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This paper proposes a revised definition for the entanglement cost of a quantum channel N . In
particular, it is defined here to be the smallest rate at which entanglement is required, in addition
to free classical communication, in order to simulate n calls to N , such that the most general dis-
criminator cannot distinguish the n calls to N from the simulation. The most general discriminator
is one who tests the channels in a sequential manner, one after the other, and this discrimina-
tor is known as a quantum tester [Chiribella et al., Phys. Rev. Lett., 101, 060401 (2008)] or one
who is implementing a quantum co-strategy [Gutoski et al., Symp. Th. Comp., 565 (2007)]. As
such, the proposed revised definition of entanglement cost of a quantum channel leads to a rate
that cannot be smaller than the previous notion of a channel’s entanglement cost [Berta et al.,
IEEE Trans. Inf. Theory, 59, 6779 (2013)], in which the discriminator is limited to distinguishing
parallel uses of the channel from the simulation. Under this revised notion, I prove that the entan-
glement cost of certain teleportation-simulable channels is equal to the entanglement cost of their
underlying resource states. Then I find single-letter formulas for the entanglement cost of some fun-
damental channel models, including dephasing, erasure, three-dimensional Werner–Holevo channels,
epolarizing channels (complements of depolarizing channels), as well as single-mode pure-loss and
pure-amplifier bosonic Gaussian channels. These examples demonstrate that the resource theory of
entanglement for quantum channels is not reversible. Finally, I discuss how to generalize the basic
notions to arbitrary resource theories.

I. INTRODUCTION

The resource theory of entanglement [1] has been one of
the richest contributions to quantum information theory
[2–5], and these days, the seminal ideas coming from it
are influencing diverse areas of physics [6]. A fundamen-
tal question in entanglement theory is to determine the
smallest rate at which Bell states (or ebits) are needed,
along with the assistance of free classical communica-
tion, in order to generate n copies of an arbitrary bipar-
tite state ρAB reliably (in this introduction, n should be
understood to be an arbitrarily large number) [1]. The
optimal rate is known as the entanglement cost of ρAB
[1], and a formal expression is known for this quantity
in terms of a regularization of the entanglement of for-
mation [7]. An upper bound in terms of entanglement
of formation has been known for some time [1, 7], while
a lower bound in terms of a semi-definite programming
quantity has been determined recently [8]. Conversely, a
related fundamental question is to determine the largest
rate at which one can distill ebits reliably from n copies
of ρAB , again with the assistance of free classical commu-
nication [1]. This optimal rate is known as the distillable
entanglement, and various lower bounds [9] and upper
bounds [10–13] are known for it.

The above resource theory is quite rich and interesting,
but soon after learning about it, one might immediately
question its operational significance. How are the bipar-
tite states ρAB established in the first place? Of course, a
quantum communication channel, such as a fiber-optic or
free-space link, is required. Consequently, in the same pa-
per that introduced the resource theory of entanglement
[1], the authors there appreciated the relevance of this

point and proposed that the distillation question could
be extended to quantum channels. The distillation ques-
tion for channels is then as follows: given n uses of a
quantum channel NA→B connecting a sender Alice to a
receiver Bob, along with the assistance of free classical
communication, what is the optimal rate at which these
channels can produce ebits reliably [1]? By invoking the
teleportation protocol [14] and the fact that free classical
communication is allowed, this rate is also equal to the
rate at which arbitrary qubits can be reliably communi-
cated by using the channel n times [1]. The optimal rate
is known as the distillable entanglement of the channel
[1], and various lower bounds [9] and upper bounds [15–
18] are now known for it, strongly related to the bounds
for distillable entanglement of states, as given above.

Some years after the distillable entanglement of a chan-
nel was proposed in [1], the question converse to it was
proposed and addressed in [19]. The authors of [19] de-
fined the entanglement cost of a quantum channel NA→B
as the smallest rate at which entanglement is required,
in addition to the assistance of free classical communi-
cation, in order to simulate n uses of NA→B . Key to
their definition of entanglement cost is the particular no-
tion of simulation considered. In particular, the goal of
their simulation protocol is to simulate n parallel uses of
the channel, written as (NA→B)⊗n. Furthermore, they
considered a simulation protocol PAn→Bn to have the
following form:

PAn→Bn(ωAn) ≡ LAnA0B0→Bn(ωAn ⊗ ΦA0B0
), (1)

where ωAn is an arbitrary input state, LAnA0B0→Bn is
a free channel, whose implementation is restricted to
consist of local operations and classical communication
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(LOCC) [1, 20], and ΦA0B0
is a maximally entangled re-

source state. For ε ∈ [0, 1], the simulation is then consid-
ered ε-distinguishable from (NA→B)⊗n if the following
condition holds

1

2

∥∥(NA→B)⊗n − PAn→Bn
∥∥
♦
≤ ε, (2)

where ‖·‖♦ denotes the diamond norm [21]. The phys-
ical meaning of the above inequality is that it places a
limitation on how well any discriminator can distinguish
the channel (NA→B)⊗n from the simulation PAn→Bn in
a guessing game. Such a guessing game consists of the
discriminator preparing a quantum state ρRAn , the ref-
eree picking (NA→B)⊗n or PAn→Bn at random and then
applying it to the An systems of ρRAn , and the discrimi-
nator finally performing a quantum measurement on the
systems RBn. If the inequality in (2) holds, then the
probability that the discriminator can correctly distin-
guish the channel from its simulation is bounded from
above by 1

2 (1 + ε), regardless of the particular state ρRAn
and final measurement chosen for his distinguishing strat-
egy [21–24]. Thus, if ε is close to zero, then this probabil-
ity is not much better than random guessing, and in this
case, the channels are considered nearly indistinguishable
and the simulation thus reliable.

In parallel to the above developments in entanglement
theory, there have indubitably been many advances in the
theory of quantum channel discrimination [25–30] and re-
lated developments in the theory of quantum interactive
proof systems [31–34]. Notably, the most general method
for distinguishing a quantum memory channel from an-
other one consists of a quantum-memory-assisted dis-
crimination protocol [26, 27]. In the language of quantum
interactive proof systems, memory channels are called
strategies and memory-assisted discrimination protocols
are called co-strategies [31–33]. For a visual illustration
of the physical setup, please consult [26, Figure 2] or [31,
Figure 2]. In subsequent work after [26, 31], a number of
theoretical results listed above have been derived related
to memory channel discrimination or quantum strategies.

The aforementioned developments in the theory of
quantum channel discrimination indicate that the notion
of channel simulation proposed in [19] is not the most
general notion that could be considered. In particular, if
a simulator is claiming to have simulated n uses of the
channel NA→B , then the discriminator should be able to
test this assertion in the most general way possible, as
given in [26, 27, 31]. That is, we would like for the sim-
ulation to pass the strongest possible test that could be
performed to distinguish it from the n uses of NA→B .
Such a test allows for the discriminator to prepare an ar-
bitary state ρR1A1 , call the first channel use NA1→B1 or

its simulation, apply an arbitrary channel A(1)
R1B1→R2A2

,
call the second channel use or its simulation, etc. After
the nth call is made, the discriminator then performs a
joint measurement on the remaining quantum systems.
See Figure 1 for a visual depiction. If the simulation is
good, then the probability for the discriminator to dis-

tinguish the n channels from the simulation should be no
larger than 1

2 (1 + ε), for small ε.
In this paper, I propose a new definition for the en-

tanglement cost of a channel NA→B , such that it is the
smallest rate at which ebits are needed, along with the
assistance of free classical communication, in order to
simulate n uses of NA→B , in such a way that a discrim-
inator performing the most stringest test, as described
above, cannot distinguish the simulation from n actual
calls of NA→B (Section II B). Here I denote the opti-
mal rate by EC(N ), and the prior quantity defined in

[19] by E
(p)
C (N ), given that the simulation there was

only required to pass a less stringent parallel discrimi-
nation test, as discussed above. Due to the fact that it
is more difficult to pass the simulation test as specified

by the new definition, it follows that EC(N ) ≥ E
(p)
C (N )

(discussed in more detail in what follows). After estab-
lishing definitions, I then prove a general upper bound
on the entanglement cost of a quantum channel, using
the notion of teleportation simulation (Section III A). I
prove that the entanglement cost of certain “resource-
seizable,” teleportation-simulable channels takes on a
particularly simple form (Section III B), which allows for
concluding single-letter formulas for the entanglement
cost of dephasing, erasure, three-dimensional Werner–
Holevo channels, and epolarizing channels (complements
of depolarizing channels), as detailed in Section IV. Note
that the result about entanglement cost of dephasing
channels solves an open question from [19]. I then ex-
tend the results to the case of bosonic Gaussian channels
(Section V), proving single-letter formulas for the entan-
glement cost of fundamental channel models, including
pure-loss and pure-amplifier channels (Theorem 2 in Sec-
tion V G). These examples lead to the conclusion that the
resource theory of entanglement for quantum channels is
not reversible. I also prove that the entanglement cost of
thermal, amplifier, and additive-noise bosonic Gaussian
channels is bounded from below by the entanglement cost
of their “Choi states.” In Section VI, I discuss how to
generalize the basic notions to other resource theories.
Finally, Section VII concludes with a summary and some
open questions.

II. NOTIONS OF QUANTUM CHANNEL
SIMULATION

In this section, I review the definition of entanglement
cost of a quantum channel, as detailed in [19], and I also
review the main theorem from [19]. After that, I propose
the revised definition of a channel’s entanglement cost.

Before starting, let us define a maximally entangled
state ΦAB of Schmidt rank d as

ΦAB ≡
1

d

d∑
i,j=1

|i〉〈j|A ⊗ |i〉〈j|B , (3)

where {|i〉A}i and {|i〉B}i are orthonormal bases. An



3

B3A3A2B1NA1 B2

A1

N
A2

N

R1 R2 R3

B3A3A2B1A1 B2

A1 A2
R1 R2 R3

Vs.

Q

Q

L1 L2 L3A0 A1 A2

B0 B1 B2

FIG. 1. The top part of the figure displays a three-round interaction between the discriminator and the simulator in the
case that the actual channel NA→B is called three times. The bottom part of the figure displays the interaction between the
discriminator and the simulator in the case that the simulation of three channel uses is called.

LOCC channel LA′B′→AB is a bipartite channel that can
be written in the following form:

LA′B′→AB =
∑
y

EyA′→A ⊗FyB′→B , (4)

where {EyA′→A}y and {FyB′→B}y are sets of completely
positive, trace-non-increasing maps, such that the sum
map

∑
y E

y
A′→A ⊗ FyB′→B is a quantum channel (com-

pletely positive and trace preserving) [20]. However, not
every channel of the form in (4) is an LOCC channel
(there are separable channels of the form in (4) that are
not implementable by LOCC [35]). The diamond norm
of the difference of two channels RA→B and SA→B is
defined as [21]

‖R − S‖♦ ≡ sup
ψRA

‖RA→B(ψRA)− SA→B(ψRA)‖1 , (5)

where the optimization is with respect to all pure bi-
partite states ψRA with system R isomorphic to sys-
tem A and the trace norm of an operator X is defined as

‖X‖1 ≡ Tr{
√
X†X}. The operational interpretation of

the diamond norm is that it is related to the maximum
success probability psucc(R,S) for any physical experi-
ment, of the kind discussed after (2), to distinguish the
channels R and S:

psucc(R,S) =
1

2

(
1 +

1

2
‖R − S‖♦

)
. (6)

A. Entanglement cost of a quantum channel
from [19]

Let us now review the notion of entanglement cost
from [19]. Fix n,M ∈ N, ε ∈ [0, 1], and a quantum
channel NA→B . According to [19], an (n,M, ε) (paral-
lel) LOCC-assisted channel simulation code consists of
an LOCC channel LAnA0B0→Bn and a maximally entan-
gled resource state ΦA0B0

of Schmidt rank M , such that
together they implement a simulation channel PAn→Bn ,
as defined in (1). In this model, to be clear, we assume
that Alice has access to all systems labeled by A, Bob
has access to all systems labeled by B, and they are in
distant laboratories. The simulation PAn→Bn is consid-
ered ε-distinguishable from n parallel calls (NA→B)⊗n of
the actual channel NA→B if the condition in (2) holds.
Note here again that the condition in (2) corresponds to
a discriminator who is restricted to performing only a
parallel test to distinguish the n calls of NA→B from its
simulation. Let us also note here that the condition in (2)
can be understood as the simulation PAn→Bn providing
an approximate teleportation simulation of (NA→B)⊗n,
in the language of the later work of [36].

A rate R is said to be achievable for (parallel) chan-
nel simulation of NA→B if for all ε ∈ (0, 1], δ > 0, and
sufficiently large n, there exists an (n, 2n[R+δ], ε) LOCC-
assisted channel simulation code. The (parallel) entan-

glement cost E
(p)
C (N ) of the channel N is equal to the

infimum of all achievable rates, with the superscript (p)
indicating that the test of the simulation is restricted to
be a parallel discrimination test.

The main result of [19] is that the channel’s entangle-
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ment cost E
(p)
C (N ) is equal to the regularization of its

entanglement of formation. To state this result precisely,
recall that the entanglement of formation of a bipartite
state ρAB is defined as [1]

EF (A;B)ρ ≡

inf

{∑
x

pX(x)H(A)ψx : ρAB =
∑
x

pX(x)ψxAB

}
, (7)

where the infimum is with respect to all convex decom-
positions of ρAB into pure states ψxAB and

H(A)ψx ≡ −Tr{ψxA log2 ψ
x
A} (8)

is the quantum entropy of the marginal state ψxA =
TrB{ψxAB}. The entanglement of formation does not in-
crease under the action of an LOCC channel [1]. A chan-
nel’s entanglement of formation EF (N ) is then defined
as

EF (N ) ≡ sup
ψRA

EF (R;B)ω, (9)

where ωRB ≡ NA→B(ψRA), and it suffices to take the op-
timization with respect to a pure state input ψRA, with
system R isomorphic to system A, due to purification, the
Schmidt decomposition theorem, and the LOCC mono-
tonicity of entanglement of formation [1]. We can now
state the main result of [19] described above:

E
(p)
C (N ) = lim

n→∞

1

n
EF (N⊗n). (10)

The regularized formula on the right-hand side may be
difficult to evaluate in general, and thus can only be
considered a formal expression, but if the additivity re-
lation 1

nEF (N⊗n) = EF (N ) holds for a given chan-
nel N for all n ≥ 1, then it simplifies significantly as

E
(p)
C (N ) = EF (N ).

B. Proposal for a revised notion of entanglement
cost of a channel

Now I propose the new or revised definition for entan-
glement cost of a channel. As motivated in the intro-
duction, a parallel test of channel simulation is not the
most general kind of test that can be considered. Thus,
the new definition proposes that the entanglement cost
of a channel should incorporate the most stringent test
possible.

To begin with, let us fix n,M ∈ N, ε ∈ [0, 1], and a
quantum channelNA→B . We define an (n,M, ε) (sequen-
tial) LOCC-assisted channel simulation code to consist of
a maximally entangled resource state ΦA0B0

of Schmidt
rank M and a set

{L(i)

AiAi−1Bi−1→BiAiBi
}ni=1 (11)

of LOCC channels. Note that the systems AnBn of the

final LOCC channel L(n)

AnAn−1Bn−1→BnAnBn
can be taken

trivial without loss of generality. As before, Alice has
access to all systems labeled by A, Bob has access to all
systems labeled by B, and they are in distant laborato-
ries. The structure of this simulation protocol is intended
to be compatible with a discrimination strategy that can
test the actual n channels versus the above simulation in
a sequential way, along the lines discussed in [26, 27] and
[33]. I later show how this encompasses the parallel tests
discussed in the previous section.

A sequential discrimination strategy consists of an ini-

tial state ρR1A1
, a set {A(i)

RiBi→Ri+1Ai+1
}n−1
i=1 of adaptive

channels, and a quantum measurement {QRnBn , IRnBn−
QRnBn}. Let us employ the shorthand {ρ,A, Q} to ab-
breviate such a discrimination strategy. Note that, in
performing a discrimination strategy, the discriminator
has a full description of the channel NA→B and the sim-
ulation protocol, which consists of ΦA0B0

and the set in

(11). If this discrimination strategy is performed on the
n uses of the actual channel NA→B , the relevant states
involved are

ρRi+1Ai+1
≡ A(i)

RiBi→Ri+1Ai+1
(ρRiBi), (12)

for i ∈ {1, . . . , n− 1} and

ρRiBi ≡ NAi→Bi(ρRiAi), (13)

for i ∈ {1, . . . , n}. If this discrimination strategy is per-
formed on the simulation protocol discussed above, then
the relevant states involved are

τR1B1A1B1
≡ L(1)

A1A0B0→B1A1B1
(τR1A1

⊗ ΦA0B0
),

τRi+1Ai+1AiBi
≡ A(i)

RiBi→Ri+1Ai+1
(τRiBiAiBi), (14)

for i ∈ {1, . . . , n− 1}, where τR1A1
= ρR1A1

, and

τRiBiAiBi ≡ L
(i)

AiAi−1Bi−1→BiAiBi
(τRiAiAi−1Bi−1

), (15)

for i ∈ {2, . . . , n}. The discriminator then performs the
measurement {QRnBn , IRnBn−QRnBn} and guesses “ac-
tual channel” if the outcome is QRnBn and “simulation”
if the outcome is IRnBn−QRnBn . Figure 1 depicts the dis-
crimination strategy in the case that the actual channel
is called n = 3 times and in the case that the simulation
is performed.

If the a priori probabilities for the actual channel or
simulation are equal, then the success probability of the
discriminator in distinguishing the channels is given by

1

2
[Tr{QRnBnρRnBn}+ Tr{(IRnBn −QRnBn) τRnBn}]

≤ 1

2

(
1 +

1

2
‖ρRnBn − τRnBn‖1

)
, (16)

where the latter inequality is well known from the theory
of quantum state discrimination [22–24]. For this rea-
son, we say that the n calls to the actual channel NA→B
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are ε-distinguishable from the simulation if the following
condition holds for the respective final states

1

2
‖ρRnBn − τRnBn‖1 ≤ ε. (17)

If this condition holds for all possible discrimination
strategies {ρ,A, Q}, i.e., if

1

2
sup
{ρ,A}

‖ρRnBn − τRnBn‖1 ≤ ε, (18)

then the simulation protocol constitutes an (n,M, ε)
channel simulation code. It is worthwhile to remark: If
we ascribe the shorthand (N )n for the n uses of the chan-
nel and the shorthand (L)n for the simulation, then the
condition in (18) can be understood in terms of the n-
round strategy norm of [26, 27, 33]:

1

2
‖(N )n − (L)n‖♦,n ≤ ε. (19)

As before, a rate R is achievable for (sequential) chan-
nel simulation of N if for all ε ∈ (0, 1], δ > 0, and suffi-
ciently large n, there exists an (n, 2n[R+δ], ε) (sequential)
channel simulation code for N . We define the (sequen-
tial) entanglement cost EC(N ) of the channel N to be
the infimum of all achievable rates. Due to the fact that
this notion is more general, we sometimes simply refer
to EC(N ) as the entanglement cost of the channel N in
what follows.

C. LOCC monotonicity of the entanglement cost

Let us note here that if a channel NA→B can be real-
ized from another channel MA′→B′ via a preprocessing
LOCC channel Lpre

A→A′AMBM and a postprocessing LOCC

channel Lpost
B′AMBM→B as

NA→B = Lpost
B′AMBM→B ◦MA′→B′ ◦ Lpre

A→A′AMBM , (20)

then it follows that any (n,M, ε) protocol for sequential
channel simulation of MA′→B′ realizes an (n,M, ε) pro-
tocol for sequential channel simulation of NA→B . This
is an immediate consequence of the fact that the best
strategy for discriminatingNA→B from its simulation can
be understood as a particular strategy for discriminat-
ing MA′→B′ from a simulation of MA′→B′ , due to the
structural decomposition in (20). Following definitions, a
simple consequence is the following LOCC monotonicity
inequality for the entanglement cost of these channels:

EC(N ) ≤ EC(M). (21)

Thus, it takes more or the same entanglement to simulate
the channelM than it does to simulate N . Furthermore,
the decomposition in (20) and the bound in (21) can be
used to bound the entanglement cost of a channel M
from below. Note that the structure in (20) was discussed
recently in the context of general resource theories [6,
Section III-D-5].

B3A3

A2

B1

A1

B2

R Q

A0

A1

A2

B0

B1

B2

L1

L2

L3

FIG. 2. The simulation protocol from the bottom part of Fig-
ure 1 rewritten to clarify that it can participate in a parallel
channel simulation test.

D. Parallel tests as a special case of sequential tests

A parallel test of the form described in Section II A is
a special case of the sequential test outlined above. One
can see this in two seemingly different ways. First, we can
think of the sequential strategy taking a particular form.
The state ξRA1A2···An is prepared, and here we identify
systems RA2 · · ·An with system R1 of ρR1A1

in an adap-
tive protocol and system A1 of ξRA1A2···An with system
A1 of ρR1A1

. Then the channel NA1→B1
or its simula-

tion is called. After that, the action of the first adaptive
channel is simply to swap in system A2 of ξRA1A2···An to
the second call of the channel NA2→B2 or its simulation,
while keeping systems RB1A3 · · ·An as part of the refer-
ence R2 of the state ρR2A2 . Then this iterates and the
final measurement is performed on all of the remaining
systems.

The other way to see how a parallel test is a special
kind of sequential test is to rearrange the simulation pro-
tocol as has been done in Figure 2. Here, we see that
the simulation protocol has a memory structure, and it
is clear that the simulation protocol can accept as in-
put a state ξRA1A2···An and outputs a state on systems
RB1 · · ·Bn, which can subsequently be measured.

As a consequence of this reduction, any (n,M, ε) se-
quential channel simulation protocol can serve as an
(n,M, ε) parallel channel simulation protocol. Further-
more, if R is an achievable rate for sequential channel
simulation, then it is also an achievable rate for parallel
channel simulation. Finally, these reductions imply the
following inequality:

EC(N ) ≥ E(p)
C (N ). (22)

Intuitively, one might sometimes require more entangle-
ment in order to pass the more stringest test that occurs
in sequential channel simulation. As a consequence of
(10) and (22), we have that

EC(N ) ≥ lim
n→∞

1

n
EF (N⊗n). (23)
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It is an interesting question (not addressed here) to de-
termine if there exists a channel such that the inequality
in (22) is strict.

If desired, it is certainly possible to obtain a non-
asymptotic, weak-converse bound that implies the above
bound after taking limits. Let us state this bound as
follows:

Proposition 1 Let NA→B be a quantum channel, and
let n,M ∈ N and ε ∈ [0, 1]. Set d = min {|A| , |B|}, i.e.,
the minimum of the input and output dimensions of the
channel NA→B. Then the following bound holds for any
(n,M, ε) sequential channel simulation code:

1

n
log2M ≥

1

n
EF (N⊗n)−√ε log d− 1

n
g2(
√
ε), (24)

where 1
n log2M is understood as the non-asymptotic en-

tanglement cost of the protocol and the bosonic entropy
function g2(x) is defined for x ≥ 0 as

g2(x) ≡ (x+ 1) log2(x+ 1)− x log2 x. (25)

Proof. To see this, suppose that there exists an (n,M, ε)
protocol for sequential channel simulation. Then by the
above reasoning (also see Figure 2), it can be thought
of as a parallel channel simulation protocol, such that
the criterion in (2) holds. Suppose that ψRA1···An is a
test input state, with |R| = |A|n, leading to ωRB1···Bn =
(NA→B)⊗n(ψRA1···An) when the actual channels are ap-
plied and σRB1···Bn when the simulation is applied. Then
we have that

EF (R;B1 · · ·Bn)ω

≤ EF (R;B1 · · ·Bn)σ + n
√
ε log d+ g2(

√
ε)

≤ EF (RA1 · · ·AnA0;B0)ψ⊗Φ + n
√
ε log d+ g2(

√
ε)

= EF (A0;B0)Φ + n
√
ε log d+ g2(

√
ε)

= log2M + n
√
ε log d+ g2(

√
ε). (26)

The first inequality follows from the condition in (18),
as well as from the continuity bound for entanglement of
formation from [37, Corollary 4]. The second inequality
follows from the LOCC monotonicity of the entanglement
of formation [1], here thinking of the person who pos-
sesses systems RA1 · · ·An to be in the same laboratory
as the one possessing the systems Ai, while the person
who possesses the Bi systems is in a different laboratory.
The first equality follows from the fact that ψRA1···An is
in tensor product with ΦA0B0

, so that by a local chan-
nel, one may remove ψRA1···An or append it for free. The
final equality follows because the entanglement of for-
mation of the maximally entangled state is equal to the
logarithm of its Schmidt rank. Since the bound holds
uniformly regardless of the input state ψRA1···An , after
an optimization and a rearrangement we conclude the
stated lower bound on the non-asymptotic entanglement
cost 1

n log2M of the protocol.

Remark 1 Let us note here that the entanglement cost
of a quantum channel is equal to zero if and only if the
channel is entanglement-breaking [38, 39]. The “if-part”
follows as a straightforward consequence of definitions
and the fact that these channels can be implemented as
a measurement followed by a preparation [38, 39], given
that this measure-prepare procedure is a particular kind
of LOCC and thus allowed for free (without any cost) in
the above model. The “only-if” part follows from (22)
and [19, Corollary 18], the latter of which depends on
the result from [40].

III. BOUNDS FOR THE ENTANGLEMENT
COST OF TELEPORTATION-SIMULABLE

CHANNELS

A. Upper bound on the entanglement cost of
teleportation-simulable channels

The most trivial method for simulating a channel is to
employ the teleportation protocol [14] directly. In this
method, Alice and Bob could use the teleportation pro-
tocol so that Alice could transmit the input of the chan-
nel to Bob, who could then apply the channel. Repeat-
ing this n times, this trivial method would implement
an (n, |A|n , 0) simulation protocol in either the paral-
lel or sequential model. Alternatively, Alice could ap-
ply the channel first and then teleport the output to
Bob, and repeating this n times would implement an
(n, |B|n , 0) simulation protocol in either the parallel or
sequential model. Thus, they could always achieve a rate
of log2(min {|A| , |B|}) using this approach, and this rea-
soning establishes a simple dimension upper bound on
the entanglement cost of a channel:

EC(NA→B) ≤ log2(min {|A| , |B|}). (27)

In this context, also see [36, Proposition 9].
A less trivial approach is to exploit the fact that some

channels of interest could be teleportation-simulable with
associated resource state ωA′B′ , in which the resource
state need not be a maximally entangled state (see [1,
Section V] and [41, Eq. (11)]). Recall from these ref-
erences that a channel NA→B is teleportation-simulable
with associated resource state ωA′B′ if there exists an
LOCC channel LAA′B′→B such that the following equal-
ity holds for all input states ρA:

NA→B(ρA) = LAA′B′→B(ρA ⊗ ωA′B′). (28)

If a channel possesses this structure, then we arrive at
the following upper bound on the entanglement cost:

Proposition 2 Let NA→B be a quantum channel that
is teleportation-simulable with associated resource state
ωA′B′ , as defined in (28). Let n,M ∈ N and ε ∈ (0, 1).
Then there exists an (n,M,

√
ε) sequential channel sim-

ulation code satisfying the following bound

1

n
log2M ≤

1

n
E
ε/2
F,0 (A′n;B′n)ω⊗n , (29)
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where 1
n log2M is understood as the non-asymptotic en-

tanglement cost of the protocol, and E
ε/2
F,0 (A′n;B′n)ω⊗n

is the ε/2-smooth entanglement of formation (EoF) [42]
recalled in Definition 1 below.

Definition 1 (Smooth EoF [42]) Let δ ∈ (0, 1) and
τCD be a bipartite state. Let E = {pX(x), φxCD} denote a
pure-state ensemble decomposition of τCD, meaning that
τCD =

∑
x pX(x)φxCD, where φxCD is a pure state and

pX is a probability distribution. Define the conditional
entropy of order zero H0(K|L)ω of a bipartite state ωKL
as

H0(K|L)ω ≡ max
σL

log2 Tr{Πω
KL(IK ⊗ σL)}, (30)

where Πω
KL denotes the projection onto the support of

ωKL and σL is a density operator. Then the δ-smooth
entanglement of formation of τCD is given by

EδF,0(C;D)τ ≡ min
E,τ̃XC∈Bδcq(τXC)

H0(C|X)τ̃ , (31)

where the minimization is with respect to all pure-
state ensemble decompositions E of τCD, τXCD =∑
x pX(x)|x〉〈x|X ⊗φxCD is a labeled pure-state extension

of τCD, and the δ-ball Bδcq(τXC) of cq states for a cq state
τXC is defined as

Bδcq(τXC) ≡
{
ωXC : ωXC ≥ 0, ωXC =

∑
x

|x〉〈x|⊗ωxC ,

‖ωXC − τXC‖1 ≤ δ
}
. (32)

The δ-smooth entanglement of formation has the property
that, for a tensor-power state τ⊗nCD, the following limit
holds [42, Theorem 2]

lim
δ→0

lim
n→∞

1

n
EδF,0(Cn;Dn)τ⊗n = lim

n→∞

1

n
EF (C;D)τ , (33)

= EC(τCD). (34)

where the latter quantity denotes the entanglement cost
of the state τCD [7].

Proof of Proposition 2. The approach for an (n,M, ε)
sequential channel simulation consists of the following
steps:

First, employ the one-shot entanglement cost protocol
from [42, Theorem 1], which consumes a maximally en-
tangled state ΦA0B0

of Schmidt rank M along with an
LOCC channel PA0B0→A′nB′n to generate n approximate
copies of the resource state ωA′B′ . In particular, using
the maximally entangled state ΦA0B0

with

log2M = E
ε/2
F,0 (A′n;B′n)ω⊗n , (35)

one can achieve the following approximation [42, Theo-
rem 1]:

1

2

∥∥ω⊗nA′B′ − ω̃A′nB′n∥∥1
≤ √ε, (36)

where

ω̃A′nB′n ≡ PA0B0→A′nB′n(ΦA0B0
). (37)

Next, at the first instance in which the channel should
be simulated, Alice and Bob apply the LOCC chan-
nel LAA′B′→B from (28) to the A′1 and B′1 systems of
ω̃A′nB′n . For the second instance, they apply the LOCC
channel LAA′B′→B from (28) to the A′2 and B′2 systems
of ω̃A′nB′n . This continues for the next n − 2 rounds of
the sequential channel simulation.

By the data processing inequality for trace distance,
it is guaranteed that the following bound holds on the
performance of this protocol for sequential channel sim-
ulation:

1

2
‖(N )n − (L)n‖♦,n ≤

1

2

∥∥ω⊗nA′B′ − ω̃A′nB′n∥∥1
≤ √ε.

(38)
This follows because the distinguishability of the sim-
ulation from the actual channel uses is limited by the
distinguishability of the states ω⊗nA′B′ and ω̃A′nB′n , due to
the assumed structure of the channel in (28), as well as
the structure of the sequential channel simulation.

By applying definitions, the bound in Proposition 2,
taking the limits n → ∞ and then ε → 0 (with M =
2n[R+δ] for a fixed rate R and arbitrary δ > 0), and
applying (33), we conclude the following statement:

Corollary 1 Let NA→B be a quantum channel that
is teleportation-simulable with associated resource state
ωA′B′ , as defined in (28). Then the entanglement cost of
the channel N is never larger than the entanglement cost
of the resource state ωA′B′ :

EC(N ) ≤ EC(ωA′B′). (39)

The above corollary captures the intuitive idea that
if a single instance of the channel N can be simulated
via LOCC starting from a resource state ωA′B′ , then the
entanglement cost of the channel should not exceed the
entanglement cost of the resource state. The idea of the
above proof is simply to prepare a large number n of
copies of ωA′B′ approximately and then use these to sim-
ulate n uses of the channel N , such that the simulation
could not be distinguished from n uses of the channel N
in any sequential test.

B. The entanglement cost of resource-seizable,
teleportation-simulable channels

In this section, I define teleportation-simulable chan-
nels that are resource-seizable, meaning that one can
seize the channel’s underlying resource state by the fol-
lowing procedure:

1. prepare a free, separable state,

2. input one of its systems to the channel, and then



8

3. post-process with a free, LOCC channel.

This procedure is indeed related to the channel process-
ing described earlier in (20). After that, I prove that the
entanglement cost of a resource-seizable channel is equal
to the entanglement cost of its underlying resource state.

Definition 2 (Resource-seizable channel) Let
NA→B be a teleportation-simulable channel with associ-
ated resource state ωA′B′ , as defined in (28). Suppose
that there exists a separable input state ρAMABM
to the channel and a postprocessing LOCC channel
DAMBBM→A′B′ such that the resource state ωA′B′ can
be seized from the channel NA→B as follows:

DAMBBM→A′B′(NA→B(ρAMABM )) = ωA′B′ . (40)

Then we say that the channel is a resource-seizable,
teleportation-simulable channel.

In Appendix A, I discuss how resource-seizable chan-
nels are related to those that are “implementable from
their image,” as defined in [43, Appendix A]. In Sec-
tion VI, I also discuss how to generalize the notion of
a resource-seizable channel to an arbitrary resource the-
ory.

The main result of this section is the following simplify-
ing form for the entanglement cost of a resource-seizable
channel (as defined above), establishing that its entan-
glement cost in the asymptotic regime is the same as the
entanglement cost of the underlying resource state. Fur-
thermore, for these channels, the entanglement cost is
not increased by the need to pass a more stringest test
for channel simulation as required in a sequential test.

Theorem 1 Let NA→B be a resource-seizable,
teleportation-simulable channel with associated re-
source state ωA′B′ , as given in Definition 2. Then the
entanglement cost of the channel NA→B is equal to its
parallel entanglement cost, which in turn is equal to the
entanglement cost of the resource state ωA′B′ :

EC(N ) = E
(p)
C (N ) = EC(ωA′B′). (41)

Proof. Consider from (22) that

EC(N ) ≥ E(p)
C (N ) = lim

n→∞

1

n
EF (N⊗n). (42)

Let ψRAn ≡ ψRA1···An be an arbitrary pure input state
to consider at the input of the tensor-power channel
(NA→B)⊗n, leading to the state

σRBn ≡ (NA→B)⊗n(ψRA1···An). (43)

From the assumption that the channel is teleportation-
simulable with associated resource state ωA′B′ , we have
from (28) that

σRBn = (LAA′B′→B)⊗n(ψRAn ⊗ ω⊗nA′B′) (44)

Then

EF (R;Bn)σ ≤ EF (RAnA′n;B′n)ψ⊗ω⊗n (45)

= EF (A′n;B′n)ω⊗n , (46)

where the inequality follows from LOCC monotonicity of
the entanglement of formation. Since the bound holds for
an arbitrary input state, we conclude that the following
inequality holds for all n ∈ N:

1

n
EF (N⊗n) ≤ 1

n
EF (A′n;B′n)ω⊗n . (47)

Now taking the limit n→∞, we conclude that

E
(p)
C (N ) ≤ EC(ωA′B′). (48)

To see the other inequality, let a decomposition of the
separable input state ρAMABM be given by

ρAMABM =
∑
x

pX(x)ψxAMA ⊗ φxBM . (49)

Considering that [ψxAMA]⊗n is a particular input to the

tensor-power channel (NA→B)⊗n, we conclude that

EF (N⊗n) ≥ EF (AnM ;Bn)[N (ψx)]⊗n . (50)

Since this holds for all x, we have that

EF (N⊗n) ≥
∑
x

pX(x)EF (AnM ;Bn)[N (ψx)]⊗n

=
∑
x

pX(x)EF (AnM ;BnBnM )[N (ψx)⊗φx]⊗n

≥ EF (AnM ;BnBnM )[N (ρ)]⊗n

≥ EF (A′n;B′n)ω⊗n , (51)

where the equality follows because introducing a prod-
uct state locally does not change the entanglement, the
second inequality follows from convexity of entanglement
of formation [1], and the last inequality follows from the
assumption in (40) and the LOCC monotonicity of the
entanglement of formation. Since the inequality holds for
all n ∈ N, we can divide by n and take the limit n→∞
to conclude that

E
(p)
C (N ) ≥ EC(ωA′B′), (52)

and in turn, from (48), that

E
(p)
C (N ) = EC(ωA′B′). (53)

Combining this equality with the inequalities in (39) and
(42) leads to the statement of the theorem.

IV. EXAMPLES

The equality in Theorem 1 provides a formal expres-
sion for the entanglement cost of any resource-seizable,
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teleportation-simulable channel, given in terms of the en-
tanglement cost of the underlying resource state ωA′B′ .
Due to the fact that the entanglement cost of a state
is generally not equal to its entanglement of formation
[44], it could still be a significant challenge to compute
the entanglement cost of these special channels. How-
ever, for some special states, the equality EC(ωA′B′) =
EF (A′;B′)ω does hold, and I discuss several of these ex-
amples and related channels here.

Let us begin by recalling the notion of a covariant chan-
nel NA→B [45]. For a group G with unitary channel rep-
resentations {UgA}g and {VgB}g acting on the input system
A and output system B of the channel NA→B , the chan-
nel NA→B is covariant with respect to the group G if the
following equality holds

NA→B ◦ UgA = VgB ◦ NA→B . (54)

If the averaging channel is such that 1
|G|
∑
g U

g
A(X) =

Tr[X]I/ |A| (implementing a unitary one-design), then
we simply say that the channel NA→B is covariant.

Then from [46, Section 7] (see also [47, Appendix A]),
we conclude that any covariant channel is teleportation-
simulable with associated resource state given by the
Choi state of the channel, i.e., ωA′B′ = NA→B(ΦA′A).
As such, covariant channels are resource-seizable, so that
the equality in Theorem 1 applies to all covariant chan-
nels. Thus, the entanglement cost of a covariant
channel is equal to the entanglement cost of its
Choi state. In spite of this reduction, it could still be
a great challenge to compute formulas for the entangle-
ment cost of these channels, due to the fact that the
entanglement of formation is not necessarily equal to the
entanglement cost for the Choi states of these channels.
For example, the entanglement cost of an isotropic state
[48, 49], which is the Choi state of a depolarizing channel,
is not known. In the next few subsections, I detail some
example channels for which it is possible to characterize
their entanglement cost.

A. Erasure channels

A simple example of a channel that is covariant is the
quantum erasure channel, defined as [50]

Eq(ρ) ≡ (1− q)ρ+ q|e〉〈e|, (55)

where ρ is a d-dimensional input state, q ∈ [0, 1] is the
erasure probability, and |e〉〈e| is a pure erasure state or-
thogonal to any input state, so that the output state
has d+ 1 dimensions. By the remark above, we conclude
that EC(Eq) = EC(EqA→B(ΦRA)), and so determining the
entanglement cost boils down to determining the entan-
glement cost of the Choi state

EqA→B(ΦRA) = (1− q) ΦRA +
IR
d
⊗ |e〉〈e|. (56)

An obvious pure-state decomposition for EqA→B(ΦRA)
(see [19, Eqs. (93)–(95)]) leads to

EC(EqA→B(ΦRA)) ≤ EF (EqA→B(ΦRA)) (57)

≤ (1− q) log2 d. (58)

As it turns out, these inequalities are tight, due to an op-
erational argument. In particular, the distillable entan-
glement of EqA→B(ΦRA) is exactly equal to (1− q) log2 d
[51], and due to the operational fact that the distill-
able entanglement of a state cannot exceed its entan-
glement cost [1], we conclude that EC(EqA→B(ΦRA)) =
(1− q) log2 d, and in turn that

EC(Eq) = E
(p)
C (Eq) = (1− q) log2 d. (59)

This result generalizes the finding from [19], which is that

E
(p)
C (Eq) = (1− q) log2 d, and so we conclude that for

erasure channels, the entanglement cost of these channels
is not increased by the need to pass a more stringest
test for channel simulation, as posed by a sequential test.
Note also that the distillable entanglement of the erasure
channel is given by ED(Eq) = (1− q) log2 d, due to [51].

The fact that the distillable entanglement of an era-
sure channel is equal to its entanglement cost, implies
that, if we restrict the resource theory of entanglement
for quantum channels to consist solely of erasure chan-
nels, then it is reversible. By this, we mean that, in the
limit of many channel uses, if one begins with an erasure
channel of parameter q and distills ebits from it at a rate
(1 − q) log2 d, then one can subsequently use these dis-
tilled ebits to simulate the same erasure channel again.
As we see below, this reversibility breaks down when con-
sidering other channels.

B. Dephasing channels

A d-dimensional dephasing channel has the following
action:

Dq(ρ) =

d−1∑
i=0

qiZ
iρZi†, (60)

where q is a vector containing the probabilities qi and
Z has the following action on the computational basis
Z|x〉 = e2πix/d|x〉. This channel is covariant with re-
spect to the Heisenberg–Weyl group of unitaries, which
are well known to be a unitary one-design. Furthermore,
as remarked previously (e.g., in [52]), the Choi state
Dq
A→B(ΦRA) of this channel is a maximally correlated

state [10, 11], which has the form∑
i,j

αi,j |i〉〈j|R ⊗ |i〉〈j|B . (61)

As such, Theorem 1 applies to these channels, implying
that

EC(Dq) = E
(p)
C (Dq) = EC(Dq

A→B(ΦRA)) (62)

= EF (Dq
A→B(ΦRA)), (63)
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with the final equality resulting from the fact that the
entanglement cost is equal to the entanglement of for-
mation for maximally correlated states [53, 54]. In [54,
Section VI-A], an optimization procedure is given for cal-
culating the entanglement of formation of maximally cor-
related states, which is simpler than that needed from the
definition of entanglement of formation.

A qubit dephasing channel with a single dephasing pa-
rameter q ∈ [0, 1] is defined as

Dq(ρ) = (1− q) ρ+ qZρZ. (64)

For the Choi state of this channel, there is an explicit for-
mula for its entanglement of formation [55], from which
we can conclude that

EC(Dq) = E
(p)
C (Dq) = h2(1/2 +

√
q (1− q)), (65)

where

h2(x) ≡ −x log2 x− (1− x) log2(1− x) (66)

is the binary entropy. The equality in (65) solves an
open question from [19], where it had only been shown

that E
(p)
C (Dq) ≤ h2(1/2 +

√
q (1− q)).

The results of [1, Eq. (57)] and [3, Eq. (8.114)] gave
a simple formula for the distillable entanglement of the
qubit dephasing channel:

ED(Dq) = 1− h2(q). (67)

Thus, this formula and the formula in (65) demonstrate
that the resource theory of entanglement for these chan-
nels is irreversible. That is, if one started from a qubit
dephasing channel with parameter q ∈ (0, 1) and dis-
tilled ebits from it at the ideal rate of 1 − h2(q), and
then subsequently wanted to use these ebits to simu-
late a qubit dephasing channel with the same parameter,
this is not possible, because the rate at which ebits are
distilled is not sufficient to simulate the channel again.
Figure 3 compares the formulas for entanglement cost
and distillable entanglement of the qubit dephasing chan-
nel, demonstrating that there is a noticeable gap be-
tween them. At q = 1/2, the qubit dephasing chan-
nel is a completely dephasing, classical channel, so that
EC(D1/2) = ED(D1/2) = 0. Thus, a reasonable approx-
imation to the difference is given by a Taylor expansion
about q = 1/2:

EC(Dq)− ED(Dq) =

1

ln 2

[
2 ln

(
1

|q − 1
2 |

)
− 1

]
(q − 1

2 )2 +O((q − 1
2 )4). (68)

C. Werner–Holevo channels

A particular kind of Werner–Holevo channel performs
the following transformation on a d-dimensional input

Ent. Cost

Dist. Ent.

0.2 0.4 0.6 0.8 1.0
q

0.2

0.4

0.6

0.8

1.0

Rate

FIG. 3. Entanglement cost EC(Dq) = h2(1/2 +
√
q (1− q))

and distillable entanglement ED(Dq) = 1−h2(q) of the qubit
dephasing channel Dq as a function of the dephasing param-
eter q ∈ [0, 1], with the shaded area demonstrating the gap
between them. The units for rate on the vertical axis are ebits
per channel use, and q on the horizontal axis is dimensionless.

state ρ [56]:

W(d)(ρ) ≡ 1

d− 1
(Tr{ρ}I − T (ρ)) , (69)

where T denotes the transpose map T (·) =∑
i,j |i〉〈j|(·)|i〉〈j|. As observed in [56, Section II]

and [57, Section VII], this channel is covariant, and so
an immediate consequence of [46, Section 7] is that these
channels are teleportation simulable with associated
resource state given by their Choi state. The latter fact
was explicitly observed in [57, Sections VI and VII], as
well as [43, Appendix A]. Furthermore, its Choi state is
given by

W(d)
A→B(ΦRA) = αd ≡

1

d (d− 1)
(IRB − FRB) , (70)

where αd is the antisymmetric state, i.e., the maximally
mixed state on the antisymmetric subspace of a d × d
quantum system and FRB ≡

∑
i,j |i〉〈j|R⊗|j〉〈i|B denotes

the unitary swap operator. Theorem 1 thus applies to
these channels, and we find that

EC(W(d)) = E
(p)
C (W(d)) (71)

= EC(αd) (72)

≥ log2(4/3) ≈ 0.415, (73)

with the inequality following from [58, Theorem 2]. We
also have that

EC(W(d)) = E
(p)
C (W(d)) = EC(αd) ≤ EF (αd) = 1,

(74)
with the last equality following from the result stated
in [59, Section IV-C]. For d = 3, the entanglement cost
EC(α3) is known to be equal to exactly one ebit [60]:

EC(W(3)) = E
(p)
C (W(3)) = 1. (75)
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It was observed in [43, Appendix A] (as well as [61])
that the distillable entanglement of the Werner–Holevo
channel W(d) is equal to the distillable entanglement of
its Choi state:

ED(W(d)) = ED(αd). (76)

Thus, an immediate consequence of [58, Theorem 1 and
Eq. (5)] is that

ED(W(d)) ≤
{

log2
d+2
d if d is even

1
2 log2

d+3
d−1 if d is odd

}
(77)

=
2

d · ln 2

(
1− 1

d

)
+O

(
1

d3

)
. (78)

We can now observe that the resource theory of en-
tanglement is generally not reversible when restricted to
Werner–Holevo channels. The case d = 2 is somewhat
trivial: in this case, one can verify that the channelW(2)

is a unitary channel, equivalent to acting on the input
state with the Pauli Y unitary. Thus, for d = 2, the
channel is a noiseless qubit channel, and we trivially have
that

ED(W(2)) = EC(W(2)) = 1, (79)

so that the resource theory of entanglement is clearly
reversible in this case. For d = 3, the upper bound on
distillable entanglement in (77) evaluates to 1

2 log2(3) ≈
0.793, while the entanglement cost is equal to one, as
stated in (75), so that

ED(W(3)) ≤ 0.793 < 1 = EC(W(3)). (80)

Thus, the resource theory of entanglement is not re-
versible for W(3). For d ∈ {4, 5, 6}, the upper bound in
(77) and the lower bound in (73) are not strong enough
to make a definitive statement (interestingly, the bounds
in (77) and (73) are actually equal for d = 6). Then for
d ≥ 7, the upper bound in (77) and the lower bound in
(73) are strong enough to conclude that

ED(W(d)) < EC(W(d)), (81)

so that the resource theory is not reversible for W(d).
Figure 4 summarizes these observations.

D. Epolarizing channels (complements of
depolarizing channels)

The d-dimensional depolarizing channel is a common
model of noise in quantum information, transmitting the
input state with probability 1−q ∈ [0, 1] and replacing it
with the maximally mixed state π ≡ I

d with probability q:

∆q(ρ) = (1− q) ρ+ qπ. (82)

●
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FIG. 4. Lower bound on the entanglement cost EC(W(d))
from (73) and upper bound on distillable entanglement

ED(W(d)) from (77) for the Werner–Holevo channel W(d)

as a function of the parameter d ≥ 4, with the lines con-
necting the dots demonstrating the gap between them. For
d = 2, the points are exact due to (79), and reversibility holds.

For d = 3, the entanglement cost EC(W(3)) is exactly equal

to one, as recalled in (75), while (77) applies to ED(W(3)),
and the resource theory is irreversible. For d ∈ {4, 5, 6}, the
bounds are not strong enough to reach a conclusion about re-
versibility. For d ≥ 7, the resource theory is irreversible, and
the gap EC(W(d))− ED(W(d)) grows at least as large as the
difference of (73) and (78). The units for rate on the vertical
axis are ebits per channel use, and d on the horizontal axis is
dimensionless.

According to Stinespring’s theorem [62], every quantum
channel NA→B can be realized by the action of some
isometric channel UA→BE followed by a partial trace:

NA→B(ρA) = TrE{UA→BE(ρA)}. (83)

Due to the partial trace and its invariance with respect
to isometric channels acting exclusively on the E system,
the extending channel UA→BE is not unique in general,
but it is unique up to this freedom. Then given an iso-
metric channel UA→BE extending NA→B as in (83), the
complementary channel N c

A→E is defined by a partial
trace over the system B and is interpreted physically as
the channel from the input to the environment:

N c
A→E(ρA) = TrB{UA→BE(ρA)}. (84)

Due to the fact that properties of the original chan-
nel are related to properties of its complementary chan-
nel [63, 64], there has been significant interest in under-
standing complementary channels. In this spirit, and
due to the prominent role of the depolarizing chan-
nel, researchers have studied its complementary channels
[65, 66]. In [65, Eq. (3.6)], the following form was given
for a complementary channel of ∆q:

ρ→ SqAF (ρA ⊗ IF )Sq†AF , (85)
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where IF is a d-dimensional identity operator and

SqAF ≡
√
q

d
IAF +

√
d

(
−
√
q

d
+

√
1− q

(
d2 − 1

d2

))
ΦAF . (86)

A channel complementary to ∆q has been called an “epo-
larizing channel” in [66].

An alternative complementary channel, related to the
above one by an isometry acting on the output sys-
tems AF , but perhaps more intuitive, is realized in the
following way [66, Eq. (28)]. Consider the isometry
UA→SG1G2A defined as

UA→SG1G2A|ψ〉A ≡
C-SWAPSG1A (|φq〉S ⊗ |Φ〉G1G2 ⊗ |ψ〉A) , (87)

where the control qubit |φq〉S ≡
√

1− q|0〉S +
√
q|1〉S ,

|Φ〉G1G2
is a maximally entangled state of Schmidt

rank d, and the controlled-SWAP unitary is given by

C-SWAPSG1A ≡ |0〉〈0|S ⊗ IG1A + |1〉〈1|S ⊗ SWAPG1A,
(88)

with SWAPG1A denoting a unitary swap operation. By
tracing over the systems SG1G2, we recover the original
depolarizing channel

∆q(ρA) = TrSG1G2
{UρAU†}. (89)

Thus, by definition, a channel complementary to ∆q is
realized by

ΛqA→SG1G2
(ρA) ≡ TrA{UρAU†}, (90)

and in what follows, let us refer to ΛqA→SG1G2
as the

epolarizing channel.
The isometry UA→SG1G2A in (87) is unitarily covari-

ant, in the sense that for an arbitrary unitary VA acting
on the input, we have that

UA→SG1G2AVA =
(
VG1 ⊗ V G2 ⊗ VA

)
UA→SG1G2A, (91)

where V denotes the complex conjugate of V . The iden-
tity in (91) follows because

UA→SG1G2AVA|ψ〉A
= C-SWAPSG1A (|φq〉S |Φ〉G1G2

VA|ψ〉A)

= C-SWAPSG1A

(
|φq〉S

(
VG1V G2

)
|Φ〉G1G2VA|ψ〉A

)
=
(
VG1
⊗ V G2

⊗ VA
)

C-SWAPSG1A (|φq〉S |Φ〉G1G2
|ψ〉A)

=
(
VG1
⊗ V G2

⊗ VA
)
UA→SG1G2A|ψ〉A. (92)

The above analysis omits some tensor-product symbols
for brevity. The third equality uses the well known fact
that |Φ〉G1G2

=
(
VG1
⊗ V G2

)
|Φ〉G1G2

. In the fourth

equality, we have exploited the facts that V G2
commutes

with C-SWAPSG1A and that

SWAPG1A (VG1
⊗ VA) = (VG1

⊗ VA) SWAPG1A. (93)

The covariance in (91) then implies that the epolarizing
channel is covariant in the following sense:

(ΛqA→SG1G2
◦ VA)(ρA)

= (
(
VG1 ⊗ VG2

)
◦ ΛqA→SG1G2

)(ρA), (94)

where V denotes the unitary channel realized by the the
unitary operator V .

As such, by the discussion after (54), the epo-
larizing channel is a resource-seizable, teleportation-
simulable channel with associated resource state given
by ΛqA→SG1G2

(ΦRA). Thus, Theorem 1 applies to these
channels, implying that the first two of the following
equalities hold

EC(Λq) = E
(p)
C (Λq) = EC(Λq(ΦRA)) (95)

= EF (Λq(ΦRA)) (96)

= −
(

1− q +
q

d

)
log2

(
1− q +

q

d

)
− (d− 1)

q

d
log2

( q
d

)
. (97)

Let us now justify the final two equalities, which give
a simple formula for the entanglement cost of epolar-
izing channels. First, consider that the Choi state
ΛqA′→SG1G2

(ΦA′A) of the epolarizing channel is equal
to the state resulting from sending in the maximally
mixed state to the isometric channel UA→SG1G2A, defined
from (87):

ΛqA′→SG1G2
(ΦA′A) = UA→SG1G2A(πA), (98)

where system A′ is isomorphic to A. This equality is
shown in Appendix B. As such, then [67, Theorem 3]
applies, as discussed in Example 6 therein, and as a con-
sequence, we can conclude the second and third equalities
in the following, with the bipartite cut of systems taken
as SG1G2|A:

EC(ΛqA′→SG1G2
(ΦA′A)) = EC(UA→SG1G2A(πA)) (99)

= EF (UA→SG1G2A(πA)) (100)

= Hmin(∆q). (101)

The last line features the minimum output entropy of
the depolarizing channel, which was identified in [68] and
shown to be equal to (97).

As discussed in previous examples, it is worthwhile to
consider the reversibility of the resource theory of entan-
glement for epolarizing channels. In this spirit, by in-
voking the covariance of Λq, the discussion after (54), [1,
Eq. (55)], and [11, Theorem 4.13], we find the following
bound on the distillable entanglement of the epolarizing
channel Λq:

ED(Λq) ≤ R(A;SG1G2)Λq(Φ), (102)

where R(A;SG1G2)Λq(Φ) denotes the Rains relative en-
tropy of the state ΛqA′→SG1G2

(ΦA′A). Recall that the
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FIG. 5. The figure depicts the entanglement cost, the Rains
bound, and the coherent information of the epolarizing chan-
nel Λq, for d = 2 and q ∈ [0, 1]. The gap between the entangle-
ment cost and the Rains bound for all q ∈ (0, 1) demonstrates
that the resource theory of entanglement is irreversible for
epolarizing channels. The units for rate on the vertical axis
are ebits per channel use, and q on the horizontal axis is di-
mensionless.

Rains relative entropy for an arbitrary state ρAB is de-
fined as [11]

R(A;B)ρ ≡ min
τAB∈PPT′(A;B)

D(ρAB‖τAB), (103)

where the quantum relative entropy is defined as [69]

D(ρ‖τ) ≡ Tr{ρ[log2 ρ− log2 τ ]} (104)

and the Rains set PPT′(A;B) [70] is given by

PPT′(A;B) ≡ {τAB : τAB ≥ 0 ∧ ‖TB(τAB)‖1 ≤ 1} ,
(105)

with TB denoting the partial transpose. Appendix C
details a Matlab program taking advantage of recent ad-
vances in [71, 72], in order to compute the Rains relative
entropy of any bipartite state.

Figure 5 plots the entanglement cost of the epolariz-
ing channel for d = 2 (qubit input), and it also plots the
Rains bound on distillable entanglement in (102). There
is a gap for every value of q ∈ (0, 1), demonstrating that
the resource theory of entanglement is irreversible for
epolarizing channels. The figure also plots the coherent
information of the state ΛqA′→SG1G2

(Ψs
A′A), optimized

with respect to |Ψs〉A′A ≡
√
s|00〉A′A +

√
1− s|11〉A′A

for s ∈ [0, 1], which is known to be a lower bound on the
distillable entanglement of Λq [9]. Note that the coherent
information plot is not in contradiction with the recent
result of [66], which states that the coherent information
is strictly greater than zero for all q ∈ (0, 1]. It is simply
that the coherent information is so small for q . 0.18,
that it is difficult to witness its strict positivity numeri-
cally. Matlab files to generate Figure 5 are available with
the arXiv posting of this paper.

V. BOSONIC GAUSSIAN CHANNELS

In this section, I extend the main ideas of the paper in
order to characterize the entanglement cost of all single-
mode bosonic Gaussian channels [73]. From a practical
perspective, we should be most interested in the single-
mode thermal, amplifier, and additive-noise channels,
as these are of the greatest interest in applications, as
stressed in [2, Section 12.6.3] and [74, Section 3.5]. How-
ever, it also turns out that these are the only non-trivial
cases to consider among all single-mode bosonic Gaussian
channels, as discussed below.

A. On the definition of entanglement cost for
infinite-dimensional channels

Before beginning, let us note that there are some sub-
tleties involved when dealing with quantum information
theory in infinite-dimensional Hilbert spaces [2]. For ex-
ample, as advised in [75], the direct use of the diamond
norm in infinite-dimensional Hilbert spaces could be too
strong for applications, and this observation has moti-
vated some recent work [76, 77] on modifications of the di-
amond norm that take into account physical constraints
such as energy limitations. On the other hand, the re-
cent findings in [78] suggest that the direct use of the di-
amond norm is reasonable when considering single-mode
thermal, amplifier, and additive-noise channels, as well as
some multi-mode bosonic Gaussian channels. As it turns
out, we can indeed directly employ the diamond norm
when analyzing the entanglement cost of these channels.
In fact, one of the main contributions of [78] was to con-
sider uniform convergence issues in the teleportation sim-
ulation of bosonic Gaussian channels, and due to the fact
that the operational framework of entanglement cost is
directly related to the approximate teleportation simula-
tion of a channel, one should expect that the findings of
[78] would be related to the issues involved in the entan-
glement cost of bosonic Gaussian channels.

With this in mind, let us define the entanglement
cost for an infinite-dimensional channel almost exactly
as it has been defined in Section II B, with the exception
that we allow for LOCC channels that have a continu-
ous classical index (e.g., as considered in [79, Section 4]),
thus going beyond the LOCC channels considered in (4).
Specifically, let us define an (n,M, ε) sequential channel
simulation code as it has been defined in Section II B,
noting that the ε-error criterion is given by (18), repre-
senting the direct generalization of the strategy norm of
[26, 27, 33] to infinite-dimensional systems. Achievable
rates and the entanglement cost are then defined in the
same way.



14

B. Preliminary observations about the
entanglement cost of single-mode bosonic Gaussian

channels

The starting point for our analysis of single-mode
bosonic Gaussian channels is the Holevo classification
from [80], in which canonical forms for all single-mode
bosonic Gaussian channels have been given, classifying
them up to local Gaussian unitaries acting on the input
and output of the channel. It then suffices for us to focus
our attention on the canonical forms, as it is self-evident
from definitions that local unitaries do not alter the en-
tanglement cost of a quantum channel. The thermal and
amplifier channels form the class C discussed in [80], and
the additive-noise channels form the class B2 discussed
in the same work. The classes that remain are labeled
A, B1, and D in [80]. The channels in A and D are
entanglement-breaking [39], and as a consequence of the
“if-part” of Remark 1, they have zero entanglement cost.
Channels in the class B1 are perhaps not interesting for
practical applications, and as it turns out, they have in-
finite quantum capacity [80]. Thus, their entanglement
cost is also infinite, because a channel’s quantum capac-
ity is a lower bound on its distillable entanglement, which
is in turn a lower bound on its entanglement cost—these
relationships are a direct consequence of the definitions
of the underlying quantities. For the same reason, the
entanglement cost of the bosonic identity channel is also
infinite.

C. Thermal, amplifier, and additive-noise channels

In light of the previous discussion, for the remainder
of the paper, let us focus our attention on the thermal,
amplifier, and additive-noise channels. Each of these are
defined respectively by the following Heisenberg input-
output relations:

b̂ =
√
ηâ+

√
1− ηê, (106)

b̂ =
√
Gâ+

√
G− 1ê†, (107)

b̂ = â+ (x+ ip) /
√

2, (108)

where â, b̂, and ê are the field-mode annihilation opera-
tors for the sender’s input, the receiver’s output, and the
environment’s input of these channels, respectively.

The channel in (106) is a thermalizing channel, in
which the environmental mode is prepared in a thermal
state θ(NB) of mean photon number NB ≥ 0, defined as

θ(NB) ≡ 1

NB + 1

∞∑
n=0

(
NB

NB + 1

)n
|n〉〈n|, (109)

where {|n〉}∞n=0 is the orthonormal, photonic number-
state basis. When NB = 0, θ(NB) reduces to the vac-
uum state, in which case the resulting channel in (106)
is called the pure-loss channel—it is said to be quantum-
limited in this case because the environment is injecting

the minimum amount of noise allowed by quantum me-
chanics. The parameter η ∈ (0, 1) is the transmissivity of
the channel, representing the average fraction of photons
making it from the input to the output of the channel.
Let Lη,NB denote this channel, and we make the further
abbreviation Lη ≡ Lη,NB=0 when it is the pure-loss chan-
nel. The channel in (106) is entanglement-breaking when
(1− η)NB ≥ η [39], and by Remark 1, the entanglement
cost is equal to zero for these values.

The channel in (107) is an amplifier channel, and the
parameter G > 1 is its gain. For this channel, the
environment is prepared in the thermal state θ(NB).
If NB = 0, the amplifier channel is called the pure-
amplifier channel—it is said to be quantum-limited for
a similar reason as stated above. Let AG,NB denote this
channel, and we make the further abbreviation AG ≡
AG,NB=0 when it is the quantum-limited amplifier chan-
nel. The channel in (107) is entanglement-breaking when
(G− 1)NB ≥ 1 [39], and by Remark 1, the entanglement
cost is equal to zero for these values.

Finally, the channel in (108) is an additive-noise chan-
nel, representing a quantum generalization of the clas-
sical additive white Gaussian noise channel. In (108),
x and p are zero-mean, independent Gaussian random
variables each having variance ξ ≥ 0. Let Tξ denote this
channel. The channel in (108) is entanglement-breaking
when ξ ≥ 1 [39], and by Remark 1, the entanglement cost
is equal to zero for these values.

Kraus representations for the channels in (106)–(108)
are available in [81], which can be helpful for further un-
derstanding their action on input quantum states.

Due to the entanglement-breaking regions discussed
above, we are left with a limited range of single-mode
bosonic Gaussian channels to consider, which is delin-
eated by the white strip in Figure 1 of [82].

D. Upper bound on the entanglement cost of
teleportation-simulable channels with bosonic

Gaussian resource states

In this section, I determine an upper bound on the
entanglement cost of any channel NA→B that is telepor-
tation simulable with associated resource state given by
a bosonic Gaussian state. Related bosonic teleportation
channels have been considered previously [83–88], in the
case that the LOCC channel associated to NA→B is a
Gaussian LOCC channel. Proposition 3 below states that
the entanglement cost of these channels is bounded from
above by the Gaussian entanglement of formation [89] of
the underlying bosonic Gaussian resource state, and as
such, this proposition represents a counterpart to Propo-
sition 2. Before stating it, let us note that the Gaussian
entanglement of formation EgF (A;B)ρ of a bipartite state
ρAB [89] is given by the same formula as in (7), with the
exception that the pure states ψxAB in the ensemble de-
composition are required to be Gaussian. Note that con-
tinuous probability measures are allowed for the decom-
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position (for an explicit definition, see [89, Section III]).
Let us note here that the first part of the proof outlines a
procedure for the formation of n approximate copies of a
bipartite state, and even though this kind of protocol has
been implicit in prior literature, I have included explicit
steps for clarity. After proving Proposition 2, I discuss
its application to thermal, amplifier, and additive-noise
bosonic Gaussian channels.

Proposition 3 Let NA→B be a channel that is teleporta-
tion simulable as defined in (28), where the resource state
ωA′B′ is a bosonic Gaussian state composed of k modes
for system A′ and ` modes for system B′, with k, ` ≥ 1.
Then the entanglement cost of NA→B is never larger than
the Gaussian entanglement of formation of the bosonic
Gaussian resource state ωA′B′ :

EC(N ) ≤ EgF (A′;B′)ω. (110)

Proof. The main idea of the proof is to first form n ap-
proximate copies of the bosonic Gaussian resource state
ωA′B′ , by using entanglement and LOCC as related to
the approach from [90], and then after that, simulate n
uses of the channel NA→B by employing the structure
of the channel NA→B from (28). Indispensable to the
proof is the analysis in [89, Sections II and III], where
it is shown that every bosonic Gaussian state can be de-
composed as a Gaussian mixture of local displacements
acting on a fixed Gaussian pure state and that such a de-
composition is optimal for the Gaussian entanglement of
formation [89, Proposition 1]. The Gaussian mixture of
local displacements can be understood as an LOCC chan-
nel GA′B′ , and let ψωA′B′ denote the aforementioned fixed
Gaussian pure state such that GA′B′(ψωA′B′) = ωA′B′ .

Since ψωA′B′ is Gaussian, the marginal state ψωB′ is
Gaussian, and thus it has finite entropy H(B′)ψω , as well
as finite entropy variance, i.e.,

V (B′)ψω ≡ Tr{ψωB′ [− log2 ψ
ω
B′ −H(B′)ψω ]2} <∞,

(111)
the latter statement following from the Williamson de-
composition [91] for Gaussian states as well as the for-
mula for the entropy variance of a bosonic thermal state
[92]. For δ > 0, recall that the entropy-typical projector
Πδ
B′n [93, 94] of the state ψωB′ is defined as the projection

onto

span{|ξzn〉 :
∣∣−n−1 log2(pZn(zn))−H(B′)ψω

∣∣ ≤ δ},
(112)

where a countable spectral decomposition of ψωB′ is given
by

ψωB′ =
∑
z

pZ(z)|ξz〉〈ξz|, (113)

and

|ξzn〉 ≡ |ξz1〉 ⊗ · · · ⊗ |ξzn〉, (114)

pZn(zn) ≡ pZ(z1) · · · pZ(zn). (115)

The entropy-typical projector Πδ
B′n projects onto a finite-

dimensional subspace of [ψωB′ ]
⊗n, and satisfies the condi-

tions
[
Πδ
B′n , [ψ

ω
B′ ]
⊗n] = 0 and

2−n[H(B′)ψω+δ]Πδ
B′n ≤ Πδ

B′n [ψωB′ ]
⊗nΠδ

B′n

≤ 2−n[H(B′)ψω−δ]Πδ
B′n . (116)

It then follows that Tr{Πδ
B′n} ≤ 2n[H(B′)ψω+δ]. Further-

more, consider that the entropy-typical projector Πδ
B′n

for the state [ψωB′ ]
⊗n satisfies

Tr{
(
IA′n ⊗Πδ

B′n
)

[ψωA′B′ ]
⊗n} = Tr{Πδ

B′n [ψωB′ ]
⊗n}

≥ 1− V (B′)ψω

δ2n
, (117)

with the inequality following from the definition of the
entropy-typical projector and an application of the Cheb-
shev inequality. By the gentle measurement lemma
[95, 96] (see [4, Lemma 9.4.1] for the version employed
here), we conclude that

1

2

∥∥∥[ψωA′B′ ]
⊗n − ψ̃ωA′nB′n

∥∥∥
1
≤
√
V (B′)ψω

δ2n
, (118)

where

ψ̃ωA′nB′n ≡
(
IA′n ⊗Πδ

B′n

)
[ψωA′B′ ]

⊗n (IA′n ⊗Πδ
B′n

)
Tr{
(
IA′n ⊗Πδ

B′n

)
[ψωA′B′ ]

⊗n} .

(119)

Observe that the system B′n of ψ̃ωA′nB′n is supported on
a finite-dimensional subspace of B′n.

Now, the idea of forming n approximate copies ψωA′B′
is then the same as it is in [90]: Alice prepares the state

ψ̃ωA′nB′n locally, Alice and Bob require beforehand a max-
imally entangled state of Schmidt rank no larger than

2n[H(B′)ψω+δ], and then they perform quantum telepor-
tation [14] to teleport the B′n system to Bob. At this

point, they share exactly the state ψ̃ωA′nB′n , which be-
comes less and less distinguishable from [ψωA′B′ ]

⊗n as n
grows large, due to (118). Now applying the Gaussian
LOCC channel (GA′B′)⊗n, the data processing inequal-
ity to (118), and the fact that GA′B′(ψωA′B′) = ωA′B′ , we
conclude that

1

2

∥∥∥ω⊗nA′B′ − (GA′B′)⊗n(ψ̃ωA′nB′n)
∥∥∥

1
≤
√
V (B′)ψω

δ2n
. (120)

Thus, to see that H(B′)ψω is an achievable rate for
forming ω⊗nA′B′ , fix ε ∈ (0, 1] and δ > 0. Then choose

n large enough so that

√
V (B′)ψω

δ2n ≤ ε. Apply the above

procedure, using LOCC and a maximally entangled state

of Schmidt rank no larger than 2n[H(B′)ψω+δ]. Then the
rate of entanglement consumption to produce n approx-
imate copies of ωA′B′ satisfying (120) is H(B′)ψω + δ.
Since this is possible for ε ∈ (0, 1], δ > 0, and suffi-
ciently large n, we conclude that H(B′)ψω is an achiev-
able rate for the formation of ωA′B′ . Now, since achiev-
ing this rate is possible for any pure state ψωA′B′ such
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that ωA′B′ = GA′B′(ψωA′B′), we conclude that the infi-
mum of H(B′)ψω with respect to all such pure states
is an achievable rate. But this latter quantity is exactly
the Gaussian entanglement of formation according to [89,
Proposition 1].

The idea for simulating n uses of the channel NA→B
is then the same as the idea used in the proof of Propo-
sition 2. First form n approximate copies of ωA′B′ ac-
cording to the procedure described above. Then, when
the ith call to the channel NA→B is made, use the LOCC
channel LAA′B′→B from the definition in (28) along with
the ith A′ and B′ systems of the state approximating
ω⊗nA′B′ to simulate it. By the same reasoning that led to
(38), the distinguishability of the final states of any se-
quential test is limited by the distinguishability of the
state ω⊗nA′B′ from its approximation, which I argued in
(120) can be made arbitrarily small with increasing n.
Thus, the Gaussian entanglement of formation ωA′B′ is
an achievable rate for sequential channel simulation of n
uses of NA→B .

1. Upper bound for the entanglement cost of thermal,
amplifier, and additive-noise bosonic Gaussian channels

I now discuss how to apply Proposition 2 to single-
mode thermal, amplifier, and additive-noise channels.
Some recent papers [97–99] have shown how to simu-
late each of these channels by using a bosonic Gaussian
resource state along with variations of the continuous-
variable quantum teleportation protocol [83]. Of these
works, the one most relevant for us is the latest one [99],
because these authors proved that the entanglement of
formation of the underlying resource state is equal to the
entanglement of formation that results from transmitting
through the channel one share of a two-mode squeezed
vacuum state with arbitrarily large squeezing strength.
That is, let NA→B denote a single-mode thermal, am-
plifier, or additive-noise channel. Then one of the main
results of [99] is that, associated to this channel, there is
a bosonic Gaussian resource state ωA′B′ and a Gaussian
LOCC channel GAA′B′→B such that

EF (A′;B′)ω = sup
NS≥0

EF (R;B)σ(NS) (121)

= lim
NS→∞

EF (R;B)σ(NS), (122)

where

σ(NS) ≡ NA→B(φNSRA), (123)

φNSRA ≡ |φNS 〉〈φNS |RA, (124)

|φNS 〉RA ≡
1√

NS + 1

∞∑
n=0

√(
NS

NS + 1

)n
|n〉R|n〉A,

(125)

and for all input states ρA,

NA→B(ρA) = GAA′B′→B(ρA ⊗ ωA′B′). (126)

In the above, φNSRA is the two-mode squeezed vacuum state
[73]. Note that the equality in (122) holds because one

can always produce φNSRA from φ
N ′S
RA such that N ′S ≥ NS ,

by using Gaussian LOCC and the local displacements
involved in the Gaussian LOCC commute with the chan-
nel NA→B [100] (whether it be thermal, amplifier, or
additive-noise). Furthermore, the entanglement of for-
mation does not increase under the action of an LOCC
channel.

Thus, applying the above observations and Proposi-
tion 3, it follows that there exist bosonic Gaussian re-

source states ωη,NBA′B′ , ω
G,NB
A′B′ , and ωξA′B′ associated to the

respective thermal, amplifier, and additive-noise channels
in (106)–(108), such that the following inequalities hold

EC(Lη,NB ) ≤ EF (A′;B′)ωη,NB , (127)

EC(AG,NB ) ≤ EF (A′;B′)ωG,NB , (128)

EC(Tξ) ≤ EF (A′;B′)ωξ . (129)

Analytical formulas for the upper bounds on the right
can be found in [99, Eqs. (4)–(6)].

E. Lower bound on the entanglement cost of
bosonic Gaussian channels

In this section, I establish a lower bound on the non-
asymptotic entanglement cost of thermal, amplifier, or
additive-noise bosonic Gaussian channels. After that, I
show how this bound implies a lower bound on the en-
tanglement cost. Finally, by proving that the state re-
sulting from sending one share of a two-mode squeezed
vacuum through a pure-loss or pure-amplifier channel has
entanglement cost equal to entanglement of formation, I
establish the exact entanglement cost of these channels
by combining with the results from the previous section.

Proposition 4 Let NA→B be a thermal, amplifier, or
additive-noise channel, as defined in (106)–(108). Let

n,M ∈ N, ε ∈ [0, 1/2), ε′ ∈ (
√

2ε, 1], δ =[
ε′ −
√

2ε
]
/ [1 + ε′], and NS ∈ [0,∞). Then the follow-

ing bound holds for any (n,M, ε) sequential or parallel
channel simulation code for NA→B:

1

n
log2M ≥

1

n
EF (Rn;Bn)ω⊗n − (ε′ + 2δ)H(φ

NS/δ
R )

− 1

n
[2 (1 + ε′) g2(ε′) + 2h2(δ)] , (130)

where ωRB ≡ NA→B(φNSRA) and 1
n log2M is understood

as the non-asymptotic entanglement cost of the protocol.

Proof. The reasoning here is very similar to that given
in the proof of Proposition 1, but we can instead make
use of the continuity bound for the entanglement of for-
mation of energy-constrained states [101, Proposition 5].
To begin, suppose that there exists an (n,M, ε) proto-
col for sequential channel simulation. Then by previous



17

reasoning (also see Figure 2), it can be thought of as a
parallel channel simulation protocol, such that the cri-
terion in (2) holds. Let us take (φNSRA)⊗n to be a test

input state, leading to ω⊗nRB = [NA→B(φNSRA)]⊗n when the
actual channels are applied and σR1···RnB1···Bn when the
simulation is applied. Set

f(n, ε, ε′, NS) ≡ n (ε′ + 2δ)H(φ
NS/δ
R )

+ 2 (1 + ε′) g2(ε′) + 2h2(δ). (131)

Then we have that

EF (Rn;Bn)ω⊗n

≤ EF (Rn;Bn)σ + f(n, ε, ε′, NS)

≤ EF (RnAnA0;B0)ψ⊗Φ + f(n, ε, ε′, NS)

= EF (A0;B0)Φ + f(n, ε, ε′, NS)

= log2M + f(n, ε, ε′, NS). (132)

The first inequality follows from the condition in (18),
as well as from the continuity bound for entanglement of
formation from [101, Proposition 5], noting that the total
photon number of the reduced (thermal) state on systems
Rn is equal to nNS . The second inequality follows from
the LOCC monotonicity of the entanglement of forma-
tion, here thinking of the person who possesses systems
RAn to be in the same laboratory as the one possessing
the systems Ai, while the person who possesses the Bi
systems is in a different laboratory. The first equality
follows from the fact that (φNSRA)⊗n is in tensor product
with ΦA0B0

, so that by a local channel, one may remove

(φNSRA)⊗n or append it for free. The final equality follows
because the entanglement of formation of the maximally
entangled state is equal to the logarithm of its Schmidt
rank.

A direct consequence of Proposition 4 is the following
lower bound on the entanglement cost of the thermal,
amplifier, and additive-noise channels:

Proposition 5 Let NA→B be a thermal, amplifier,
or additive-noise channel, as defined in (106)–(108).

Then the entanglement costs EC(N ) and E
(p)
C (N ) are

bounded from below by the entanglement cost of the state
NA→B(φNSRA), where the two-mode squeezed vacuum state

φNSRA has arbitrarily large squeezing strength:

EC(N ) ≥ E(p)
C (N ) (133)

≥ sup
NS≥0

EC(NA→B(φNSRA)) (134)

= lim
NS→∞

EC(NA→B(φNSRA)). (135)

Proof. The first inequality follows from definitions, as
argued previously in (22). To arrive at the second in-

equality, in Proposition 4, set ε′ = 4
√

2ε, and take the
limit as n → ∞ and then as ε → 0. Employing the fact

that limξ→0 ξH(H(φ
NS/ξ
R )) = 0 [102, Proposition 1] and

applying definitions, we find for all NS ≥ 0 that

EC(N ) ≥ E(p)
C (N ) (136)

≥ lim
n→∞

1

n
EF ([NA→B(φNSRA)]⊗n) (137)

= EC(NA→B(φNSRA)). (138)

Since the above bound holds for all NS ≥ 0, we con-
clude the bound in the statement of the proposition. The
equality in (135) follows for the same reason as given for
the equality in (122), and due to the fact that entan-
glement cost is non-increasing with respect to an LOCC
channel by definition.

F. Additivity of entanglement of formation for
pure-loss and pure-amplifier channels

The bound in Proposition 5 is really only a formal
statement, as it is not clear how to evaluate the lower
bound explicitly. If it would however be possible to prove
that

1

n
EF ([NA→B(φNSRA)]⊗n)

?
= EF ([NA→B(φNSRA)) (139)

for all integer n ≥ 1 and all NS ≥ 0, then we could
conclude the following

EC(N )
?
≥ lim
NS→∞

EF (NA→B(φNSRA)), (140)

implying that this lower bound coincides with the upper
bound from (127)–(129), due to the recent result of [99]
recalled in (121)–(122).

In Proposition 6 below, I prove that the additivity rela-
tion in (139) indeed holds whenever the channel NA→B is
a pure-loss channel Lη or pure-amplifier channelAG. The
linchpin of the proof is the multi-mode bosonic minimum
output entropy theorem from [103] and [104, Theorem 1].

Proposition 6 For NA→B a pure-loss channel Lη with
transmissivity η ∈ (0, 1) or a pure-amplifier channel AG
with gain G > 1, the following additivity relation holds
for all integer n ≥ 1 and NS ∈ [0,∞):

1

n
EF ([NA→B(φNSRA)]⊗n) = EF (NA→B(φNSRA)) (141)

= EgF (NA→B(φNSRA)), (142)

where φNSRA is the two-mode squeezed vacuum state from
(125) and EgF denotes the Gaussian entanglement of for-

mation. Thus, the entanglement cost of NA→B(φNSRA) is
equal to its entanglement of formation:

EC(NA→B(φNSRA)) = EF (NA→B(φNSRA)). (143)

Proof. The proof of this proposition relies on three key
prior results:
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1. The main result of [105] is that the entanglement
of formation EF (A;B)ψ is equal to the classically-

conditioned entropy H(A|E)ψ for a tripartite pure
state ψABE :

EF (A;B)ψ = H(A|E)ψ, (144)

where

H(A|E)ψ = inf
{ΛxE}x

∑
x

pX(x)H(A)σx , (145)

with the optimization taken with respect to a pos-
itive operator-valued measure {ΛxE}x and

pX(x) ≡ Tr{ΛxEψE}, (146)

σxA ≡
1

pX(x)
TrE{(IA ⊗ ΛxE)ψAE}. (147)

The sum in (145) can be replaced with an integral
for continuous-outcome measurements. The equal-
ity in (144) can be understood as being a conse-
quence of the quantum steering effect [106].

2. The determination of and method of proof for the
classically-conditioned entropy H(A|E)ρ of an ar-
bitrary two-mode Gaussian state ρAE with covari-
ance matrix in certain standard forms [107]. (As re-
marked below, there is in fact a significant strength-
ening of the main result of [107], which relies on
item 3 below.)

3. The multi-mode bosonic minimum output entropy
theorem from [103] and [104, Theorem 1] (see the
related work in [82, 108] also), which implies that
the following identity holds for a phase-insensitive,
single-mode bosonic Gaussian channel G and for all
integer n ≥ 1:

inf
ρ(n)

H(G⊗n(ρ(n))) = H(G⊗n([|0〉〈0|]⊗n))

= nH(G(|0〉〈0|)), (148)

where the optimization is with respect to an arbi-
trary n-mode input state ρ(n) and |0〉〈0| denotes
the bosonic vacuum state.

Indeed, these three key ingredients, with the third be-
ing the linchpin, lead to the statement of the proposition
after making a few observations. Consider that a purifi-
cation of the state ρAB = (idR→A⊗Lη)(φNSRA) is given
by

ψABE = (idR→A⊗BηAE→BE)(φNSRA ⊗ |0〉〈0|E), (149)

where BηAE→BE represents the unitary for a beamsplitter
interaction [73] and |0〉〈0|E again denotes the vacuum
state. Tracing over the system B gives the state ψAE =
(idR→A⊗L1−η)(φNSRA), where L1−η is a pure-loss channel
of transmissivity 1 − η. The state ψAE is well known

to have its covariance matrix in standard form [73] (see
discussion surrounding [107, Eq. (5)]) asa 0 c 0

0 a 0 −c
c 0 b 0
0 −c 0 b

 (150)

and is also known as a two-mode squeezed thermal state
[73]. As such, the main result of [107] applies, and we
can conclude that heterodyne detection is the optimal
measurement in (145), which in turn implies from (144)
that the entanglement of formation of ρAB is equal to the
Gaussian entanglement of formation.

However, what we require is that the same results hold
for the multi-copy state ψ⊗nAE . Inspecting Eqs. (9)–(14)
of [107], it is clear that the same steps hold, except that
we replace Eq. (12) therein with (148). Thus, it follows
that n individual heterodyne detections on each E mode
of ψ⊗nAE is the optimal measurement, so that

1

n
H(An|En)ψ⊗n = H(A|E)ψ. (151)

By applying (144) (as applied to the states ρ⊗nAB and

ψ⊗nAE), we conclude that

1

n
EF (An;Bn)ρ⊗n = EF (A;B)ρ. (152)

Furthermore, since the optimal measurement is given
by heterodyne detection, performing it on mode E
of ψABE induces a Gaussian ensemble of pure states
{pX(x), ψxAB}, which is the optimal decomposition of
ψAB = ρAB , and thus we conclude that EF (A;B)ρ =
EgF (A;B)ρ.

A similar analysis applies for the quantum-limited
amplifier channel. I give the argument for complete-
ness. Consider that a purification of the state σAB =
(idR→A⊗AG)(φNSRA) is given by

ϕABE = (idR→A⊗SGAE→BE)(φNSRA ⊗ |0〉〈0|E), (153)

where SGAE→BE represents the unitary for a two-mode
squeezer [73] and |0〉〈0|E again denotes the vacuum
state. Tracing over the system B gives the state ϕAE =

(idR→A⊗ÃG)(φNSRA), where ÃG denotes the channel con-
jugate to the quantum-limited amplifier. The state ϕAE
has its covariance matrix in the form (see Mathematica
files included with the arXiv posting or alternatively [73,
Appendix D.4]) a 0 c 0

0 a 0 c
c 0 b 0
0 c 0 b

 , (154)

and so the same proof approach to get (151) can be used
to conclude that

1

n
H(An|En)ϕ⊗n = H(A|E)ϕ. (155)
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Indeed, this additionally follows from the discussion after
[107, Eqs. (17)–(19)]. As such, we conclude in the same
way that

1

n
EF (An;Bn)σ⊗n = EF (A;B)σ = EgF (A;B)σ. (156)

The final statement about entanglement cost in (143)
follows from the fact that it is equal to the regularized
entanglement of formation.

Remark 2 As can be seen from the proof above, the
multi-mode minimum output entropy theorem recalled in
(148) provides a significant strengthening of the results
from [107]. Indeed, for ρAE any two-mode Gaussian state
considered in [107], the following equality holds

1

n
H(An|En)ρ⊗n = H(A|E)ρ, (157)

implying that the measurement {ΛxE}x optimal for the
right-hand side leads to a measurement {Λx1

E1
⊗ · · · ⊗

ΛxnEn}x1,...,xn that is optimal for the left-hand side. Fur-
thermore, by the relation in (144), for any purification
ψABE of the state ρAE mentioned above, we conclude
that

1

n
EF (An;Bn)ψ⊗n = EF (A;B)ψ, (158)

for all integer n ≥ 1, thus giving a whole host of two-
mode Gaussian states for which their entanglement cost
is equal to their entanglement of formation: EF (A;B)ρ =
EC(ρAB) = EgF (A;B)ρ. As far as I am aware, these are
the first examples of two-mode Gaussian states for which
the additivity relation in (158) has been explicitly shown.

Remark 3 One might wonder whether the same method
of proof as given in Proposition 6 could be used to es-
tablish the equalities in (141)–(142) for general thermal,
amplifier, and additive-noise channels. At the moment,
it is not clear how to do so. The issue is that the state
(idR⊗Lη,NB )(φNSRA) for NB > 0 is a faithful state, mean-
ing that it is positive definite and thus has two sym-
plectic eigenvalues > 1. This means that any purifica-
tion of it requires at least four modes [109, Section III-
D]. Then tracing over the B system leaves a three-mode
state, of which we should be measuring two of them,
and so it is not clear how to apply the methods of [107]
to such a state. The same issues apply to the states
(idR⊗AG,NB )(φNSRA) for NB > 0 and (idR⊗Tξ)(φNSRA) for
ξ > 0, which are the states resulting from the amplifier
and additive-noise channels, respectively.

G. Entanglement cost of pure-loss and
pure-amplifier channels

Based on the results in the previous sections, we con-
clude the following theorem, which gives simple formulas
for the entanglement cost of two fundamental bosonic
Gaussian channels:

Theorem 2 For a pure-loss channel Lη with transmis-
sivity η ∈ (0, 1) or a pure-amplifier channel AG with gain
G > 1, the following formulas characterize the entangle-
ment costs of these channels:

EC(Lη) = E
(p)
C (Lη) =

h2(1− η)

1− η , (159)

EC(AG) = E
(p)
C (AG) =

g2(G− 1)

G− 1
, (160)

where h2(·) is the binary entropy defined in (66) and g2(·)
is the bosonic entropy function defined in (25).

Proof. Recalling the discussion in Section V D 1, for a
pure-loss and pure-amplifier channel, there exist respec-
tive resource states ωηA′B′ and ωGA′B′ such that

EC(Lη) ≤ EF (A′;B′)ωη (161)

= lim
NS→∞

EF (R;B)ση(NS), (162)

EC(AG) ≤ EF (A′;B′)ωG (163)

= lim
NS→∞

EF (R;B)σG(NS), (164)

where

ση(NS)RB ≡ (idR⊗Lη)(φNSRA), (165)

σG(NS)RB ≡ (idR⊗AG)(φNSRA), (166)

with the equalities in (162) and (164) being one of the
main results of [99]. Furthermore, explicit formulas for
EF (A′;B′)ωη and EF (A′;B′)ωG have been given in [99,
Eqs. (4)–(6)], and evaluating these formulas leads to the
expressions in (159)–(160) (supplementary Mathematica
files that automate these calculations are available with
the arXiv posting of this paper).

On the other hand, Propositions 5 and 6 imply that

EC(Lη) ≥ E(p)
C (Lη) (167)

≥ lim
NS→∞

EC(ση(NS)RB) (168)

= lim
NS→∞

EF (R;B)ση(NS), (169)

EC(AG) ≥ E(p)
C (AG) (170)

≥ lim
NS→∞

EC(σG(NS)RB) (171)

= lim
NS→∞

EF (R;B)σG(NS). (172)

Combining the inequalities above, we conclude the state-
ment of the theorem.

It is interesting to consider various limits of the formu-
las in (159)–(160):

lim
η→1

h2(1− η)

1− η = lim
G→1

g2(G− 1)

G− 1
=∞, (173)

lim
η→0

h2(1− η)

1− η = lim
G→∞

g2(G− 1)

G− 1
= 0. (174)
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FIG. 6. Plot of the entanglement cost EC(Lη) = h2(1−η)
1−η and

the distillable entanglement ED(Lη) = − log2(1 − η) of the
pure-loss channel Lη as a function of the transmissivity η ∈
[0, 1], with the shaded area demonstrating the gap between
them. The units for rate on the vertical axis are ebits per
channel use, and η on the horizontal axis is dimensionless.

We expect these to hold because the channels approach
the ideal channel in the limits η,G → 1, which we
previously argued has infinite entanglement cost, while
they both approach the completely depolarizing (useless)
channel in the no-transmission limit η → 0 and infinite-
amplification limit G→∞. Furthermore, these formulas
obey the symmetry

h2(1− η)

1− η =
g2(1/η − 1)

1/η − 1
, (175)

which is consistent with the idea that the transformation
η → 1/η takes a channel of transmissivity η ∈ [0, 1] and
produces a channel of gain 1/η. Finally, we have the
Taylor expansions:

h2(1− η)

1− η =
η

ln 2
(1− ln(η)) +O(η2), (176)

g2(G− 1)

G− 1
=

1 + ln(G)

G ln 2
+O(1/G2), (177)

which are relevant in the low-transmissivity and high-
gain regimes.

In [110], simple formulas for the distillable entangle-
ment of these channels were determined and given by

ED(Lη) = − log2(1− η), (178)

ED(AG) = − log2(1− 1/G). (179)

Thus, the prior results and the formulas in Theorem 2
demonstrate that the resource theory of entanglement for
these channels is irreversible. That is, if one started from
a pure-loss channel of transmissivity η and distilled ebits
from it at the ideal rate of − log2(1−η), and then subse-
quently wanted to use these ebits to simulate a pure-loss
channel with the same transmissivity, this is not possible,
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FIG. 7. Plot of the entanglement cost EC(AG) = g2(G−1)
G−1

and the distillable entanglement ED(AG) = − log2(1 − 1/G)
of the pure-amplifier channel AG as a function of the gain
G ≥ 1, with the shaded area demonstrating the gap between
them. The units for rate on the vertical axis are ebits per
channel use, and G on the horizontal axis is dimensionless.

because the rate at which ebits are distilled is not suffi-
cient to simulate the channel again. The same statement
applies to the pure-amplifier channel. Figures 6 and 7
compare the formulas for entanglement cost and distill-
able entanglement of these channels, demonstrating that
there is a noticeable gap between them. I note here that
the differences are given by

EC(Lη)− ED(Lη) =
−η log2 η

1− η , (180)

EC(AG)− ED(AG) =
log2G

G− 1
, (181)

implying that these differences are strictly greater than
zero for all the relevant channel parameter values η ∈
(0, 1) and G > 1.

VI. EXTENSION TO OTHER RESOURCE
THEORIES

Let us now consider how to extend many of the con-
cepts in this paper to other resource theories (see [6] for a
review of quantum resource theories). In fact, this can be
accomplished on a simple conceptual level by replacing
“LOCC channel” with “free channel,” “separable state”
with “free state,” and (roughly) “maximally entangled
state” with resource state throughout the paper. To be
precise, let F denote the set of free states for a given re-
source theory, and let F be a free channel, which takes
a free state to a free state. In [36, Section 7], a general
notion of distillation of a resource from n uses of a chan-
nel was given (see Figure 4 therein). In particular, one
interleaves n uses of a given channel by free channels, and
the goal is to distill resource from the n channels. As a
generalization of a teleportation-simulable channel with



21

an associated resource state, the notion of a ν-freely sim-
ulable channel was introduced as a channel N that can
be simulated as

NA→B(ρA) = F sim
AE→B(ρA ⊗ νE), (182)

where F sim is a free channel and ν is some resource state.
The implications of this for distillation protocols was dis-
cussed in [36, Section 7], which is merely that the rate at
which resource can be distilled is limited by the resource-
fulness of the underlying resource state ν.

Going forward, we can also consider a resource-seizable
channel in a general resource theory to be a ν-freely sim-
ulable channel for which, by pre- and post-processing,
one can seize the underlying resource state ν as

Fpost
RB→E(NA→B(κpre

RA)) = νE , (183)

where κpre
RA is a free state and Fpost

RB→E is a free channel,
extending Definition 2.

The general notion of channel simulation, as presented
in Section II B, can be considered in any resource theory
also. Again, the main idea is really to replace “LOCC
channel” with “free channel” and “maximally entangled
state” with “resourceful state” in the protocol depicted in
Figure 1, and the goal is to determine the minimum rate
at which resourcefulness is needed in order to simulate
n uses of a given channel. If the channels are resource-
seizable as discussed above, then the theory should sig-
nificantly simplify, as has occurred in this paper for the
entanglement theory of channels (see Theorem 1). Fur-
thermore, along the lines of the discussion in Section II C
(and related to [6, Section III-D-5]), suppose that a chan-
nel NA→B can be realized from another channelMA′→B′

via a preprocessing free channel Fpre
A→A′M and a postpro-

cessing free channel Fpost
B′M→B as

NA→B = Fpost
B′M→B ◦MA′→B′ ◦ Fpre

A→A′M . (184)

Then for the same reasons given there, the simulation
cost of N should never exceed the simulation cost ofM.

Finally, let us note that some discussions about chan-
nel simulation for the resource theory of coherence have
appeared in the last paragraph of [111], as well as the
last paragraphs of [112]. It is clear from the findings of
the present paper that identifying interesting resource-
seizable channels could be a useful first step for under-
standing interconversion costs of simulating one channel
from another in the resource theory of coherence. It could
also be helpful in further understanding channel simula-
tion in the resource theory of thermodynamics [113].

VII. CONCLUSION

In summary, this paper has provided a new definition
for the entanglement cost of a channel, in terms of the
most general strategy that a discriminator could use to
distinguish n uses of the channel from its simulation. I

established an upper bound on the entanglement cost of a
teleportation-simulable channel in terms of the entangle-
ment cost of the underlying resource state, and I proved
that the bound is saturated in the case that the chan-
nel is resource-seizable (Definition 2). I then established
single-letter formulas for the entanglement cost of era-
sure, dephasing, three-dimensional Werner–Holevo chan-
nels, and epolarizing channels (complements of depolar-
izing channels), by leveraging existing results about the
entanglement cost of their Choi states. I finally consid-
ered single-mode bosonic Gaussian channels, establishing
bounds on the entanglement cost of the thermal, am-
plifier, and additive-noise channels, while giving simple
formulas for the entanglement cost of pure-loss and pure-
amplifier channels. By relating to prior work on the dis-
tillable entanglement of these channels, it became clear
that the resource theory of entanglement for quantum
channels is irreversible.

Going forward from here, there are many directions to
pursue. The discrimination protocols considered in Sec-
tion II B do not impose any realistic energy constraint
on the states that can be used in discriminating the ac-
tual n uses of the channel from the simulation. We could
certainly do so by imposing that the average energy of
all the states input to the actual channel or its simula-
tion should be less than a threshold, and the result is to
demand only that the energy-constrained strategy norm
(defined naturally as an extension of both the strategy
norm [26, 27, 33] and the energy-constrained diamond
norm [76, 77]) is less than ε ∈ (0, 1). To be specific, let
HA be a (positive semi-definite) Hamiltonian acting on
the input of the channel NA→B and let E ∈ [0,∞) be an
energy constraint. Then, demanding that the supremum
in (18) is taken over all strategies such that

1

n

n∑
i=1

Tr{HAρAi},
1

n

n∑
i=1

Tr{HAτAi} ≤ E, (185)

the resulting quantity is an energy-constrained strategy
norm. With an energy constraint in place, one would
expect that less entanglement is required to simulate the
channel than if there is no constraint at all, and the re-
sulting entanglement cost would depend on the given
energy constraint. For example, Proposition 4 leads
to a lower bound on entanglement cost for an energy-
constrained sequential simulation, but it remains open
to determine if there is a matching upper bound.

Similar to how measures like squashed entanglement
[12] and relative entropy of entanglement [114] allow for
obtaining converse bounds or fundamental limitations on
the distillation rates of quantum states or channels, sim-
ply by making a clever choice of a squashing channel
or separable state, it would be useful to have a mea-
sure like this for bounding entanglement cost from below.
That is, it would be desirable for the measure to involve
a supremum over a given set of test states or channels
rather than an infimum as is the case for squashed en-
tanglement and relative entropy of entanglement. For
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example, it would be useful to be able to bound the en-
tanglement cost of thermal, amplifier, and additive-noise
channels from below, in order to determine how tight are
the upper bounds in (127)–(129). Progress on this front
is available in [8], but more results in this area would be
beneficial.

One of the main tools used in the analysis of the (par-
allel) entanglement cost of channels from [19] is a de-
Finetti-style approach, consisting of the post-selection
technique [115]. In particular, the problem of asymp-
totic (parallel) channel simulation was reduced to simu-
lating the channel on a single state, called the universal
de Finetti state. For the asymptotic theory of (sequen-
tial) entanglement cost of channels, could there be a sin-
gle universal adaptive channel discrimination protocol to
consider, such that simulating the channel well for such
a protocol would imply that it has been simulated well
for all protocols?

For the task of entanglement cost, one could modify
the set of free channels to be either those that completely
preserve the positivity of partial transpose [10, 11] or are
k-extendible in the sense of [116]. Could we find simpler
lower bounds on entanglement cost of channels in this
way? The semi-definite programming quantity from [8]
could be helpful here also. After the above question was
posed in the arXiv posting of the present paper, the exact
entanglement cost has been solved in [117] for the case
of exact channel simulation, with the set of free channels
taken to be those that completely preserve the positivity
of partial transpose.

Another way to think about quantum channel simula-
tion is to allow the entanglement to be free but count the
cost of classical communication. This was the approach
taken for the reverse Shannon theorem [118, 119], and
these works also considered only parallel channel simu-
lation. How are the results there affected if the goal is
sequential channel simulation instead? Is the previous
answer from [118, 119], the mutual information of the
channel, robust under this change? How do prior results
on simulation of quantum measurements [120–122] hold
up under this change? A comprehensive summary of re-
sults on parallel simulation of quantum channels, includ-
ing the quantum reverse Shannon theorem, measurement
simulation, and entanglement cost, is available in [123].

Finally, is there an example of a channel for which its
sequential entanglement cost is strictly greater than its
parallel entanglement cost? The examples discussed here
are those for which either there are equalities or no con-
clusion could be drawn. Evidence from quantum channel
discrimination [29] and related evidence from [124] sug-
gests the possibility. One concrete example to examine in
this context is the channel presented in [43, Appendix A],
given that it is not implementable from its image, as dis-
cussed there.
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Appendix A: Relation between resource-seizable
channels and those that are implementable from

their image

Definition 2 introduced the notion of a resource-
seizable channel, and Section VI discussed how this no-
tion can play a role in an arbitrary resource theory. In
[43, Appendix A], a channel NA→B was defined to be
implementable from its image if there exists a state σA′A
and an LOCC channel LAA′B′→B such that the following
equality holds for all input states ρA:

NA→B(ρA) = LAA′B′→B(ρA ⊗NA′′→B′(σA′A′′)), (A1)

where system A′′ is isomorphic to system A and system
B′ is isomorphic to system B. An example of a channel
that is not implementable from its image was discussed
at length in [43, Appendix A].

Here, I prove that a channel is resource-seizable in the
resource theory of entanglement if and only if it is im-
plementable from its image. To see this, suppose that a
channel is implementable from its image. Then, given the
above structure in (A1), it is clear that NA→B is telepor-
tation simulable with associated resource state given by
ωA′B′ = NA′′→B′(σA′A′′). Thus, one can trivially seize
the resource state ωA′B′ by sending in the input state
σA′A′′ , which is clearly separable between Alice and Bob,
given that Bob’s “system” here is trivial.

Now suppose that a teleportation-simulable channel is
resource-seizable, as in Definition 2. This means that

NA→B(ρA) =MAA′B′→B(ρA ⊗ ωA′B′), (A2)

where ωA′B′ is the resource state and MAA′B′→B is
an LOCC channel. Furthermore, since it is resource-
seizable, this means that there exists a separable
state ρAMABM and a postprocessing LOCC channel
DAMBBM→A′B′ such that

DAMBBM→A′B′(NA→B(ρAMABM )) = ωA′B′ . (A3)

To see that the channel is implementable from its image,
consider that ρAMABM has a decomposition as follows,
given that it is separable:∑

x

pX(x)ψxAMA ⊗ φxBM , (A4)
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for pX a probability distribution and {ψxAMA}x and
{φxBM }x sets of pure states. Now define the input state
σAMAXA as

σAMAXA ≡
∑
x

pX(x)ψxAMA ⊗ |x〉〈x|XA , (A5)

and note that this is the state we can use for imple-
menting the channel’s image. Define the LOCC measure-
prepare channel PXA→BM as

PXA→BM (·) ≡
∑
x

〈x|XA(·)|x〉XA φxBM , (A6)

which is understood to be implemented via LOCC by
measuring Alice’s system XA, communicating the out-
come x to Bob, who then prepares the state φxBM based
on the outcome. We find that

(DAMBBM→A′B′ ◦ PXA→BM ◦ NA→B)(σAMAXA)

= ωA′B′ . (A7)

We finally conclude that

NA→B(ρA)

=MAA′B′→B(ρA ⊗ ωA′B′) (A8)

= LAAMXAB̄→B(ρA ⊗NĀ→B̄(σAM ĀXA)), (A9)

where

LAAMXAB̄→B ≡
MAA′B′→B ◦ DAM B̄BM→A′B′ ◦ PXA→BM , (A10)

so that the channel is implementable from its image by
inputting the state σAMAXA and postprocessing with the
LOCC channelMAA′B′→B ◦DAMBBM→A′B′ ◦PXA→BM .

Appendix B: Relation between Choi state of a
complementary channel and maximally mixed state

sent through isometric extension

The purpose of this appendix is to prove the equality
in (98). Consider a d-dimensional depolarizing channel

ρ→ (1− p) ρ+ p
I

d
. (B1)

As noted in [65, Eq. (3.2)], a Kraus representation for
this channel is as follows:{√

1− pI, {
√
p/d|i〉〈j|}i,j

}
. (B2)

This is because[√
1− pI

]
ρ
[√

1− pI
]

+
∑
i,j

[√
p/d|i〉〈j|

]
ρ
[√

p/d|j〉〈i|
]

= (1− p) ρ+
p

d

∑
i

|i〉〈i|
∑
j

〈j|ρ|j〉 (B3)

= (1− p) ρ+ pTr{ρ}I
d
. (B4)

Now consider a generic channel NA→B with Kraus op-
erators {N i}i so that an isometric extension is given by∑
iN

i ⊗ |i〉E . Send the maximally mixed state π = I/d
through the isometric extension

∑
iN

i⊗|i〉E . This leads
to the state

1

d

∑
i,j

N iN j† ⊗ |i〉〈j|E . (B5)

Furthermore, a complementary channel of the orig-
inal channel, resulting from the isometric extension∑

iN
i ⊗ |i〉E , is then

ρ→ N c
A→E(ρ) =

∑
i,j

Tr{N iρN j†}|i〉〈j|E . (B6)

The Choi state for this complementary channel is given
by

N c
A→E(ΦRA) =

1

d

∑
k,l,i,j

|k〉〈l|R ⊗ Tr{N i|k〉〈l|AN j†}|i〉〈j|E

=
1

d

∑
k,l,i,j

|k〉〈l|R ⊗ 〈l|AN j†N i|k〉|i〉〈j|E

=
1

d

∑
k,l,i,j

|k〉〈l|AN j†N i|k〉〈l|R ⊗ |i〉〈j|E

=
1

d

∑
i,j

T (N j†N i)⊗ |i〉〈j|E , (B7)

where T (N j†N i) denotes the transpose of N j†N i. If it
holds that N iN j† = T (N j†N i), then we conclude that
the state resulting from sending in the maximally mixed
state to the isometric extension of the channel is the same
as the Choi state of the complementary channel. This is
the case for the depolarizing channel with the Kraus op-
erators in (B2). Since all complementary channels and
isometric extensions of a channel are related by an isom-
etry acting on the environment system, we are arrive at
the same conclusion for any isometric extension and the
corresponding complementary channel to which it leads.

Appendix C: Matlab code for computing Rains
relative entropy

This appendix provides a brief listing of Matlab code
that can be used to compute the Rains relative entropy
of a bipartite state ρAB [11, 70]. The code requires the
QuantInf package in order to generate a random state
[125], the CVX package for semi-definite programming
optimization [126], and the CVXQuad package [127] for
relative entropy optimization [71, 72].



24

Listing 1. Matlab code for calculating the Rains relative entropy of a random bipartite state ρAB .

na = 2 ; nb = 2 ;
rho = randRho ( na∗nb ) ; % Generate a random b i p a r t i t e s t a t e rho

cvx beg in sdp
v a r i a b l e tau ( na∗nb , na∗nb) hermit ian ;
minimize ( quantum re l entr ( rho , tau )/ log (2 ) ) ;
tau >= 0 ;
norm nuc (Tx( tau , 2 , [ na nb ] ) ) <= 1 ;

cvx end

r a i n s r e l e n t = cvx optva l ;
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