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The recent discovery of fully-homomorphic classical encryption schemes has had a dramatic effect
on the direction of modern cryptography. Such schemes, however, implicitly rely on the assumptions
that solving certain computation problems are intractable. Here we present a quantum encryption
scheme which is homomorphic for arbitrary classical and quantum circuits which have at most some
constant number of non-Clifford gates. Unlike classical schemes, the security of the scheme we
present is information theoretic and hence independent of the computational power of an adversary.

I. INTRODUCTION

Harnessing the power of quantum mechanics to build
cryptosystems [1, 2] is a key motivation for develop-
ing quantum technologies. Quantum cryptography often
provides information-theoretic security guarantees rely-
ing only on the correctness of quantum mechanics, and
avoids the need for assumptions about the computational
hardness of certain problems as is common place in many
classical cryptographic protocols. Such successful quan-
tum approaches to cryptographic problems include se-
cure randomness generation [3, 4], coin-flipping [5–7],
secret sharing [8–10] and bit-commitment [11–14]. One
area in particular that has seen significant progress in re-
cent years is the development of quantum cryptographic
protocols for delegated computation [15], which includes
blind quantum computation [16–21], and verifiable quan-
tum computation [22–27]. Homomorphic encryption has
been recognised as an important primitive for building se-
cure delegated computation protocols for many decades
[28]. It provides a processing functionality for encrypted
quantum data which stays secret during the evaluation,
and a scheme is said to be fully-homomorphic if it allows
for arbitrary quantum computation. Despite widespread
interest in this problem, it was not until 2009 that the
first computationally secure classical scheme for fully ho-
momorphic encryption (FHE) was discovered [29], with
many improvements following rapidly from this initial
discovery [30, 31]. Recently this topic also has drawn
attention within the quantum information community
[32–37]. One might wonder if quantum cryptosystems
can offer unconditionally secure homomorphic encryption
schemes and whether homomorphic encryption could be
extended to allow for evaluation of quantum circuits.

Like their classical counterparts, quantum homomor-
phic encryption (QHE) schemes comprise of four parts:
key generation, encryption, evaluation, and decryption.
Unlike blind quantum computation [16], in which the
computation to be performed forms part of the secret,
QHE schemes do not have secret circuit evaluations.
Rather, they serve to obscure only the information that
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is contained within the state to be processed using the
chosen circuit. The extent to which a scheme is secure
depends on its specifics, and in previous work has varied
depending on the precise nature of the set of computa-
tions which can be performed on the encrypted input.
QHE schemes described in Refs. [36, 37] offer some infor-
mation theoretic security, but this is only in the form of a
gap between the information accessible with and without
the secret key, a notion of security which does not imply
the stronger notion of security under composition. These
schemes are also limited in the set of operations that can
be performed on the encrypted data. The scheme in [36]
only allows computations in the BosonSampling model,
while that in [37] is not known to support encoded univer-
sal quantum computing. Recently Dulek, Schaffner and
Speelman [38] used the garden-hose model of computa-
tion with Broadbent and Jeffery’s quantum homomor-
phic schemes [39] to allow the evaluation of polynomial-
depth circuits. Several other schemes for computing on
encrypted data have previously been introduced which
offer universal quantum computation, but require inter-
actions between the client and evaluator [32–35]. This
requirement for interaction places them outside of the
formalism of homomorphic encryption.

The difficulty in creating a perfectly secure quantum
fully-homomorphic encryption (QFHE) scheme persists,
and is in line with the no-go results that perfect [40] and
approximate [41] information-theoretic security whilst
enabling arbitrary processing of encrypted data is impos-
sible, unless the size of the encoding grows exponentially.
Nonetheless, given the growing interest in QHE schemes
and the multitude of possibilities, Broadbent and Jef-
fery set out to provide a rigorous framework for defin-
ing QHE schemes [39], basing their security definitions
on the requirement for indistinguishability of codewords
under chosen plaintext attack. Broadbent and Jeffery
also require that a quantum fully homomorphic encryp-
tion satisfies two properties: correctness and compact-
ness. Perfect correctness occurs when the evaluated out-
put on the cipherstate after decryption is equivalent to
the output of the direct evaluation on the quantum plain-
text. A scheme is compact if the circuit complexity of
decryption algorithm does not depend on the computa-
tion to be evaluated and scales only polynomially in the
size of the plaintext. An important implication of the
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compactness requirement for QHE schemes is that the
decryption algorithm of such schemes cannot in any way
depend on the evaluated computation. This necessarily
implies that a one-time-padding scheme, where random
Paulis encrypt the quantum input, does not qualify as a
QHE scheme. This is because the decryption algorithm
of a one-time-padding scheme is not independent of the
evaluated computation.

We present a QHE scheme that supports evaluation
of quantum circuits with a constant number of T -gates
on multiple copies of the input qubits while providing
strong information theoretic security guarantees. The
proposed scheme, which requires the encoder to be able
to produce the multiple copies of the input state, builds
on constructions taken from quantum codes to provide
gates for universal quantum computation. The block of
qubits that contains the code is embedded in a larger
set of qubits that are initialized in a maximally mixed
state. The qubits are then shuffled in a specific but ran-
dom way to hide the qubits that contain that code. In
our scheme, the evaluation of each T -gate succeeds with
a probability of half. This leads to a trade-off between
the size of the encoding and the success probability, since
the probability of success can be amplified by encoding
several instances of the plaintext in parallel. To achieve
a constant success probability, however, the size of this
encoding would scale exponentially in the total number
of T -gates to be performed, Hence, in order to maintain
compactness, we restrict evaluation to circuits containing
at most some constant number of T gates. The computa-
tional model that we consider is non-trivial in the sense
that even performing just the Clifford operations on an
arbitrary quantum input is known to be hard unless the
polynomial hierachy collapses [42–45].

Our protocol guarantees that the trace distance be-
tween ciphertexts corresponding to arbitrary pairs of
quantum inputs is exponentially suppressed in the key
size less half the total number of qubits used for the quan-
tum input. An encryption scheme has entropic security
if an adversary whose min-entropy on the encrypted mes-
sage is upper bounded cannot guess any function of the
message [46, 47]. When the quantum min-entropy of the
source in our scheme is sufficiently large, the trace dis-
tance between ciphertexts is exponentially suppressed in
only the key size. Since an exponentially suppressed trace
distance implies entropic security [46], our scheme is also
secure for high entropy quantum inputs on any number
of qubits with a constant key size.

This is a significantly stronger security guarantee than
previous homomorphic encryption schemes presented in
Ref. [36] and Ref. [37]. Moreover the computation power
of our scheme is similar to that of Broadbent and Jeffery’s
while avoiding reliance on the classical homomorphic en-
cryption scheme. This use of classical fully homomorphic
encryption is the weakest link in the Broadbent-Jeffery
cryptosystem, since it relies on computational assump-
tions [52]. When considering the case of no T -gates, it
is instructive to compare the decryption complexities of
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FIG. 1: The shaded circles represent data qubits. Within the
x-th row, the n data qubits are in a code encoded by Ux.
The unshaded circles are ancilla qubits which are completely
mixed. There are b copies of r logical qubits. A random per-
mutation of the columns completes the encryption procedure
of our quantum homomorphic encryption scheme.

our QHE scheme and the non-QHE quantum one-time
padding scheme. In the one-time padding scheme, it is
necessary for the decryption routine to take into account
a description of the entire circuit which has been per-
formed. Due to the number of Clifford group operations,
this implies that the decryption algorithm has complex-
ity at least quadratic in the plaintext size. In contrast
our QHE scheme requires only a linear complexity for
decryption, as long as it has at most a constant number
of T -gates in the evaluated computation.

II. OUR QHE SCHEME

Our QHE scheme takes as its input a r-qubit state
ρinput, and t independent copies of the magic state

|T 〉〈T | = I
2 + X+Y

2
√

2
, all arranged in a single column (See

Figure 1), where I,X, Y, Z are the usual Pauli matrices.
We then introduce (2n− 1) more columns of maximally
mixed qubits to obtain a grid of qubits with r + t rows
and 2n columns. Here, we require n−1

4 to be a non-
negative integer. Of the new columns introduced, n − 1
of them are incorporated as data qubits while the re-
maining n columns are used as ancillae in the encryp-
tion. An encoding quantum circuit U = U1 ⊗ · · · ⊗ Ur+t
applies row-wise on the first n columns, where Ux oper-
ates on the x-th row (see Figure 2). We take Ax and
Bx to denote the first and last n − 1 gates in Ux re-
spectively, so that Ux = BxAx. Applying U spreads the
quantum input from just the first column to the first n
columns. Since every qubit not residing on the first col-
umn is maximally mixed, the encoding circuit on each
row encodes the quantum data on the first column into
a random quantum code, the resultant quantum infor-
mation of which resides in a random codespace on the
first n columns. Namely on the x-th row, the encod-
ing maps an arbitrary state ρinput = I+rXX+rY Y+rZZ

2
in the first column and with maximally mixed states
on the remaining n − 1 columns to the mixed state
Ux
(
I+rXX+rY Y+rZZ

2 ⊗ (( I2 )⊗n−1)
)
U†x which is equiva-
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FIG. 2: Figure shows the encoding quantum circuit Ux =
BxAx that is applied on the first n qubits in the x-th row.
Each line represents one qubit and the gates are applied in
the order from left to right.

lent to 2−n(I⊗n+rXX
⊗n+rY Y

⊗n+rZZ
⊗n). We empha-

size at this point that any state in our random codespace
is a highly mixed state. Encryption is then achieved via
randomly permuting the 2n columns using a secret per-
mutation κ. Permuting the columns brings the quantum
information to be processed from the first n columns to
the columns k1, . . . , kn, where 1 ≤ k1 < · · · < kn ≤ 2n.
For the decryption algorithm, one performs the inverse
permutation of the columns κ−1, followed by the inverse
unitary U† on the first n columns of the grid. Finally
every qubit in the rows r+ 1 to r+ t are measured in the
computation basis. The quantum output of our scheme
is then located on the first r rows of the first column of
our grid of qubits.

The single qubit logical Clifford operators of each of
our random codes on n qubits are transversal gates on
those n qubits. This means that a logical G operator on
the x-th row is G⊗n that operates on the first n-columns
for every Clifford gate G in the set generated by {S,H}
where S = |0〉〈0|+i|1〉〈1| and H = X+Z√

2
is the Hadamard

matrix. To see this, notice that Ux(Z ⊗ I⊗n−1) =
BxAx(Z ⊗ I⊗n−1) = Bx(Z ⊗ I⊗n−1)Ax = Z⊗nBxAx =
Z⊗nUx. Hence our encoding circuit Ux maps the physi-
cal Z on one qubit to Z⊗n. Similarly, Ux(X ⊗ I⊗n−1) =
BxAx(X ⊗ I⊗n−1) = BxX

⊗nAx = Xn ⊗ X⊗n−1BxAx.
Since n is odd, we get Ux(X ⊗ I⊗n−1) = X⊗nUx. Thus
our encoding circuit Ux maps the physical X on one qubit
to X⊗n. Since Y = iXZ and n − 1 is also divisible by
4, our encoding circuit Ux maps the physical Y on one
qubit to Y ⊗n. Now X⊗n and Z⊗n anticommute because
n is odd, and the Y ⊗n anticommutes with X⊗n and Z⊗n.
Upon conjugation by H⊗n, X⊗n becomes Z⊗n and vice
versa, and Y ⊗n becomes −Y ⊗n. Upon conjugation by
S⊗n gate, X⊗n and Y ⊗n become Y ⊗n and −X⊗n re-
spectively. Transversality of the logical CNOT with con-
trol and target on distinct rows follows immediately from
the transversality of the logical X operation. Thus the
transversal Clifford operations on the n columns contain-
ing the encoded quantum data are precisely the logical
Clifford operations.

The evaluator operates independently and identically
(i.i.d) on not n but 2n columns of qubits, n columns of

which are the maximally mixed state. The i.i.d structure
of the evaluator’s operations allows these operations to
commute with any secret permutation of the columns of
the qubits on the grid. In addition, the evaluators’ opera-
tions necessarily map the n columns of qubits initialized
in the maximally mixed state to the maximally mixed
state, thereby implementing i.i.d quantum operations on
only the columns containing the encoded quantum data.
This allows the evaluator to perform transversal gates on
the n columns with the quantum data without knowing
where they are located.

The evaluation algorithm takes as input a sequence of
unitary operations (V1, . . . , Vd) to be performed securely
on r qubits, where each Vi applies either a Clifford gate
or a T gate locally on a single qubit, or applies a CNOT
locally on a pair of qubits. The number of T -gates to be
applied locally amongst the unitary operations V1, . . . , Vd
is at most t. The circuit to be evaluated is V = Vd . . . V1,
where the evaluator applies homomorphisms of the gates
V1 to Vd sequentially.

When Vi is a unitary operation that applies a Clifford
gate G locally on the x-th qubit, the evaluator can apply
the logical G-gate on our random code on the x-th row
without any knowledge of the data columns k1, . . . , kn.
To do so, the evaluator simply applies the unitary G⊗2n

on the 2n qubits located on the x-th row on each copy.
Since conjugating a maximally mixed state I

2 by any
qubit unitary operation yields also a maximally mixed
state, the net effect is to apply the unitary G⊗n on the
qubits in the encrypted data columns k1, . . . , kn on the
x-th row, which is the logical G-gate on the x-th row.

When Vi is a unitary operation that applies a CNOT
gate with control on the x-th qubit and target on the y-th
qubit, denoted as CNOTx,y, the evaluator can also ap-
ply the corresponding logical CNOT gate on our random
code on the x-th and y-th row without any knowledge
of the data columns k1, . . . , kn. To do so, the evaluator
simply applies a CNOT with control qubit on the x-th
row and the j-th column and target qubit on the y-th
row and the j-th column for every j = 1, . . . , 2n. As be-
fore, the net effect is to apply the unitary CNOT⊗n on
the qubits in the encrypted data columns k1, . . . , kn with
control qubits on the x-th row and target qubits on the
y-th row, which is the correct logical CNOT-gate, which
we denote as CNOTx,y.

When Vi is a unitary operation that applies the k-th
non-Clifford gate T = |0〉〈0| + eiπ/4|1〉〈1| on the x-th
qubit, the evaluator has to perform gate teleportation
[48, 49]. Now consider gate teleportation of a single-qubit
gate T . Omitting the correction operation required by
gate teleportation allows this procedure to succeed with
probability 1

2 as depicted in Figure 3. The principle of de-
ferred measurement [50] allows deferment of the required
measurement until decryption. To implement gate tele-
portation of the logical T operation, the evaluator ap-
plies homomorphisms for CNOTx,r+k and CNOTr+k,x
sequentially. Because of the ancilla columns being in the
maximally mixed state, the unitary CNOTx,r+k followed
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FIG. 3: Gate teleportation of the T -gate without correction.

by the unitary CNOTr+k,x are effectively applied on the
data columns k1, . . . , kn. For the data qubits encoded
on the random codespace, this action implements a log-
ical T gate on the random codespace with probability
1
2 when the outcome of the logical Z-measurement is 0.
This scheme works because by replacing each Pauli in
the Pauli decomposition of |T 〉〈T | with the correspond-
ing logical Pauli, we obtain precisely the logical |T 〉〈T |-
state. We emphasize that the outcome of the logical Z-
measurement is a flag for the correctness of the imple-
mentation of the T -gate; if the outcome is 0 the gate is
successfully implemented, otherwise the implementation
fails.

Our scheme with heralded success satisfies the correct-
ness condition of Broadbent and Jeffery. Each copy of our
scheme yields the correct quantum output with constant
probability 2−t. Extra copies simply amplify the prob-
ability of success. Thus although each instance of our
scheme implements T non-deterministically, it has her-
alded perfect completeness: namely, b = b

√
α
2 + 1c222t

copies of our scheme yields the correct output in at least
one copy with probability at least 1− e−α, and we know
which of the b copies yield the correct output. A large α
amplifies the success probability close to unity.

In the three-part algorithm for the decryption, U† re-
quires 2(n − 1)b(r + t) gates, and unpermuting of the
columns requires at most (2n − 1)b(r + t) gates (the
largest cycle contained in any element of S2n is a (2n)-
cycle which can be written as a product of 2n−1 swaps).
The remainder of the decryption involves a readout of
Z measurements and discarding a subsystem. Since t
is constant, b is also constant, and the total number of
gates required for decryption scales linearly with r and is
independent of the depth of the circuit to be evaluated.
Hence, our scheme is compact for the family of circuits
on r qubits with a constant maximum number of T gates
and any number of Clifford gates.

Randomly permuting the columns of qubits obfuscates
the subset of columns where the quantum information
resides, thereby encrypting the quantum data. The max-
imum trace distance between any two quantum cipher-
texts with min-entropy h is

ε ≤
√

2p−h
(

2n

n

)−1/2

, (1)

where p = b(r + t). In the worst case, where h = 0, ε
is exponentially suppressed in n as long as the key size

n grows linearly with the input size r. However when
t = 0, b = 1 and h = r−x for any constant x, the key size
n can be independent of the input size r while having ε
being exponentially suppressed in n. In both cases, any
two quantum ciphertexts are essentially the maximally
mixed state and hence indistinguishable in our scheme.

To obtain Eq. (1), we first obtain a Pauli decompo-
sition of any arbitrary state that the evaluator receives.
Let the density matrices ρ and ρ′ on b copies of 2n(r+ t)
qubits be any two arbitrary inputs to the scheme be-
fore encoding and encryption. Let ρ̃ and ρ̃′ be the cor-
responding states after encoding and encryption. Then
ε = 1

2 maxρ,ρ′ ‖ρ̃ − ρ̃′‖tr. In this maximization, only the
p = b(r + t) qubits in the first column are arbitrary,
and the remaining columns are in the maximally mixed
state. Note that ‖ρ̃− ρ̃′‖tr = Tr(M(ρ̃− ρ̃′)) for some op-
timal Hermitian M diagonal in the same basis as ρ̃− ρ̃′,
with eigenvalues equal to +1 or -1. More precisely, if
ρ̃ − ρ̃′ has the spectral decomposition

∑
i λi|i〉〈i|, then

M =
∑
i sign(λi)|i〉〈i|, where sign(λi) = 1 if λi ≥ 0

and sign(λi) = −1 otherwise. Now define σ0 = I, σ1 =
X,σ2 = Y, and σ3 = Z. Let Mp,2n(Z4) denote the set
of all matrices with p rows and 2n columns and entries
from {0, 1, 2, 3}. Given any matrix A ∈ Mp,2n(Z4), let
ax,y denote its component in the x-th row and the y-th
column. Define the unitary matrix σA to be one that ap-
plies σax,y on the x-th row and y-th column of our grid
of qubits for every x = 1, . . . , p and y = 1, . . . , 2n. Define
the set of all column permutations of σA as SA, and the
corresponding symmetric sum of σA as σ̃A =

∑
τ∈SA τ.

Let Ω denote the set of non-zero column vectors of length
p with entries from {0, 1, 2, 3}. For all v ∈ Ω, let ϕ(v)
denote a matrix with p rows and 2n columns such that
its first n columns are identical to v and the last n
columns have all entries equal to zero. Notice that for
distinct v,v′ ∈ Ω, σ̃ϕ(v) and σ̃ϕ(v′) are also distinct.
Let S denote some minimal subset of Mp,2n(Z4) such
that {σ̃A : A ∈ S} = {σ̃A : A ∈ Mp,2n(Z4)}. Now
we can always have ϕ(v) ∈ S for every v ∈ Ω. Let

M̃ = 1
(2n)!

∑
π πMπ†, where π is any column permuta-

tion. Then we can write M̃ =
∑
A∈S aAσ̃A, for appropri-

ate real constants aA.
Linearity and the cyclic property of the trace give

Tr(M(ρ̃− ρ̃′)) = Tr(M̃(ρ−ρ′)). Using the decomposition

ρ− ρ′ =
∑

v∈Ω
rv−r′v
22np σϕ(v) for appropriate real constants

rv and r′v, the decomposition of M̃ , the linearity of trace,
and the triangle inequality, we get

‖ρ̃− ρ̃′‖tr ≤
∑
v∈Ω

∑
B∈S

∣∣∣∣Tr aBσ̃B
(rv − r′v)

22np
σϕ(v)

∣∣∣∣ . (2)

Orthogonality of the Pauli operators under the Hilbert-
Schmidt inner product gives

‖ρ̃− ρ̃′‖tr ≤
∑
v∈Ω

∣∣Tr aϕ(v)(rv − r′v)
∣∣ . (3)

The Cauchy-Schwarz inequality implies that ‖ρ̃− ρ̃′‖tr ≤



5√∑
v∈Ω a

2
ϕ(v)

√∑
v∈Ω(rv − r′v)2. Since in Loewner or-

der M̃2 ≤ I, and hence Tr(M̃2) ≤ Tr(I), we have∑
v∈Ω a

2
ϕ(v)

(
2n
n

)
≤ 1. Next we show that

∑
v∈Ω(rv −

r′v)2 ≤ 2p−h+2 if the p-qubit inputs to the first column
of our scheme has a quantum min-entropy [51] of h. Let
τ and τ ′ be unencrypted p-qubit states, with ρ = U(τ ⊗
(I/2)⊗(2n−1)p)U† and ρ′ = U(τ ′ ⊗ (I/2)⊗(2n−1)p)U†.
The Pauli decompositions τ = 2−p

∑
v∈Ω rvσv and τ ′ =

2−p
∑

v∈Ω rvσv imply that Tr((τ − τ ′)2) =
∑

v∈Ω(rv −
r′v)22−p. Given the min-entropy of τ and τ ′, their max-
imum eigenvalue is 2−h. Hence Tr((τ − τ ′)2) ≤ 2−h+2.
Then

∑
v∈Ω(rv− r′v)2 ≤ 2p−h+2 and Eq. (1) can thereby

be obtained.

III. DISCUSSIONS

In summary, our QHE scheme encodes the quantum
input using random codes, encrypts and decrypts via
a secret permutation, and allows the evaluator to com-
pute a constant number of non-Clifford (T ) gates on the
encrypted data. Since the encrypted quantum cipher-
texts are almost indistinguishable, the evaluator is es-
sentially oblivious to the quantum input, which gives our
scheme its information-theoretic security. Moreover, our

scheme trivially allows homomorphisms of arbitrary re-
versible linear boolean circuits using the homomorphisms
of CNOT and X gates. Our scheme may also offer ro-
bustness to noise when the encryptor holds purifications
to the maximally mixed states used in the random en-
codings and performs a recovery operation dependent on
the classical measurement outcomes on her ancillary reg-
isters, and we leave this for future study. We also like to
point out that it is sometimes preferable to use a quan-
tum one-time padding scheme as opposed to our scheme
for delegated computation, for example when no T gates
need to be performed and when all the input states are
stabilized by Clifford gates.
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Appendix A: Security proof

Here, we provide a detailed proof of Eq. (1). We begin
by reviewing some terminology.
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In our scheme, qubits are arranged on a grid with p
rows and 2n columns. In the encryption procedure, the
columns of 2n qubits are randomly permuted. Hence
we consider S2n, a symmetric group of order 2n, and its
representation νp,2n. For every permutation π ∈ S2n,

and every A =
∑p
x=1

∑2n
y=1 ax,y|x〉〈y| ∈ Mp,2n, we let

νp,q : S2n → M(C2np) be a representation of S2n such
that for every matrix representation Pπ = νp,q(π) of π ∈
S2n, we have

PπσAP
†
π =

2n⊗
y=1

(
p⊗
y=1

σax,π(y)

)
. (A1)

The matrices Pπ are the permutation operations that per-
mute the columns in our scheme. With these permuta-
tion operations, we can define the set of Paulis gener-
ated from all possible column permutations of a particu-
lar Pauli σA, given by

SA =
{
PπσAP

†
π : π ∈ S2n

}
. (A2)

The symmetrized Pauli associated with the Pauli σA is
the sum of all the terms in SA given explicitly by σ̃A =∑
τ∈SA τ.

Eq. (1) provides an upper bound on the trace norm
of the difference between two encrypted inputs to our
scheme, given by ρ̃ and ρ̃′ respectively. Here ρ̃ and ρ̃′

are uniform mixtures of all column permutations of the
unencrypted input ρ and ρ′ respectively, where

ρ̃ =
1

(2n)!

∑
π∈S2n

PπρP
†
π , ρ̃′ =

1

(2n)!

∑
π∈S2n

Pπρ
′P †π .

(A3)

The matrix ρ̃− ρ̃′ admits the spectral decomposition

ρ̃− ρ̃′ =
∑
i

λi |ψi〉 〈ψi| , (A4)

where {|ψi〉} is an eigenbasis of ρ̃ − ρ̃′. Now let M =∑
i sgn(λi) |ψi〉 〈ψi|, where sgn(x) = 1 if x ≥ 0 and

sgn(x) = −1 if x < 0. From the definition of the trace
norm, we have ‖ρ̃− ρ̃′‖tr = Tr (M(ρ̃− ρ̃′)) because

‖ρ̃− ρ̃′‖tr = Tr |ρ̃− ρ̃′|

= Tr

(√
(ρ̃− ρ̃′)2

)
=
∑
i

|λi|

=
∑
i

sgn(λi)λi

= Tr (M(ρ̃− ρ̃′)) . (A5)

The trace norm is non-negative, and hence equal to its
absolute value. Thus,

‖ρ̃− ρ̃′‖tr = |Tr (M(ρ̃− ρ̃′))| , (A6)

and using the cyclic property of the trace, we get

‖ρ̃− ρ̃′‖tr =
∣∣∣Tr
(
M̃(ρ− ρ′)

)∣∣∣ , (A7)

where

M̃ =
1

(2n)!

∑
π∈S2n

PπMP †π . (A8)

The decomposition of M̃ into the symmetrized Paulis
and the decomposition of the traceless quantity ρ − ρ′

into the usual Paulis can be subsituted into Eq. (A7) to
yield

‖ρ̃− ρ̃′‖tr =

∣∣∣∣∣Tr

(∑
A∈S

aAσ̃A
∑
v∈Ω

rv − r′v
22np

σϕ(v)

)∣∣∣∣∣ . (A9)

Recall that Ω is the set of all non-zero column vectors of
length p with components from the set {0, 1, 2, 3}, and
for every v ∈ Ω, ϕ(v) is a matrix with 2n columns where
the first n columns are identical to v and the remaining
n columns are zero vectors. Using the orthogonality of
the Paulis on Eq. (A9) yields

‖ρ̃− ρ̃′‖tr =

∣∣∣∣∣Tr

(∑
v∈Ω

aϕ(v)
rv − r′v

22np
σ2
ϕ(v)

)∣∣∣∣∣
=

∣∣∣∣∣∑
v∈Ω

aϕ(v)(rv − r′v)

∣∣∣∣∣ . (A10)

Applying the Cauchy-Schwarz inequality on the above
yields

‖ρ̃− ρ̃′‖tr ≤
√∑

v∈Ω

a2
ϕ(v)

√∑
v∈Ω

(rv − r′v)2. (A11)

Now define the input states on only the first column of
qubits to be

τ =
I⊗p +

∑
v∈Ω rvσv

2p
, τ ′ =

I⊗p +
∑

v∈Ω r
′
vσv

2p
.

(A12)

The maximum eigenvalue of each of these states is 2−h,
where h is their min-entropies. We can use these states
to obtain an upper bound on

∑
v∈Ω(rv−r′v)2. Note that

Tr((τ − τ ′)2) ≤ ‖τ − τ ′‖tr‖τ − τ ′‖∞, (A13)

where ‖τ − τ ′‖∞ denotes the ∞-norm on the eigenvalues
of τ − τ ′. Since ‖τ − τ ′‖tr ≤ ‖τ‖tr + ‖τ ′‖tr ≤ 1 + 1 = 2
and ‖τ − τ ′‖∞ ≤ ‖τ‖∞ + ‖τ ′‖∞ = 2−h + 2−h = 2−h+1,
we get

Tr((τ − τ ′)2) ≤ 2−h+2. (A14)
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Note also that by the orthogonality of the Pauli opera-
tors,

Tr((τ − τ ′)2) = Tr

((∑
v∈Ω

(rv − r′v)2−pσv

)

×
(∑

w∈Ω

(rw − r′w)2−pσw

))

= Tr

(∑
v∈Ω

(rv − r′v)22−2pσ2
v

)
=
∑
v∈Ω

(rv − r′v)22−p. (A15)

Hence √∑
v∈Ω

(rv − r′v)2 ≤ 2
√

2p−h. (A16)

To obtain an upper bound for
√∑

v∈Ω a
2
ϕ(v), we obtain

upper and lower bounds on Tr
(
M̃2
)

. Now we obtain

an upper bound for Tr
(
M̃2
)
. By Hölder’s inequality,

Tr
(
M̃2
)
≤ ‖M̃‖tr‖M̃‖∞. Convexity of the norms then

implies that

Tr
(
M̃2
)
≤ ‖M‖tr‖M‖∞ = 22np. (A17)

The lower bound on Tr
(
M̃2
)

requires us to expand M̃

in terms of the symmetrized Paulis. Then

Tr
(
M̃2
)

= Tr

 ∑
A,A′∈S

aAaA′ σ̃Aσ̃A′

 . (A18)

By the orthogonality of the symmetrized Paulis and lin-
earity of the trace, we get

Tr
(
M̃2
)

= Tr

(∑
A∈S

a2
A(σ̃A)2

)
=
∑
A∈S

a2
A Tr

(
(σ̃A)2

)
≥
∑
v∈Ω

a2
ϕ(v) Tr

(
(σ̃ϕ(v))

2
)
. (A19)

Now σ̃ϕ(v) is the sum of
(

2n
n

)
Pauli operators, because

there are
(

2n
n

)
ways to permute the 2n columns of a ma-

trix with n identical columns and n columns of zeros.

Thus Tr
(
σ̃2
ϕ(v)

)
=
(

2n
n

)
2np, and

Tr
(
M̃2
)
≥
∑
v∈Ω

a2
ϕ(v)

(
2n

n

)
22np. (A20)

Eqs. (A17) and (A20) together imply that√∑
v∈Ω

a2
ϕ(v) ≤

(
2n

n

)−1/2

. (A21)

Hence

‖ρ̃− ρ̃′‖tr ≤ 2
√

2p−h
(

2n

n

)−1/2

. (A22)

The trace distance between two states is half of the trace
norm of the difference between the two states, and hence

ε ≤
√

2p−h
(

2n
n

)−1/2
.
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