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Abstract

We explore the suitability of ultracold collisions between spin-polarized SrF(2Σ+) molecules

and Rb(2S) atoms as elementary steps for the sympathetic cooling of SrF(2Σ+) molecules in a

magnetic trap. To this end, we carry out quantum mechanical scattering calculations on ultracold

Rb + SrF collisions in a magnetic field based on an accurate potential energy surface for the triplet

electronic state of Rb-SrF developed ab initio using a spin-restricted coupler cluster method with

single, double and noniterative triple excitations [RCCSD(T)]. The Rb-SrF interaction has a global

minimum with a well depth of 3444 cm−1 in a bent geometry and a shallow local minimum in the

linear geometry. Despite such a strong and anisotropic interaction, we find that converged close-

coupling scattering calculations on Rb + SrF collisions in a magnetic field are still possible using

rotational basis sets including up to 125 closed rotational channels in the total angular momentum

representation. Our calculations show that electronic spin relaxation in fully spin-polarized Rb-

SrF collisions occurs much more slowly than elastic scattering over a wide range of magnetic fields

(1-1000 G) and collision energies (10−5−10−3 K) suggesting good prospects of sympathetic cooling

into the microkelvin regime of laser-cooled SrF(2Σ+) molecules with spin-polarized Rb(2S) atoms

in a magnetic trap. We show that incoming p-wave scattering plays a significant role in ultracold

collisions due to the large reduced mass of the Rb-SrF collision pair. The calculated magnetic field

dependence of the inelastic cross sections at 1.4 µK displays a rich resonance structure including

a low-field p-wave resonance, which suggests that external magnetic fields can be used to enhance

the efficiency of sympathetic cooling in heavy atom-molecule mixtures.
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I. INTRODUCTION

The production, trapping and manipulation of cold molecular gases is expected to make

a major impact on chemical physics, quantum information processing, quantum simulation,

and fundamental tests of physics beyond the Standard Model [1]. The ability to manipulate

cold molecules with external electromagnetic fields is key to the wide range of their proposed

applications [2]. External field-induced Stark and Zeeman energy shifts, while insignificant

at thermal collision energies, become of major importance at ultralow temperatures, where

they can be used to activate or suppress reaction mechanisms [1, 3–6]. A variety of ingenious

mechanisms to control the reaction rates have been demonstrated experimentally, including

the use of Fermi statistics, long-range dipole-dipole interactions, and external confinement

to control the reaction KRb + KRb → K2 + Rb2 [7, 9]. Recent theoretical work has

explored the important roles of geometric-phase effects [10], quantum chaos [11, 12], and

electric-field-induced reactive scattering resonances [13] in ultracold chemical reactions.

Since its first experimental demonstration in 1998 [14], magnetic trapping remains a key

experimental technique for the production and trapping of cold molecular gases. Examples of

molecular radicals trapped using this technique include CaH [14], NH [15], OH [3, 16], O2 [17]

and more recently, CaF [18] and CH3 [19]. Latest experimental advances in laser cooling [20–

25] and molecular beam deceleration have enabled magnetic and magneto-optical trapping

of molecular ensembles at much lower temperatures than was previously possible. Laser-

cooled samples of SrF(2Σ+) and CaF(2Σ+) molecules have been trapped at temperatures

≤400 microKelvin [21–23, 25]. Additionally, efficient transfer of CaF [26] and SrF [27]

molecules into a conservative quadrupole magnetic trap has recently been reported, achieving

temperatures around 100 and 200 microKelvin. More recently, sub-Doppler cooling of CaF

molecules to a temperature of 60 µK has been demonstrated [28]. While experimentally

demonstrated samples have low enough densities to avoid molecule-molecule collisions [26,

27], they represent an ideal starting point for performing sympathetic cooling with a co-

trapped atomic sample.

While extremely low compared to ambient or even cryogenic conditions (T = 1 − 4 K),

milliKelvin temperatures are still too high for manipulating molecular interactions with

external electromagnetic fields. The primary tool for such manipulation—the magnetic Fes-

hbach resonance [29]—requires collisions in a single partial-wave (s-wave) regime, which

2



occur at temperatures well below 1 mK for most molecules. Direct laser-cooling and molec-

ular beam deceleration cannot reach such low temperatures due to their intrinsic limitations

(such as the Doppler limit [23]), so alternative cooling methods must be employed to reach

the ultracold regime [25].

Sympathetic cooling is one such method, based on cooling atomic and molecular species

by immersion in a gas of coolant atoms [30]. The method relies on elastic collisions to transfer

momentum between the hot molecules and the coolant atoms and has been successfully used

to cool fermionic K atoms [31], leading to the production of a quantum degenerate Fermi gas

[32]. Inelastic collisions are detrimental to the cooling process as they release the internal

(e.g. Zeeman) energy of trapped molecules, leading to undesirable heating and trap loss [1].

Spin-relaxation (or depolarization) collisions, which flip the electron spin of the molecule,

represent a major inelastic channel for molecular radicals confined in permanent magnetic

traps [34, 36, 67]. For optimal cooling, the ratio of the cross sections for elastic to spin

relaxation collisions γ should exceed 100 [1, 37].

The search for atom-molecule combinations with favorable collisional properties for sym-

pathetic cooling experiments has stimulated the development of molecular collision theory in

the presence of magnetic fields by Volpi and Bohn [33] and Krems and Dalgarno [34]. These

pioneering theoretical studies focused on collisions with He atoms and found that due to

the low anisotropy of the molecule-He interaction, collision-induced spin relaxation of light

2Σ and 3Σ molecules with large rotational constants occurs much more slowly than elastic

scattering, leading to the prediction that NH(3Σ−) radicals could be magnetically trapped

in cryogenic He buffer gas, which was later realized experimentally [15, 38].

Ultracold paramagnetic atoms (such as the alkali-metal atoms or atomic nitrogen) offer

a viable alternative to cryogenic helium, which is unsuitable for sympathetic cooling of

molecules below 100 mK due to its vanishing vapor pressure. Ultracold alkali atoms (e.g.

Li, Na, Rb, and Cs) at high phase-space densities are routinely produced using methods

of laser cooling and trapping followed by evaporative cooling [39–41]. However, theoretical

studies found large inelastic relaxation rates in collisions of molecular radicals OH(2Π) and

NH(3Σ) with ultracold Rb atoms, suggesting that the alkali-metal atoms would be much less

suitable for sympathetic cooling of magnetically trapped molecules than the alkaline-earth

atoms such as Mg [35] or atomic Nitrogen [42, 43] or Hydrogen [44], which present significant

experimental difficulties associated with either trapping or detection.
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More recent quantum scattering studies have shown, however, that 2Σ molecular radicals

such as CaH and SrOH have low spin relaxation rates in collisions with ground-electronic-

state Li(2S) atoms in their maximally spin-stretched Zeeman states, despite the triplet Li-

CaH and Li-SrOH interactions being extremely strong and anisotropic [46, 47]. The sup-

pression of spin relaxation is due to the weak spin-rotation coupling among the molecular

rotational levels involved in spin-flipping transitions [45, 46] and opens up the possibility of

sympathetic cooling of 2Σ+ molecules by ultracold Li atoms [46, 47].

While atomic Li appears as a promising coolant for 2Σ molecules, quantum scattering

calculations on Li-molecule collisions performed thus far neglected the chemical reaction

between co-trapped molecules and Li atoms (e.g. Li + CaH → LiH + Ca), which are

energetically allowed for many 2Σ+ molecules of interest such as CaH [46, 48], SrOH [47],

and SrF [49] as is the chemical reaction SrF + SrF → SrF2 + Sr [50]. These reactions are

often assumed to be forbidden for spin-polarized reactants by conservation of the total spin

S of the reaction complex [6, 52, 53]. However, model calculations show that S-changing

intersystem crossing can occur at substantial rates even in fully spin-polarized atom-molecule

collisions [54], triggering rapid chemical reactions [48], which are detrimental for sympathetic

cooling.

Fortunately, the chemical reactions of 2Σ molecular radicals with heavier alkali-metal

atoms, such as Rb + SrF → RbF + Sr are strongly endothermic [49] and will therefore

not occur at ultralow temperatures. This consideration, together with recent numerical

simulations of sympathetic cooling dynamics of trapped CaF molecules [37] suggests that Rb

might be a better coolant atom than Li. However, the collisional properties of 2Σ molecular

radicals with alkali-metal atoms heavier than Li remain unexplored due to the large densities

of rovibrational states and strongly anisotropic atom-molecule interactions [46, 47, 49, 55],

which have thus far precluded converged quantum scattering computations on these heavy

systems. As a result, it remains unclear whether the ratio of elastic to inelastic collision

rates in Rb-molecule collisions is large enough to allow for efficient sympathetic cooling.

In this work, we investigate ultracold collisions in a chemically non-reactive atom-molecule

mixture Rb-SrF using coupled-channel quantum scattering calculations based on an accurate

ab initio potential energy surface (PES) of triplet symmetry. This system can be realized

experimentally by co-trapping laser-cooled SrF(X2Σ) molecules [21, 23] with Rb atoms.

We explore the experimentally demonstrated regime for magnetically trapped SrF samples
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around 200 microKelvin and 100 Gauss [27] providing a path to microKelvin SrF molecules.

We also show that despite a high density of rovibrational states of the Rb-SrF collision com-

plex, it is possible to carry out converged coupled-channel (CC) calculations of elastic and

inelastic cross sections using a recently developed total angular momentum representation

for molecular collisions in magnetic fields [67]. We find that the ratios of elastic to inelastic

cross sections, while not as favorable as for Li collisions [46, 47], are nevertheless fairly large

(γ > 10) over most of the collision energy and magnetic field ranges studied, with γ > 100

reachable by tuning the external magnetic field and/or collision energy. We also find a rich

resonance structure in the spin relaxation cross sections as a function of applied magnetic

field at ultralow collision energies (1.4 µK). Most of the resonance structure arises due to the

incoming p partial-wave contributions, which are present even at very low collision energies

due to the large reduced mass of the Rb-SrF collision complex, leading to an enhancement of

the inelastic cross section. Our results suggest that the efficiency of sympathetic cooling in

spin-polarized Rb-SrF(X2Σ) mixtures can be enhanced by tuning the spin relaxation cross

sections away from resonance with an applied magnetic field.

This article is organized as follows. Section IIA presents our ab initio calculations of the

triplet Rb-SrF potential energy surface (PES) and explores the main features of the PES.

Sec. IIB outlines the methodology of our quantum scattering calculations in a magnetic field

using the total angular momentum representation. Section III presents the results for the

elastic and inelastic cross sections as a function of collision energy and magnetic field, along

with an analysis of spin relaxation mechanisms. Section IV concludes with a summary of

the main results and an outline of future research directions.

II. THEORY

A. Ab initio calculations of the triplet Rb-SrF PES

As mentioned in the Introduction, the endothermicity of the chemical reaction Rb +

SrF → RbF + Sr [49] makes atomic Rb particularly attractive as a collision partner for

sympathetic cooling of SrF. To pave the way for quantum dynamics calculations, we have

carried out high-level ab initio calculations on the 3A′ electronic state of Rb-SrF using

the state-of-the-art coupled cluster method with single, double and noniterative triple ex-
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citations [CCSD(T)] [56, 57] implemented in the MOLPRO package [58]. The augmented

core-valence, correlation-consistent basis set (aug-cc-pCVQZ) was employed to describe the

F atom. For the Rb and Sr atoms, small-core relativistic energy-consistent pseudopoten-

tials (ECP28MDF) were used together with a tailored valence basis set spdfg. All basis

functions were uncontracted [59, 60] and subsequently augmented by adding a single set of

even-tempered functions. The interaction energy from the supermolecular calculations was

counter-poise corrected to eliminate the basis-set superposition error (BSSE)[61]. To de-

scribe the geometry of the Rb-SrF collision complex we use the Jacobi coordinates R and θ,

where R is the distance between Rb and the center of mass of SrF and θ is the angle between

the SrF axis and the vector pointing from the center of mass of SrF to Rb. Throughout

this paper, we assume that the SrF molecule is rigid and compute the interaction energy

as a function of R and θ at a fixed SrF bond length (r = 2.075 Å) corresponding to the

experimentally measured equilibrium geometry [65].

The ab initio calculations are performed on a dense two-dimensional grid of θ and R

extending from 2 to 10 Å in steps of ∆θ = 5◦ and ∆R = 0.25 Å. For a given value of R the

PES is interpolated using the reproducing kernel Hilbert space (RKHS) method [66]. The

RKHS parameters were set to extrapolate the interaction energy as−C6R
−6−C7R

−7−C8R
−8

beyond 10 Å [30]. We monitored the stability of the coupled-cluster calculations using the

T1-diagnostics [64] with a result below 0.02 for all the R gridpoints investigated.

The interpolated ab initio PES is expanded in Legendre polynomials as

Vλ(R) =
1

2
(2λ+ 1)

∫ 1

−1

V (R, θ)Pλ(cos(θ))d cos θ. (1)

Following Ref. [62], the angular integration is performed using the quadratures which accu-

rately reproduce the isotropic part of the potential V0(R). Due to a very strong potential

anisotropy, we used a large number of expansion terms Vλ(R) with λ ≤ 25. To ensure the

smoothness of the potential beyond 10 Å, we used the van der Waals analytical expansion

in inverse powers of R for the 5 leading terms (0 ≤ λ ≤ 4). For higher-order Legendre

components the potential was damped to zero at R > 11 Å. A smooth connection between

the ab initio PES at short range and the analytical expansion at long-range was ensured by

using the switching function introduced by Janssen et al. [62] between 9 and 11 Å.

A contour plot of our ab initio PES of the Rb-SrF complex is shown in Fig. 1. The triplet

PES has a global minimum in a bent configuration with R = 4.1Å, θ = 25◦ with a well
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TABLE I. Convergence of the absolute magnitude of the interaction energy with the basis set size

at the global minimum (R = 4.1 Å θ = 25◦) and two saddle points at linear geometries: Rb-F-Sr

(with R = 4.25 Å) and Rb-Sr-F (R = 6.8 Å). The energy unit is cm−1.

aug-cc-pCVTZ aug-cc-pCVQZ aug-cc-pCV5Z CBS

global minimum 3329 3444 3485 3521

Rb-F-Sr saddle point 3093 3243 3292 3337

Rb-Sr-F saddle point 170 172 173 175

depth of De = 3444 cm−1. Here and elsewhere except Sec. IIB, we express energy in units

of wavenumbers (cm−1), which are commonly used to measure energy in spectroscopy and

molecular physics [63]. By definition, the wavenumber ν̃ = 1/λ is the number of wavelengths

λ per 1 cm. While wavenumbers are, strictly speaking, not energy units, they are directly

proportional to energy via E = hcν̃, where h is Planck’s constant and c is the speed of light

in vacuum. As a point of reference, 1 cm−1 = 4.55633× 10−6 atomic units of energy [63].

The Rb-SrF interaction potential is extremely anisotropic, leading one to expect strong

coupling between the rotational states of SrF in the collision complex. There are two saddle

points on the PES, both at linear geometries. For the Sr-F-Rb configuration the saddle point

is located at R = 4.25 Å, while for the Rb-Sr-F configuration it is located at R = 6.80 Å. It

is worthwhile to note that the global minimum of the triplet PES is strongly attractive even

at the restricted Hartree-Fock level of theory (about 2900 cm−1 near the global minimum).

This implies that the inaccuracy of our ab initio PES should be smaller than that of typical

dispersion-bound systems. To estimate the inaccuracy due to the incompleteness of the

basis set, we compare in Table I the interaction energies near the stationary points of the

PES obtained with series of basis sets of different quality, ranging from triple- to quintuple-

zeta, as well as with the approximate complete basis set limit (CBS). Clearly, the depth

of the potential near the global minimum and the Rb-F-Sr saddle point changes very little

with increasing basis set size. Moreover, we observe that all the stationary points behave

very similarly at the quintuple zeta level and in the CBS, so the shape of the PES is

insensitive to the basis set. The global minimum obtained with the quadruple-zeta basis

set, which was used in production calculations, is underestimated by 2.2% compared to the

CBS limit. The corresponding figures for the Rb-Sr-F and Rb-F-Sr saddle points are 1.7%
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and 2.8% respectively. Since the interaction energy of Rb-SrF is not dominated by the

dispersion interaction, the contributions of higher excitations are marginal, and we expect

the CCSD(T) method to accurately reproduce the interaction energy.

B. Quantum scattering calculations

The quantum scattering problem for Rb + SrF in a magnetic field is solved by the

numerical integration of close-coupling (CC) equations using the total angular momentum

representation in the body-fixed (BF) coordinate frame [46, 67]. We employ the rigid-rotor

approximation by constraining the SrF bond length to the ground-state equilibrium value

of r = 2.075 Å. The approximation is justified by recent ab initio calculations [49], which

show that the Rb-SrF interaction depends on r only weakly.

The effective Hamiltonian for low-energy collisions between a 2S atom A (Rb) and a 2Σ

diatomic molecule B (SrF) in the presence of an external magnetic field may be written

using the atomic units (~ = e = me = 1) [46, 67]

Ĥ = − 1

2µ
R−1 d2

dR2
R +

(Ĵ − N̂ − ŜA − ŜB)2

2µR2
+ ĤA + ĤB + Ĥint (2)

where A and B stand for Rb and SrF, µ is the reduced mass of the A-B collision complex

µ = mAmB/(mA + mB) with mA = 86.909180527 and mB = 106.90401532 a.m.u, ĤA and

ĤB describe non-interacting collision partners in an external magnetic field, and Ĥint is the

atom-molecule interaction, which vanishes in the limit R→∞. The embedding of the BF z

axis is chosen to coincide with the vector R, and the BF y axis is chosen to be perpendicular

to the plane defined by the collision complex (see Appendix A for more details).

In Eq. (2), Ĵ is the operator for the total angular momentum of the collision complex,

N̂ is that for the rotational angular momentum of the diatomic molecule, and ŜA and ŜB

are the operators for the electronic spin angular momenta of atom A and molecule B. The

orbital angular momentum operator of the collision complex in the BF frame is given by

l̂ = (Ĵ − N̂ − ŜA− ŜB). The Hamiltonian of atom A is given by ĤA = geµBŜA,ZB, where ge

is the electron g-factor, µB is the Bohr magneton, ŜA,Z gives the projection of ŜA onto the

space-fixed Z-axis defined by the direction of an external magnetic field B and B = |B| is

the field magnitude. The Hamiltonian of the diatomic molecule B in its ground electronic
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state of 2Σ symmetry (such as SrF) is

ĤB = BeN̂
2 + γSRN̂ · ŜB + geµBŜB,ZB, (3)

where Be = 0.2536135 cm−1 is the rotational constant, and γSR = 2.501 × 10−3 cm−1 is

the spin-rotation constant (the values for the 88Sr19F isotope from Ref. [22]). In this work,

we neglect the weak hyperfine interactions due to the nuclear spins of 87Rb and 88Sr19F for

the sake of computational efficiency (adding these interactions would increase the number

of channels by a factor of (2IA + 1) × (2IB + 1) = 8, increasing the computational cost

over 100-fold). In the regime where the Zeeman splitting is small compared to the hyperfine

interaction, scattering calculations omitting the latter are known to underestimate the actual

values of spin relaxation cross sections [51]. The critical value of the magnetic field above

which the hyperfine interactions become small compared to the Zeeman interaction (and

hence can be neglected) is given by Bc = ∆10/µB = 77 G, where ∆10 = 107.9 MHz is

the ground-state hyperfine splitting of 88Sr19F (IB = 1/2) calculated using the molecular

constants from Ref. [22]. Thus, our results at B ≥ 100 G are likely to be only weakly

affected by the hyperfine interaction.

The atom-molecule interaction given by the Ĥint term in Eq. (2) includes both the

electrostatic interaction potential V̂ and the magnetic dipole-dipole interaction V̂dd between

the magnetic moments of A and B. The interaction potential V̂ may be written

V̂ (R, θ) =

SA+SB∑
S=|SA−SB |

S∑
Σ=−S

|SΣ〉V̂ S(R, θ)〈SΣ| , (4)

where total electronic spin S is defined as Ŝ = ŜA + ŜB. In this work, we are interested in

collisions between rotationally ground-state SrF molecules (N = 0) with Rb atoms initially

in their maximally stretched, magnetically trappable Zeeman states, i.e. MSA
= MSB

= 1/2,

where MSA
and MSB

are the projections of ŜA and ŜB onto the magnetic field axis. Following

our previous work on Li-CaH and Li-SrOH [46, 47] we assume that the non-adiabatic coupling

between the triplet (S = 1) and the singlet (S = 0) Rb-SrF PESs can be neglected, and

that the PESs are identical, i.e. V̂ S=0(R, θ) = V̂ S=1(R, θ). The magnetic dipole-dipole

interaction may be written [68]

V̂dd = −g2
eµ

2
0

√
24π

5

α2

R3

∑
q

(−)qY ∗2,−q(R̂)[ŜA ⊗ ŜB](2)
q , (5)
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where µ0 is the magnetic permeability of free space, α is the fine-structure constant and

[ŜA ⊗ ŜB]
(2)
q is the spherical tensor product of ŜA and ŜB.

Following previous theoretical work [46, 67, 68], the total wave function of the Rb-SrF

collision complex is expanded in a set of basis functions

|JMΩ〉|NKN〉|SAΣA〉|SBΣB〉 , (6)

where Ω, KN , ΣA and ΣB are the projections of J , N , SA and SB onto the standard BF

axis z′ (see Appendix A), and Ω = KN + ΣA + ΣB. The basis functions in Eq. (6) are

direct products of four state vectors. The first state vector describes the rotation of the

rigid atom-molecule collision complex in three dimensions, and may be written as |JMΩ〉 =

(2J+1
4π

)1/2DJ∗
MΩ(ᾱ, β̄, γ̄), where ᾱ, β̄, and γ̄ are the Euler angles that specify the orientation of

the standard body-fixed (BF) frame relative to the SF frame, and DJ
MΩ(ᾱ, β̄, γ̄) is a Wigner

D-function [78]. As shown in Appendix A (see also Refs. [69, 70]) the third Euler angle

γ̄ = φ, where φ is the azimuthal angle of the diatomic molecule in the two-thirds BF frame

shown in Fig. 5(a). The second state vector |NKN〉 = YNKN
(θ, 0) belongs to the Hilbert

space of a rigid rotor (the diatomic molecule B) where the polar angle θ is the polar angle

of the molecular axis in the standard BF frame (see Appendix A). The state vectors |SAΣA〉
and |SBΣB〉 are in the Hilbert space of a spin-SA (or spin-SB) system, which accounts for

the spin degrees of freedom of atom A (or molecule B). Note that the projections ΣA and

ΣB are defined with respect to the BF z-axis R.

The BF basis (6) is closely related to the standard SF total angular momentum basis of

eigenfunctions of Ĵ2 and ĴZ widely used in molecular collision theory [71]. Here, Z stands for

the SF Z-axis defined by the direction of an external magnetic field. The SF basis functions

can be obtained by vector coupling of all angular momenta in the system

|JM(lJABJBSASBN)〉 =
∑

MAB ,Ml

〈JABMABlMl|JM〉|JABMAB(JBSASBN)〉|lMl〉 (7)

where 〈· · · · | · ·〉 are the Clebsch-Gordan coefficients, Ĵ = l̂ + ŜA + ŜB + N̂ is the to-

tal angular momentum of the collision complex, ĴAB = ŜA + ĴB is the combined angular

momentum of atom A and diatomic molecule B, ĴB = ŜB + N̂ is the total angular mo-

mentum of the diatomic molecule, and |lMl〉 are the eigenstates of l̂2 and l̂Z . The functions

|JABMAB(JBSASBN)〉 on the right-hand side of Eq. (7) are obtained by vector coupling of

the eigenstates of Ĵ2
B and ĴBZ

and those of Ŝ2
A and ŜAZ

.
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We further note that the quantum number J of the BF state |JMΩ〉 is the same as

that of the SF state |JM(lJABJBSASBN)〉 in Eq. (7) because these states are related by

an orthogonal rotation transformation R̂(ᾱ, β̄, γ̄), which transforms the SF axes to the BF

axes [78]. Because the rotation operator R̂(ᾱ, β̄, γ̄) commutes with the total angular momen-

tum operator of the system J2, the value of J is unchanged by the rotation transformation

as discussed in more detail in Sec. 3.5 of Ref. [78] (see also Eq. (17) of Tennyson and

Sutcliffe [79]).

The BF and SF states given by Eqs. (6) and (7) are related by an orthogonal transfor-

mation

|JM(lJABJBSASBN)〉 =
∑
α,Ω

W JM
ΩNKNSAΣASBΣB ;lJABJBSASBN

|JMΩ〉|NKN〉|SAΣA〉|SBΣB〉

(8)

where the coefficients W JM
ΩNKNSAΣASBΣB ;lJABJBSASBN

form an orthogonal matrix W, which

can be obtained by diagonalizing the matrix of l̂2 = (Ĵ − N̂ − ŜA − ŜB)2 in the BF basis

(6) as described in our previous work [67]. The transformation (8) does not mix basis

functions with different values of J , M , and N [67]. An advantage of the SF total angular

momentum basis (7), (8) is that it provides a representation that diagonalizes the operator

l̂2 = (Ĵ − N̂ − ŜA − ŜB)2 in Eq. (2) and thus each SF basis function has a definite value

of l as required for the application of scattering boundary conditions. We transform the

log-derivative matrix to the SF basis after reaching the outer end of the integration grid (see

below and Ref. [67]).

Scattering calculations in external fields can also be carried out using the fully uncou-

pled SF basis [33, 34]. While these calculations provide an independent test of the results

computed here using the BF basis (see Appendix B) the SF basis sets become too compu-

tationally expensive already for Nmax ≥ 7, and thus cannot be used to obtain converged

results for strongly anisotropic Rb + SrF collisions [36, 46].

In the presence of an external magnetic field, the projection M of the total angular

momentum J onto the magnetic field axis M is conserved (unlike J itself) [34, 67] and we

solve the CC equations separately for each value of M . The matrix elements of the effective

Hamiltonian in the total angular momentum representation (6) are evaluated as described
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elsewhere [67]. The matrix elements of the magnetic dipole-dipole interaction V̂dd are

〈J ′MΩ′|〈N ′K ′N |〈SAΣ′A|〈SBΣ′B|V̂dd|SBΣB〉|SAΣA〉|NKN〉|JMΩ〉 = δJ ′JδΩ′ΩδN ′NδN ′
KNK

×
(
−
√

30g2
eµ

2
0α

2

R3

)
(−1)SA+SB−ΣA−ΣB

√
(2SA + 1)SA(SA + 1)

√
(2SB + 1)SB(SB + 1)

×
∑
qA,qB

 1 1 2

qA qB 0

 SA 1 SA

−Σ
′
A qA ΣA

 SB 1 SB

−Σ
′
B qB ΣB

 . (9)

The size of the basis set is determined by the truncation parameters of Jmax and Nmax

which give the maximum quantum numbers of the total angular momentum J of the collision

complex and the rotational angular momentum N of SrF in the basis set. We use the values

Jmax = 3 and Nmax = 125 that give the elastic and inelastic cross sections converged to

≤ 2.5% (see Appendix C). The numerical procedures used in this work are essentially the

same as those employed in our previous studies of Li + CaH and Li + SrOH collisions [46, 47].

The CC equations are solved numerically using the log-derivative propagator method [73, 74]

on an equidistant radial grid from Rmin = 5.2 Bohr to Rmid with Rmid = 15.0 Bohr for

B ≥ 10 G and Rmid = 25.0 Bohr for B < 10 G using a step size of 0.002 Bohr. Airy

propagation is employed for Rmid ≤ R ≤ Rmax with Rmax = 300.0 Bohr for B ≥ 10 G

and Rmax = 750 Bohr for B < 10 G. At R = Rmax, we transform the log-derivative matrix

from the BF total angular momentum representation (6) to the SF basis (7) via Eq. (8). In

spite of providing a diagonal representation for the operator l2, the asymptotic Hamiltonian

ĤA +ĤB [the R→∞ limit of Eq. (2)] is not diagonal in either BF or SF representations due

to the presence of an external magnetic field, which couples basis functions of different J , so

an additional change of basis is required to bring the asymptotic Hamiltonian to a diagonal

form [67]. The matrix of this final transformation is composed of the eigenvectors of the

asymptotic Hamiltonian in the SF basis (7). After all of these transformations, the log-

derivative matrix is matched to the scattering boundary conditions to obtain the S-matrix

following standard numerical techniques [72]. The scattering cross sections are computed

from the S-matrix elements as described in, e.g., Refs. [67, 68].
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III. RESULTS

A. Elastic and inelastic cross sections

Figure 2(a) shows the elastic and inelastic cross sections for spin-polarized Rb + SrF

collisions plotted as functions of collision energy for the external magnetic fields of 1, 100, and

1000 G. The internal state of SrF(X2Σ+) before the collision is |N = 0,MN = 0,MSB
= 1/2〉

and that of Rb(2S) is |MSA
= 1/2〉. At very low collision energies of interest here (which

are much smaller than the rotational energy splitting between the ground N = 0 and the

first excited, N = 1 rotational states of SrF), the only inelastic process that can occur is

electronic spin relaxation within the ground rotational state, i.e. |N = 0,MN = 0,MSB
=

1/2〉 → |N ′ = 0,M ′
N = 0,M ′

SB
= −1/2〉. The field dependence of the elastic cross section

is very weak, and thus only the B = 1000 G result is shown in Fig. 2 (a). We observe that

the inelastic cross section decreases with increasing the magnetic field from 1 G to 1000 G;

the effect is particularly strong in the ultracold s-wave regime.

A key figure of merit for sympathetic cooling is the ratio of elastic to inelastic cross

sections γ = σel/σinel; γ > 100 is generally required for optimal sympathetic cooling of mag-

netically trapped molecules [1, 37, 46, 47]. Figure 2 (b) shows that the calculated values of γ

for Rb + SrF collisions exceed 100 at collision energies above EC ∼ 5× 10−5 cm−1, suggest-

ing good prospects for sympathetic cooling of cold SrF(2Σ+) molecules with magnetically

co-trapped Rb atoms. At ultralow collision energies (EC < 10−5 cm−1) the ratio of elastic to

inelastic collision rates drops below 100 and becomes very sensitive to the applied magnetic

field. Still, we observe that the inelastic cross sections are relatively small at B = 1000 G

compared with their values at smaller magnetic fields. Thus, as noted previously for He + O2

[75] and Li + SrOH [47], it may be possible to enhance the efficiency of sympathetic cooling

by tuning the inelastic cross sections with an applied magnetic field.

Figures 3(a)-(b) show incoming partial wave contributions to the elastic and inelastic cross

sections at B = 100 G. Based on the ab initio value of the long-range dispersion coefficient

C6 = 3495 a.u. [49], the calculated heights of the p and d-wave centrifugal barriers are

5.53 × 10−5 and and 2.87 × 10−4 cm−1. Consistent with these estimates, we observe in

Fig. 3(a) a decline of l ≥ 1 incoming partial wave contributions to the elastic cross section

as the collision energy is tuned below the corresponding barrier heights.
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Remarkably, the p-wave contribution to the inelastic cross section dominates through

the entire collision energy range spanning 3 orders of magnitude (EC = 10−6 − 2 × 10−3

cm−1). This suggests the presence of a near-threshold scattering resonance, as discussed

in more detail below. In contrast, the partial wave spectrum of the inelastic cross sections

calculated previously for Li + CaH and Li + SrOH [47] is dominated by the incoming s-wave

contributions below EC = 10−3 cm−1 and by all partial waves at higher collision energies.

B. Magnetic field dependence and spin-relaxation mechanisms

In Fig. 4(a), we plot the magnetic field dependence of the cross sections for elastic scatter-

ing and spin relaxation in spin-polarized Rb-SrF collisions at a collision energy of 10−6 cm−1.

We observe a broad resonance profile in the inelastic cross section centred at B = 0.2 G,

where inelastic scattering occurs 2.6 times faster than elastic scattering. With further in-

crease in magnetic field, the inelastic cross section decreases by more than an order of

magnitude, whereas the elastic cross section remains essentially independent of the field.

A dense and complicated resonance pattern emerges above B = 100 G, where the ratio of

elastic to inelastic cross sections γ varies rapidly from unity to above 100. Thus, it may

be possible to enhance the efficiency of sympathetic cooling by tuning the inelastic cross

sections with an applied magnetic field.

Spin relaxation in ultracold collisions of 2Σ molecules in their ground rotational states

with 2S atoms is mediated by two mechanisms, direct and indirect [45, 46]. The direct

mechanism is due to the long-range magnetic dipole-dipole interaction between the electronic

spins of the collision partners given by the term V̂dd in Eq. (5) [46, 47, 76, 77]. The

indirect mechanism is a combined effect of the intramolecular spin-rotation interaction and

the coupling between the rotational states of the molecule induced by the anisotropy of the

interaction potential [45, 46]. Previous theoretical studies have found that spin-relaxation

in Li + CaH and Li + SrOH collisions occur predominantly via a direct mechanism and that

the indirect mechanism is strongly suppressed at low collision energies (EC < 10−3 cm−1)

[46, 47]. In order to compare these mechanisms for Rb + SrF collisions, we plot in Fig. 4(a)

the inelastic cross section calculated with the magnetic dipole-dipole interaction term V̂dd

omitted from the scattering Hamiltonian. We observe a dramatic reduction of the spin

relaxation cross section over the entire magnetic field range, except for a narrow resonance
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at B = 250 G.

In order to further inspect the spin relaxation mechanisms, we show in Fig. 4(b) the

incoming partial wave contributions to the inelastic cross section. Below B = 300 G, the

inelastic cross section is dominated by the incoming p-wave contribution. The incoming s-

wave contribution becomes comparable in magnitude in the vicinity of scattering resonances.

The results plotted in Figs. 4(a) and 4(b) allow us to conclude that spin relaxation in spin-

polarized Rb + SrF collisions is driven by the magnetic dipole-dipole interaction between

the electron spins of Rb and SrF.

As follows from Eq. (5), the magnetic dipole-dipole interaction has non-zero matrix

elements between all of the |MSA
〉|MSB

〉 spin basis states. This long-range interaction can

thus cause either single spin-flip relaxation, in which the electron spins of either Rb or SrF

are flipped or double spin-flip relaxation, in which both of the electron spins are flipped.

The projection of the total electron spin of the Rb-SrF complex on the magnetic field axis

MS = MSA
+MSB

changes by 1 in a single spin-flip transition (|MS = 1〉 → |M ′
S = 0〉) and

by 2 in a double spin-flip transition (|MS = 1〉 → |M ′
S = −1〉). In contrast, the indirect

mechanism mediated by the spin-rotation interaction [45] can only change the projection of

the molecule’s electron spin MSB
, and thus only the single-flip MS = 1→M ′

S = 0 transition

is allowed.

Figure 4(c) shows the final state-resolved inelastic cross sections for Rb-SrF collisions.

We observe that double spin-flip relaxation is slightly more efficient than single spin-flip

relaxation at low magnetic fields. Interestingly, the double spin-flip relaxation occurs without

changing the initial partial wave component, via the process |MS = 1〉|l = 1,Ml = −1〉 →
|M ′

S = −1〉|l′ = 1,M ′
l = 1〉 within the ground rotational state manifold (N = N ′ = 0). This

is consistent with the p-wave resonance-mediated mechanism considered above.

IV. SUMMARY AND CONCLUSIONS

We have presented an ab initio study of ultracold collisions in a heavy, spin-polarized

mixture of Rb(2S) atoms and SrF(X2Σ+) molecules in the presence of an external magnetic

field. We developed an accurate ab initio interaction PES for the triplet 3A′ electronic state

of Rb-SrF using the state-of-the-art CCSD(T) method and large correlation-consistent basis

sets. The PES features a deep minimum and an extremely steep dependence on the Rb-SrF
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bending angle θ (Fig. 1) making the Rb-SrF interaction strongly anisotropic. Using the ab

initio PES, we carried out converged quantum scattering calculations using the total angular

momentum representation in the BF coordinate frame [67], demonstrating the feasibility of

such calculations on heavy, strongly anisotropic atom-molecule collision systems.

The inelastic collisions change the value of the molecule’s electron spin projection MS

on the magnetic field axis, leading to magnetic trap loss. The ratio γ of elastic to inelas-

tic collision rates is a key predictor of successful atom-molecule sympathetic cooling in a

magnetic trap. Our calculations predict that ultracold spin-polarized Rb-SrF mixtures are

relatively stable against collisional relaxation (γ > 10) over most of the collision energy and

magnetic field ranges explored in this work (EC = 10−6 − 10−3 cm−1 and B = 0− 1000 G).

It is important to point out, however, that small changes in the Rb-SrF PES can lead to

dramatic variations of the scattering cross sections. Because the estimated uncertainty in

our PES is about 5%, our scattering calculations presented in this paper should be consid-

ered as qualitatively accurate. A detailed analysis of the effect of the uncertainties of the

interaction potentials will be presented in future work.

Our calculations predict a significant magnetic field dependence of the inelastic cross

section at ultralow collision energies (see Fig. 4), which suggests the possibility of tuning

inelastic collision rates by applying an external magnetic field to optimize the efficiency of

sympathetic cooling, as suggested before for He-O2 and Li-SrOH [47, 75]. The inelastic spin

relaxation in cold Rb + SrF collisions is mainly driven by a direct mechanism mediated by

the magnetic dipole-dipole interaction between the electronic spins of Rb and SrF.

It is instructive to compare the collisional properties of Rb + SrF with those of the

lighter collision systems Li+SrOH and Li+CaH explored in our previous work [46, 47].

While the potential depths and anisotropies are comparable in all of the alkali-molecule

systems, the lighter reduced masses of Li-containing complexes result in higher centrifugal

barriers. As a result, the s-wave regimes of Li + SrOH and Li + CaH collisions occur at

higher collision energies. In addition, as mentioned in Sec. IIIA, the presence of a near-

threshold p-wave resonance at low magnetic fields modifies the Wigner scaling of Rb-SrF

spin relaxation cross sections, making them almost independent of the collision energy [see

Fig. 4(b)]. In contrast, the spin relaxation cross sections for Li + CaH and Li + SrOH

collisions exhibit the expected s-wave Wigner scaling as EC → 0 with σinel ∝ E
−1/2
C . Finally,

the resonance peaks in the magnetic field dependence of the spin relaxation cross sections

16



for Rb + SrF are much narrower than those calculated previously for Li + SrOH [47]. This

suggests that the resonances in Rb + SrF collisions decay mainly by tunnelling through a

p-wave centrifugal barrier in the incoming collision channel, whereas those in Li + SrOH

collisions decay by a mechanism not involving tunnelling in the incoming channel.

In future work, it would be interesting to explore the collisional properties of non-fully

spin-polarized initial states of Rb and SrF (which would require explicit consideration of

the singlet Rb-SrF PES) and elucidate the effects of hyperfine interactions on scattering

observables at low magnetic fields. Experimental measurements of inelastic collision rates in

ultracold Rb-SrF mixtures as a function of magnetic field would be desirable to constrain the

interaction PES. Finally, it would be worthwile to extend this study to other 2Σ molecules

currently under experimental investigation (such as CaF and YO [24, 26]) and lighter coolant

atoms (such as K).
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Appendix A: Coordinate frames and basis functions

Here, we define the SF and BF coordinate frames for the atom-molecule collision complex

along with the corresponding basis functions. In the following we will omit the spin basis

functions for the sake of simplicity, setting ΣA = ΣB = 0, and hence Ω = KN . The discussion

can be easily generalized to include non-zero atomic and molecular spin functions |SAΣA〉
and |SBΣB〉.

We begin by defining the “two-thirds” BF frame (sometimes also called the “two-angle

embedding” frame [80]). The z-axis of the two-thirds BF frame coincides with the atom-

molecule Jacobi vector R whose orientation relative to the SF axes X, Y , and Z is specified
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by the polar β̄ and azimuthal ᾱ angles as shown in Fig. 5(a). We assume that Z is defined

by the direction of an external magnetic field. The angles (β̄, ᾱ) are the two Euler angles

that define the orientation of the z-axis of the two-thirds BF frame relative to the SF axes.

To completely specify the orientation of the x and y axes, we need to choose the third Euler

angle γ̄, which is the angle between the line of nodes (the intersection of the XY and xy

planes) and the y axis [78]. Alternatively, γ̄ can be thought of as the azimuthal angle about

the z axis (see Fig. 5(a) and Fig. 3.1 of Ref. [78]). We follow previous theoretical work

[69, 80] in choosing the third Euler angle γ̄ = 0, which means that the two-third BF y-axis

lies in the XY plane. The polar and azimuthal angles of the diatomic molecule in the two-

thirds BF frame are denoted as θ and φ [see Fig. 5(b)]. These angles, together with the

Euler angles (ᾱ, β̄) defined above, constitute the four angular variables that are necessary

to specify the configuration of the atom-molecule system. Note that the definition of the

two-thirds BF axes does not depend on the orientation of the diatomic molecule vector r.

In the two-thirds BF frame, the basis function |JMΩ〉 = [(2J + 1)/4π]1/2DJ∗
MΩ(ᾱ, β̄, 0) in

Eq. (6) is a function of two Euler angles (ᾱ, β̄) defined above and shown in Fig. 5(a) [69].

The basis functions for the R̂ = R/R and r̂ = r/r vectors in the two-thirds BF frame can

be written as [69] (
2J + 1

4π

)1/2

DJ∗
MΩ(ᾱ, β̄, 0)YNKN

(θ, φ). (A1)

(Note that the normalization factor [(2J + 1)/4π]1/2 is larger by
√

2π than the standard

factor [(2J + 1)/8π2]1/2 [3] because of the absence of integration over γ̄).

Another commonly used BF frame (the “standard” BF frame in the following or the

“three-angle embedding” frame [80]) may be obtained from the two-thirds BF frame via an

additional rotation about the z axis, which brings the diatomic molecule vector r to the

x′z′ plane [80]. Figure 5(b) illustrates the orientation of the standard BF axes x′, y′, and z′

relative to the two-thirds BF axes x, y, and z. The standard BF frame has the same z axis

as the two-thirds BF frame (z′ = z), but its x′ and y′ axes are rotated with respect to the

two-thirds BF axes in the xy plane. The angle of rotation is the azimuthal angle φ of the

diatomic molecule in the two-thirds BF frame [80] which is thereby identified with the third

Euler angle (γ̄ = φ).

By definition, the vector r always lies in the x′z′ plane, so only a single azimuthal angle θ

is necessary to completely specify the orientation of the diatomic molecule in the standard
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BF frame. Accordingly, the basis functions in the standard BF frame can be written as [69]

(
2J + 1

4π

)1/2

DJ∗
MΩ(ᾱ, β̄, φ)YNKN

(θ, 0) (A2)

The definitions (A1) and (A2) are equivalent because, as stated above, the third Euler angle

γ̄ used to define the standard BF frame is identical to the azimuthal angle φ of the diatomic

molecule in the two-thirds BF frame. In this work, we choose to use the standard BF

frame, which leads to simpler expressions for the matrix elements of the BF total angular

momentum operator Ĵ [69, 80].

Appendix B: Verification of scattering results

The BF theory of molecular collisions in the total angular momentum representation has

been extensively tested [67] by comparison with the previous results obtained independently

using the fully uncoupled SF representation of Volpi and Bohn [33] and Krems and Dalgarno

[34]. To verify the correctness of the scattering cross sections calculated here for Rb + SrF,

we have performed additional benchmark calculations using the independently developed

codes SF2Sigma and extended MOLSCAT. SF2Sigma is a code developed in-house which uses

the fully uncoupled SF basis [33, 34] and extended MOLSCAT is a well-established package of

programs for molecular scattering calculations [81] that has recently been extended [82] to

handle molecular collisions in magnetic fields using the BF basis of Eq. (6).

For the purpose of comparison with SF calculations, we restrict our test calculations

to small rotational basis sets (Nmax = 2). This restriction is necessary because benchmark

scattering calculations employing SF basis sets become computationally intractable for larger

rotational basis sets with Nmax ≥ 7 [36, 46], and hence cannot be used to obtain converged

results for strongly anisotropic atom-molecule collision systems [46, 55].

The total elastic and inelastic cross sections for Rb + SrF collisions computed here using

the BF basis (6) are compared with the extended MOLSCAT and SF2Sigma results in Table II.

All of the results are in excellent agreement with other, thereby providing strong evidence

for the validity of our quantum scattering approach and for the correctness of the Rb + SrF

elastic and inelastic cross sections computed in this work.
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TABLE II. Elastic and inelastic cross sections for ultracold Rb + SrF collisions computed using the

BF code developed in the present work (first column), SF2Sigma (second column), and extended

MOLSCAT (third column) at a magnetic field of 0.1 T. The collision energies are in units of cm−1

and the cross sections are in units of Å2. The SF basis given by Eq. (10) of Ref. [34] included all

the |NMN 〉|lMl〉 states with l ≤ 7 and N ≤ 2 and the BF basis (6) included all the basis states

with J ≤ 7 and N ≤ 2.

Collision energy Present work SF2Sigma Extended MOLSCAT

Elastic cross sections

10−5 6.521× 105 6.522× 105 6.528× 105

10−4 1.143× 105 1.142× 105 1.142× 105

10−3 2.991× 104 2.990× 104 2.988× 104

Inelastic cross sections

10−5 432.24 432.24 433.23

10−4 3.080 3.080 3.084

10−3 0.509 0.511 0.508

Appendix C: Basis set convergence

In this section, we examine the convergence properties of the Rb + SrF cross sections with

respect to the basis set truncation parameters Jmax and Nmax, which determine the maximum

quantum numbers of the total angular momentum J of the Rb-SrF collision complex and

the rotational angular momentum N of SrF.

The convergence of the elastic (σel) and inelastic (σinel) cross sections for fully spin-

polarized Rb-SrF collisions with respect to the value ofNmax is shown in Fig. 6 forB = 100 G,

Jmax = 1 and EC = 10−6 cm−1. The cross sections display rapid oscillations, which persist

until Nmax ≥ 110, and we find that using Nmax = 125 is necessary to produce the cross

sections converged to within 2.5%.

To examine the convergence with respect to the maximum value of the total angular

momentum Jmax, we plot the elastic and inelastic cross sections as a function of collision

energy in Fig. 7 for Jmax = 2 and 3 at B = 100 G. Adequate convergence is achieved with

Jmax = 2 through the entire collision energy region. As discussed previously [33, 34, 36, 47],

20



indirect spin-relaxation in the incoming s-wave channel must be accompanied by a change of

the orbital angular momentum from l = 0 to l = 2. As a result, in order to properly describe

the d-wave states in the outgoing collision channels, it is necessary to include at least 4 total

angular momentum states (Jmax ≥ 3) in the basis set. On the other hand, the incoming

p-wave can make a transition to the outgoing p-wave by changing ml, the projection of l on

the magnetic field axis. Thus, the s and p-waves in the entrance and exit collision channels

can be described by a smaller basis set with Jmax = 2. To properly account for all of the

partial waves in the entrance and exit collision channels, we choose to use Jmax = 3 and

Nmax = 125 for the production calculations.
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FIG. 1. Contour plot of the ab initio potential energy surface for Rb-SrF in its triplet electronic

state (in units of cm−1). The θ = 0◦ geometry corresponds to the collinear Rb–F-Sr arrangement.
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FIG. 2. (a) Collision energy dependence of the elastic cross section (circles) and inelastic cross

section for the external magnetic field of 1 G (diamonds), 100 G (squares) and 1000 G (crosses).

The elastic cross section displays a very weak field dependence. (b) The ratios of elastic and

inelastic cross sections as functions of collision energy for the same values of the magnetic field as

in (a).
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as a function of collision energy calculated for the magnetic field of 100 G. The total elastic and
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The SF axes are denoted X, Y , and Z, with the Z axis defined by the direction of the applied

magnetic field B. The orientation of the BF axes x, y, and z with respect to the SF axes is specified

by the Euler angles ᾱ, β̄, and γ̄ defined according to the convention adopted in Ref. [78]. The z

axis of the two-thirds BF frame coincides with the atom-molecule Jacobi vector R which has polar

coordinates β̄, ᾱ in the SF frame (RXY is the projection of R onto the XY plane). The third

Euler angle is the angle between the line of nodes (the intersection of the XY and xy planes) and

the y axis. Alternatively, γ̄ and be thought of as the azimuthal angle about the z axis [78]. In the

two-thirds BF frame, the third Euler angle γ̄ = 0, which implies that the y axis lies in the XY

plane. (b) The standard BF axes x′, y′, and z′ are shown relative to the two-thirds BF axes x, y,

and z which are the same as in Fig. 7(a). The SF axes are omitted for clarity. The standard BF

frame has the same z axis as the two-thirds BF frame (z′ = z), but the third Euler angle γ̄ is set

equal to the azimuthal angle φ of r in the two-thirds BF frame such that the vector r lies in the

x′z′ plane (rxy is the projection of r onto the xy plane).
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