K1, 1) p | 448.1 -0.66 SN -4.3 2.0 = =
39KI1,1) + ®Rb|2,2) d | 363.7 -6.7 11.5 13.9 2.1 - -
d | 464.9 -0.57 1.2 12.8 1.9 - -
d | 677.3 -0.51 0.43 16.2 3.7 - -
d | 706.6 -2.8 2.7 14.8 3.6 - -
39KI1,1) 4+ ¥ Rb|1,1) s | 317.2 1.3 7.6 0.50 2.5 317.9 [44]
p | 274.3 -0.69 -5.0 -0.67 2.5 |277.57/277.70° [44]
d | 186.0 -0.66 4.6 3.0 2.4 - -
K|1,1) + 3Cs3, 3) s | 361.0 1.4 3.9 0.91 2.1 361.1 [45]
s | 950.3 0.64 1.1 0.93 3.5 - -
p | 333.7 -1.4 -33.9 -0.18 2.1 - -
p | 919.8 -0.66 -12.2 -0.14 3.5 - -
d | 254.6 -19.2 31.7 1.1 2.1 - -
d | 359.0 -0.98 2.4 8.3 1.9 - -
d | 8120 -1.4 0.80 18.7 3.6 - -
d | 848.6 -15.7 12.2 14.1 3.5 - -
10K|9/2, —9/2) +¥Rb|2,2)| s | 339.1 3.0 -35.6 -0.34 2.0 = =
p | 2885 -0.68 -3.1 -1.2 2.1 - -
10K19/2,-9/2) + 5"Rb|1,1)| s | 547.7 1.7 -1.7 -2.9 2.4 546.89 [46]
s | 6284 0.87 -0.71 -3.0 2.8 659.68 [46]
K1, 1) + %Rb|2,2) s | 1821 6.7 3.4 5.2 2.6 - -
s | 191.0 0.50 0.58 3.0 2.0 - -
s | 656.1 9.6 4.1 8.8 1.9 = =
s | 680.7 19.0 17.1 4.4 1.8 = =
p | 668.2 -3.9 -8.8 -2.7 1.9 = =
YK|1,1) + ¥ Rb|1, 1) s 38.1 39.9 33.6 5.0 1.7 35.2 [47]
s 78.3 1.2 8.1 0.86 1.7 78.61 [47]
s | 539.7 56.1 78.5 2.5 1.9 - -
p | 121.9 -31.4 -41.9 -3.4 2.5 - -
p | 850.8 | -244.8 | -220.4 -5.0 2.5 - -
d 41.8 -1.5 44.8 0.65 2.4 - -
d | 553.6 -4.0 230.5 0.40 2.2 - -
MK|1,1) + '3%Cs3, 3) s | 173.3 0.86 0.78 2.5 2.2 = =
s | 911.0 3.1 3.0 2.5 2.1 - -
p | 105.7 -0.92 -0.40 -6.9 2.8 - -
p | 148.2 -4.7 -2.8 -6.8 2.1 - -
p | 154.8 -1.2 -0.53 -10.4 1.9 - -
p | 897.4 -18.4 -11.6 -6.3 2.1 - -
p | 960.6 -0.73 -0.42 -7.4 2.0 - -

b The observed doublet structure of a p-wave FR.



TABLE VI. Same as Table II but for the 8Rb-X and 8"Rb-X mixtures, X being isotopes of Rb or Cs atom.

Scattering channel l | Bo (G) Cres Agpi (G) | avg/a | dw/ps | BoP* (G) | Remark/Reference
85Rb|2,2) + ¥Rb|1,1) s 530.4 84.7 70.1 2.6 1.6 569 [18]
p | 668.3 -1.3 2.0 2.0 1.9 - -
p | 813.0 | -434.5 | -200.2 -4.8 2.5 823.3 [18]
d | 5484 -6.7 213.9 0.42 1.9 622.6 [19]
85Rb|2,2) + '33Cs)3, 3) s 112.2 24.2 240.7 0.21 1.8 107.13 [48]
5 187.9 1.1 -4.2 -0.39 1.7 187.66 [48]
s | 631.9 29.6 264.8 0.10 3.1 641.8 [48]
p 72.3 -7.4 -17.3 -0.99 1.7 70.68 48]
p | 602.7 9.2 -11.6 -0.99 3.1 614.6 [48]
d 6.3 3.4 18.0 2.0 1.5 - -
d | 555.1 -4.5 11.8 2.0 3.1 - 5
STRb|1,1) + '*3Cs|3,3) s 287.0 4.5 0.54 6.7 2.9 279.03 [49]
s | 3108 5.5 0.74 6.4 2.7 310.72 [49]
s | 3375 2.8 0.41 6.2 2.5 352.7 [49]
s | 834.7 2.5 0.49 6.3 1.9 790.2 [49]




C. A unique d-wave shape resonance in *'K

Among the resonances in all possible combinations of
alkali-metal atoms, a unique d-wave shape resonance is
identified in the lowest-energy scattering channel of 41K
atoms, which was observed recently by Yao et al. [20].
This is a particularly interesting resonance, not only be-
cause it has the advantage of being very “broad” true
single-channel resonance whose atomic and molecular
states are both supported by the open channel [1], but
also because it can be conveniently tuned into or out of
resonant by applying a magnetic field like a normal mag-
netic FR.

The single-channel character of the resonance can be
demonstrated by plotting the bound-state spectra of
the scattering channel. The top panel of Fig. 1 shows
the dimensionless d-wave reduced generalized scattering
length, a;(B)/a; (Eq.(10)), as a function of magnetic
field for the *'K|1,1) + *'K]|1,1) channel. The bottom
panel shows the energies of the bound states relative to
the dissociation threshold energy of the channel. The
d-wave shape resonance mentioned above, which is lo-
cated around 18 G, occurs when the least bound d-wave
state becomes degenerate with the threshold. The shape
resonance comes with a width |Ap;| of 146.5 G and an ef-
fective |(res| as large as 203.7. Besides the d-wave shape
resonance, one “broad” and two “narrow” d-wave Fesh-
bach resonances are also found in this scattering channel.
The theoretical parameters of these resonances are listed
in Table VII.

Even though shape resonances can offer very “broad”
high partial wave interactions, they are typically not eas-
ily accessible due to the small magnetic sensitivity of the
bound state energy with respect to the threshold energy
in a single channel. The shape resonance in *'K repre-
sents a stroke of luck and is the only kind found in all
alkali-metal systems, where the least bound d-wave state
of the open channel is accidentally located very close to
its threshold. For comparison, the p-wave shape reso-
nance in “°K atoms and the d-wave one in ®’Rb atoms can
only be accessed by preparing the atoms with collision
energies at ~ kp(280 nK) [50] (kp being the Boltzmann
constant) and at ~ kp(270 nK) [51, 52], respectively, or
by using indirect approaches [53]. Therefore, the “broad”
shape resonance in 'K atoms mentioned above, which is
easily accessible by tuning magnetic field, could find im-
portant applications in studying many-body physics with
anisotropic interactions.
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FIG. 1. (Color online) Top panel: Calculated d-wave reduced
generalized scattering length as a function of magnetic field
for the *'K|1,1) 4+ *'K|1,1) scattering channel. The black
arrow denotes the position of the shape resonance. Bottom
panel: Energies of the weakly bound molecular states relative
to the dissociation threshold of the channel. The bound states
are labeled as n(fi,mys, )(f2,mys,), where n = —1, -2, ... is
the vibrational quantum number counting down from the
top of the potential of the corresponding *'K|fi,my) +
K| f2,my,) channel. The inset shows an expanded view of
the region near the position of the shape resonance.

TABLE VII. Calculated parameters for d-wave resonances in
the lowest-energy scattering channel of *'K atoms, *'K|1,1)
+ *K]|1,1), for magnetic field in the range of 0-600G. The
resonance located at 17.7 G is a shape resonance and the oth-
ers are Feshbach resonances.

Boi(G) Cres Api (G)  avg/@ Spu/ s
17.7 -203.7 -146.5 10.0 -10.7
333.3 -0.42 0.42 20.5 3.8
337.3 -0.0072 0.0077 18.3 3.9
510.6 2.6 5.4 19.0 2.0

III. PREDICTING AND CHARACTERIZING
FESHBACH RESONANCES USING MQDT

In this study, a computationally simple MQDT as-
sisted by the analytic wave functions for the long-range
van-der-Waals (vdW) potential [21, 54] is used to pre-
dict and describe FRs. This analytic MQDT approach
has already been successfully applied and discussed in
great length before [2, 22, 34, 55-57]. The main focus of
this section is to provide its essential physical picture and
to make our model and computations transparent for the
less familiar readers.

The Hamiltonian that describes the collision between



two alkali-metal atoms is given by

Roo1dr R

where p is the reduced mass, r is the interatomic sepa-
ration, [is the molecular orbital angular momentum op-
erator, and V' (r) is the interatomic-interaction potential
operator. For alkali-metal atoms in the ground hyperfine
manifold placed under a static magnetic field B, the free
monomer Hamiltonians H; and Hs are given by

H; = Gy 3 + (geinéi. + gupipii.)Bs, (2)

where ¢; denotes the hyperfine coupling constant, i; and
$; are the nuclear and electronic spin operators of atom
1 (i = 1,2), pp is the Bohr magneton, g, and g. are
the nuclear and electronic g-factors. Eigenstates of the
Hamiltonian in Eq. (2) define the asymptotic magnetic-
field dressed hyperfine basis |fimy, )| famy,) used in our
calculation. .

In our model, the interaction term V' (r) includes only
the dominating isotropic electronic Born-Oppenheimer
(BO) potentials [1]. The weak anisotropic spin-
dependent interactions, which include the magnetic
dipole-dipole [24, 25] and the second order spin-orbit
[26, 27] interactions, are ignored. Dropping the weaker
interactions is not too much of a concern for our search
of “broad” FRs, since the FRs induced by the weak
anisotropic coupling are expected to be “narrow”. Be-
sides, doing so also removes the coupling between open
and closed channels with different partial wave [ as well
as those with different my, + my,, thereby greatly sim-
plifies the computations.

An N-channel scattering problem can generally be de-
scribed by a set of N linearly independent wave functions

N
P = Z(bi(T)Fij(T)/T, j=1,2,...,N. (3)

Here, ¢;(7) denotes the function of channel i describing
all degrees of freedom except the interatomic separation
r. Constructing an N x N matrix F(r) with elements
F;;(r), one can show that F(r) satisfies the close-coupled
radial Schrodinger equation

d’F  2u

Pl ﬁ[EI - W(n)JF(r) =0, (4)
where F is the total energy, I is the identity matrix, and
W (r) denotes the coupling matrix with elements
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Wﬁ(r)=/¢3‘(7) [Zﬂ{ﬁ Hy+ Ho4 V(r)| ¢i(r)dr. (5)

In principle, with the complete knowledge of Wj;(r),
it is possible to predict FR positions with very high ac-
curacy (within 1-Gauss uncertainty) by solving Eq. (4)
numerically. In practice, however, determining Wj;(r)

requires Herculean effort in data-fitting Wj;(r) to vast
amount of experimentally measured spectroscopic values,
an overwhelming process consuming more time than in
the current work (cf. [58]).

The MQDT we adopt [22, 55, 59-63] greatly simpli-
fies the task to predict FRs. It takes advantage of the
large differences in the energy and length scales between
the short-range and the long-range potentials in V' (r).
As r is reduced below the exchange-interaction range rg
(typically around 30 a.u.), the energy splitting between
the singlet- and triplet-state potentials in V (r) gradually

overtakes the hyperfine and Zeeman energies in H;. Since
the maximum depths of the singlet and triplet potentials
are of the order of 10 to 100 THz, the long-range dom-
inating H; which are of the magnitudes of a few GHz
have essentially no influence on the short-range (r < rp)
wave functions. Therefore, for the magnetic field range of
0-1000 G considered in this work, one can effectively use
two constants, K¢ and K7, to reflect the overall effects of
the singlet and triplet potentials to the long-range wave
functions, negating the need for precise knowledges of
the short-range part of W (r). Physically, the two quan-
tum defects define the boundary conditions at rq for the
long-range wave functions.

For » > rg, the exchange interaction can be neglected
and W (r) becomes diagonal in the asymptotic channel
basis (namely, the eigen-energy basis of Hy + Hy), giving

hQZi(li + 1) Cs

- —14
212 r6

Wi(r) =5 | B + gy (6)
where EP° and [; are, respectively, the threshold en-
ergy and orbital angular-momentum quantum number
for channel i, and —Cg /% is the long-range vdW poten-
tial. The higher-order dispersion terms (such as —Cg/r®
and —C19/r1%) in the long-range potential are ignored.
While such omission reduces the accuracy of our pre-
dictions, it allows us to make use of the analytic wave
functions for the vdW potential, thereby enables highly
efficient numerical computations.

The Schrodinger equation with the potential of Eq. (6)
is solved analytically in Ref. [21], and a pair of linearly
independent base functions f¢,(rs) and g¢ ,(rs) that are
insensitive to energy and partial-wave variations at short-
range (rs — 0) can be defined [as given by Eq. (12) of
Ref. [64]]. Here, 7y = /B¢ with 5 = (2uCs/h?)"/* be-
ing the length scale of the vdW interaction. Employing
the MQDT as discussed earlier, the long-range (r > r¢)
solutions of Eq. (4) can be written as

F(r) = [f(rs) — g(rs) KA. (7)

Here, f(r;) and g(rs) are N x N diagonal matrices with el-
ements fi;(rs) = f¢ ;. (rs) and gii(rs) = g¢_,; (rs), respec-
tively. € = (E — E®)/sg with sp = h%/(2u62) being
the energy scale of the vdW interaction. The elements of
the N x N matrix K¢ are completely determined by the
two short-range parameters K¢ and Ky (Appendix A),
and f(rs) — g(rs)K® represents a set of solutions that



satisfy the short-range boundary conditions. The matrix
A, which is to be determined by the long-range boundary
conditions at r — oo, ensures that the final solutions are
physical.

The scattering problem considered in this work has
only one open channel and N, = N — 1 closed channels,
ie. BEf° < F and EX; > E. The long-range boundary
condition requires the closed-channel components to van-
ish at r — oo, namely, Tlgl;lo F;j(r) — 0 for ¢ > 1. Under

this condition, there is only one physical solution and its
long-range wave function is given by

Yi(r >rg) = gbl,@[ et (7s) + 96,00, (rs) K (€1, B)).

(®)

Here,
Kgﬁ(esh B) = Kgo + Kgc(XC - chc)ilKgm (9)

where x¢ is a N, x N, diagonal matrix with elements

X5 = lim ZJCZL"E:S; given by Eq. (54) in Ref. [23], K&,
rs—00 Jeg;1;\Ts
K¢, K&, and K¢, (with subscripts “o” and “c” referring
to open and closed channels) are sub-matrices of K¢ =
Ko Koo
Keo Kee]

In calculating FRs of atoms at ultracold temperatures,
we set €517 = 0 and will denote KS4(0, B) simply as
KS4(B) hereafter. The generalized scattering length for
the [-th partial wave is related to K$;(B) by [2]

1+ tan[(2] + 1)7 /8] KSs(B)
K¢;(B) — tan[(2] + 1)7 /8]

a(B)=a, {(1)1 + , (10)

where q; = &slﬂng is the mean scattering length for the

I-th partial wave, @g being an I-dependent constant [65].
A FR occurs when a;(B) diverges to infinity, i.e. when
the denominator of Eq. (10) becomes zero:

K%(Boy) — tan[(2l + 1)7/8] = 0. (11)

Around the resonance position By, @;(B) varies approx-
imately as a;(B) = abgi[l — Ap;/(B — Boi)] [1], a form
which defines the parameters we tabulate for each FR.
Using these parameters, the resonance strength (.5 can
be obtained by [2]

_ 1 apgl (A
Gres = @2+3)2-1) @ ( sp ) (12)

The parameter (e is used to define the “broadness” of a
FR. The differential magnetic moment du; is defined by
dp; = de;/dB|p=p,,, where the molecular state energy ¢
is obtained by solving [2]

K&y (er, B) — tan[(20 + 1)7/8] = 0. (13)

Within the MQDT model discussed above, the pre-
diction of FRs in arbitrary partial waves requires just
three parameters [22, 34, 56]: the vdW coefficient Cg

and the singlet (triplet) scattering length as (a;) which is
related to K¢ (Kf) (Appendix B), in addition to param-
eters for inherent atomic properties such as the atomic
masses and hyperfine splittings. The predictive power of
the analytic MQDT has been proven previously in sys-
tems such as °K-87Rb [56], °Li-4°K [34], and ®Rb-8"Rb
mixtures [18, 19]. The predictions by our MQDT are
generally not as accurate as those offered by numerical
coupled-channel calculations based on the full knowledge
of the molecular potentials of the collision pairs. How-
ever, at the expense of accuracy, the simplification made
by MQDT gains substantial advantages in efficiency and
in negating the need of short-range molecular potentials,
the latter is particular useful since not all the molecular
potentials of alkali-metal systems are well known.

In our investigation of FRs in alkali-metal systems, we
optimize the three parameters Cg, as and a; to minimize
the discrepancies between the calculated and the mea-
sured positions of previously known resonances. How-
ever, for systems without available experimental data,
the accuracy of the predictions is then determined by
the reliability of the three input parameters taken from
the relevant references and the applicability of the sim-
plified MQDT model. The parameters we adopt for all
the alkali-metal systems are listed in Appendix B. We
caution that these numbers are not to be taken as more
accurate than those adopted in other coupled channel
calculations.

IV. CONCLUSION

In summary, we report the calculated results for all the
“broad” s-, p-, and d-wave FRs free from two-body loss in
alkali-metal systems for magnetic field range of 0-1000 G,
based on a simple analytic MQDT. A number of sys-
tems exhibiting “broad” high partial-wave FRs and sev-
eral extraordinarily “broad” resonances are identified and
highlighted. Our results help to categorize systems suit-
able for experimental studies of universal properties in
strongly interacting atomic gases. We find that “broad”
p- or d-wave FRs in the lowest-energy scattering channels
do not exist for all possible fermionic alkali-metal combi-
nations. This encourages further explorations for low-loss
“broad” high partial-wave FRs in fermionic atoms to go
beyond alkali-metal systems.

Once deciding on a system or a resonance of interest
for further experimental study, a more precise charac-
terization is possible if needed. For a single resonance,
this can be achieved by measuring the binding energies of
the corresponding Feshbach molecule and following the
analysis embedded in Ref [2]. At a system level, includ-
ing all its resonances, improved characterization can be
achieved using CC calculations (see, e.g., [58]) or nu-
merical MQDT (see, e.g., [57]) if precise potentials are
available, or using multiscale MQDT along the line of
Ref. [66] to take into account potentials of shorter range,
such as the —Cg/r® potential.
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Appendix A: Obtaining K¢ from the short-range
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quantum numbers of the total nuclear spin I = i; +is and
total electronic spin S = s; + so. Furthermore, since the
functions f¢(rs) and g¢ ;(rs) are essentially independent

of €, and [ at short-range (where |V (r)| > |E — E>|),
one can approximate them by, say, f¢(rs) and g¢(rs), re-
spectively, around rg. Together, the two aforementioned
properties mean that, near rg, the spatial wave function
in the [IM;SMg) basis can be most conveniently written
as

parameters K¢ and K7 FUS) (r) ~ [fe(rs)I — g’c(rs)IKC(IS)]A(IS)’ (A1)
The basis that diagonalizes the short-range (r < rg)
BO potentials is the |[IM;SMg) basis characterized by where K9 is a diagonal matrix with elements
J
(1M SMs|K TS |1 M} S M) = 610001, 01,055 Orrsnr, K nr - (A2)

Here, K S( M) depends only on whether the channel is an electronic singlet or triplet state, namely, KO(IS) K¢ and

KC(IS) Kc([S) KC(IS)

K§. Comparing Eq. (A1) to Eq. (7) under the basis of | fimy, )| farny,) and noting that

F(r) = UF(IS)( ) for a given [, one can show that K¢ = UKUSUT, where U is a unitary matrix which transforms
the basis [IM;SMsg) to |fimy, )| famyg,). Based on this relation, one can obtain the elements of K¢ as shown below.
(Note that in practice, one only needs to include channels with the same My and [ as those of the open channel when

computing K; using Eqgs. (A6) and (A13).)

1. Heteronuclear system

The matrix elements K;; are given by
K§= (famy, |(fim}, [KC| f{m}, )| famd, )
IM;SMsI'M}S' M

-y

IMSMsI'M};S' M

(Fim, | fimly |TMy S M) {IM;S Ms|KUS) | I'M; S Mg) (I' My S M| fim, ) f3m,)

(Fami, | (Fims, [TMySMs)or10ar, ary 055 Oty K g (I MyS' M| fmiy )| fm, )

1 7 IS
= > (fim | (fimds | IMpSMs)(IMSMs| fimd )| 7, ) K&y
IM;SMg
cIS
= 3 WM gl (A3)
SMg

with wS Ms 1%4: (fam', [(fim’, \IMISMS><IMISMS|ffmJ}1>|f§m§¢2>. The wfj’MS can be expanded as

I

S,Ms _
wiy = >

IMp  i1myy S1 Mgy 12y S2Mesy

-/ Pl Nl o) Y Y N B e BRI B |
Z (IM;SMsliym Slm917ZQmi252m52><Zlmilslm;13ZQmiQSstQ|ffm§‘1>|fgm?‘2>'

-/ ’ ’ ’
1ym; in €2m52

i1 91m5112m

In calculating Eq. (A4), the |fymy, ) states of the two atoms (k =

(fém’}z | <f1im3}1 [i17m0, S17M0s, , T2, S2Mg, ) (111N, ST, G2, SoMg, [T M SMg)

(A4)

1,2) for channel ¢ or j need to be expanded as

follow
i), _i(j i(j 1 iy 1 i(j 1 i) | 1
|f1(J)mf(1])> _ al(J)‘m51 _ §7mi1 _ mf(lj) §> + bl(J)|m51 _ _§7mi1 _ mf(lj) + §>
i) i(j i(j 1 i(j i 1 iy | 1
|f2(3)mf(2ﬂ)> _ aQ(J)|m52 _ ivmiz _ mf(QJ) > (J)| 27mi2 _ mf(;) + §>, (A5)
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where the |mg,,m;, ) is the simplified notation of the uncoupled |syms, ,ixm;, ) basis for atom k (k = 1,2). The
expansion coefficients a and b can be easily obtained from the Breit-Rabi formula [34, 67].

Making use of Egs. (A3-A5) and the properties of the Clebsch-Gordan coefficients, one can show that K7; is given
by

Di;K;+ (1—D;j)Kg, i=j,

K = T (A6)
Dij (K¢ = K7), i # 7,
where
%(avlbéajlb% + bzlaébjla;)v A7/77‘f1 =0,
1oipipd 40 =
—saibibla Amyg, = —1
Dy=q Y e (A7)
—Lbjakalt], Amy, =+,
0, else,
with Amy, defined as Amy, = me-l - me1 Due to the conservation of my, +my,, Amy, = mgcz - mjcz = —Amy,.

2. Homonuclear system

For homonuclear systems with indistinguishable atoms, the total wave function of the systems should satisfy the
permutation symmetries of bosonic or fermionic particles. If |fimy,) and |fomy,) are not the same, the spin part of
the wave function is written as

1

V2

where 21 4+ 1 is even for bosonic and odd for fermionic atoms. If |fymy,) and |fomy,) are the same, the spin wave
function is written as

(|f1mf1>|f2mf2> + (_1)(2I+1+l)|f2mf2>|f1mf1>)7 (AS)

%(|f1mf1>‘f1mf1> + (=) frmg, )| fimy, ), (A9)

which is different from Eq. (A8) only in the normalization constant. Eq. (A9) implies that for collisions of identical
atoms in the same hyperfine state, only even [ is allowed for bosons and only odd [ for fermions. The matrix elements
of K¢ for homonuclear systems are therefore given by

Koo = Col{fimb | fimi, | & (i, |, Ky (| fmy )| ) = | Hmd ) )
= CCy fim |, (KL ) fmd ) = CiCi iy | fimn, 1K fm, ) )
O, iy | Fim, (K| fmd )| Fmd )+ CoCy Fim, | [KE Fmd, ) | fimd ), (A10)

where the + sign is determined by the parity of 27 + 1 +[.

The normalization constant C; and C; are with

i(9) i(4) i) i(9)
1 27 == 5 = )
Gy =4 % TSR )
1/v2, else.
The first and the fourth term in Eq. (A10) are the same

as K¢ in the heteronuclear case except for a coefficient
C;C;. Denoting the second and third exchange terms as

K& ij» BEa. (A10) can be written as
EZKf‘i’ 1-E)Kf, 1=,
o Ky = K+ ( VK J (A13)
Kfomo,ij = 2CiCj |K§; + (—1) Kecx,ij:| , (A12) Eij(KS — Kf), i # 7,



where
3(aibhashi + bajbhal), Amy, =0,
B flalblbjal, Amy, = —1,
N —5 1a2a2b Amy, = +1,
0, else.
(A14)

Appendix B: Input parameters as, a:, and Cg

The singlet scattering length ag, the triplet scatter-
ing length a;, and the vdW coefficient Cs adopted in
this work for every alkali-metal system are listed in Ta-
ble VIII. For systems with available experimental data
on FRs, these parameters are optimized to give the best
overall agreements between the predictions based on our
theory and the experimentally measured resonance po-
sitions. As such, some of them are adjusted from the
values given in the references. The singlet and triplet
scattering lengths a, and a; are related to K and K
according to [22]

(3/4) } Ksc(t) + tan(7/8) (B1)

“5“)/’86:{%(5/4) K¢, — tan(n/8)’

where (g = (2uCg/h?)'/%.

TABLE VIII. The optimized parameters as, a; and Cs for
calculating FRs in alkali-metal systems by analytic MQDT.

System as (auw.)  a¢ (aun.)  Cg (au.) Reference
61i-514 44.45° -2040° 1393.39 (68, 69]
SLi-"Li -20 40.9 1390 (68, 70]
Li-%Na 21° 14 1467 [71, 72]
SLi-3K 64.4 67.7 2322 [73]
SLi-1'K 52.5 63.7 2322 [34]
SLi-4'K 42.3 60.38” 2322 [73]
Li-*Rb 8.87 -14.88 2450 [74]
“Li-¥"Rb 0.5 -18.6 2452 [41, 72]
Li-133Cs 30.252 -34.259 2955 [40, 72]
"Li-"Li 33.75° -26.92 1393.39 (69, 75]

TABLE VIII. (Continued.)
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System as (au.) a; (aw.) Cs (a.u.) Reference
"Li->*Na, 5 21 1467 [72, 76]
"Li-*K 29.1 81.2 2322 [73]
"Li-°K 13.9 74.5 2322 [73]
"Li-"'K -7.92 69.1 2322 [73]
"Li-®Rb 60.5 -51.5 2450 [41, 72]
"Li-*"Rb 53.9 -63.5 2448 [41, 72]
TLi-133Cs 45.477 908.6 2955 [40, 72]
Na-2*Na  18.81 62.58° 1560.1 [77]
2Na-3K 255 -84 2350 [72, 78
#Na-'K 63 -838 2370 [72, 78]
BNa-11K -3.65 267 2360° [72, 78]
2Na-3Rb 396 81 2472 [79]
#Na-*"Rb 109 70 2472 [79]
B Na-133Cs 513 33 3035 80]
SOK4PK 138.9 -30.1° 3710° [36]
BKHK -2.84 -1985 3925.9 [81]
PK+MK 113.07 177.1 3925.9 [81]
9K +5Rb 33.4 63.9 4150° [82]
¥K+*"Rb 1868 35.9 4085° [82]
OK483Cs -18.4 70° 5159 [45, 72|
10K 410K 101.8° 169.67 3925.9 [81]
OK+MK -54.28 94.95° 3925.9 81]
K48 Rb 65.8 -28.55 4150° [82]
OK4+5Rb  -111.5 -215.6 4150° [82]
WOK4138Cs 5144 -71.67 5159 [45, 72]
PKHMK 85.53 58.89 3925.9 [20, 81]
HK4+5Rb 103.1 349.8 4150° [82]
“K+5"Rb 7.06 164.4 4150° [82]
UK433Cs -72.79 179.06 5159 [45, 72]
S5Rb+%Rb 2735 -386 4505 [37, 58]
85Rb+3"Rb  11.37 184° 4710 [58]
S5Rb+1%3Cs  585.6 11.27 5390 [48, 83]
S"Rb+5"Rb  90.35 99.04 4410° [58]
STRb+'¥3Cs 997 513.3 5300 [49, 83
1330s4133Cs  286.5 2858 6400 [39]

b The parameters are adjusted from the values given in

references.
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