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Quantum computing allows for the potential of significant advancements in both the speed and
the capacity of widely-used machine learning techniques. Here we employ quantum algorithms for
the Hopfield network, which can be used for pattern recognition, reconstruction, and optimization
as a realization of a content addressable memory system. We show that an exponentially large
network can be stored in a polynomial number of quantum bits by encoding the network into the
amplitudes of quantum states. By introducing a new classical technique for operating the Hopfield
network, we can leverage quantum algorithms to obtain a quantum computational complexity that
is logarithmic in the dimension of the data. We also present an application of our method as a
genetic sequence recognizer.

I. INTRODUCTION

Machine learning is an interdisciplinary approach that
brings together the fields of computer science, mathe-
matics, statistics, and neuroscience with the objective
of giving computers the ability to make predictions and
generalizations from data [1]. A typical machine learn-
ing problem falls into three main categories: supervised
learning, where the computer learns from a set of training
data; unsupervised learning, with the objective of iden-
tifying underlying patterns in data; and reinforcement
learning, where the computer evolves its approach based
on real-time feedback. Machine learning is changing how
we interact with technology in areas such as autonomous
vehicles, the internet of things, and e-commerce.

Quantum information science has developed from the
idea that quantum mechanics can provide improvements
in information processing and communication [2]. The
promises of quantum information are manifold, ranging
from exponentially fast quantum computers, information
theoretic secure quantum communication networks, to
high precision measurements useful in science and tech-
nology. Over the past few decades, quantum information
science has transitioned from scientific theory to a viable
form of technology.

Given the encouraging technological implications of
both machine learning and quantum information science,
it was inevitable that their paths would crossover to form
quantum machine learning [3–6]. Quantum-enhanced
machine learning approaches use a toolbox of quantum
subroutines to achieve computational speed-ups for es-
tablished machine learning algorithms. This toolbox in-
cludes fundamentals like quantum basic linear algebra
subroutines (qBLAS), including eigenvalue finding [2],
matrix multiplication [7] and matrix inversion [8]. One
can also build on quantum techniques, such as ampli-
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tude amplification [9, 10] and quantum annealing [11–
13]. These elements have been put together in recent
works on quantum machine learning [14–20], including
nearest-neighbor clustering [21], the quantum support
vector machine [22], and quantum principal component
analysis [23, 24].

Artificial neural networks are highly successful in ma-
chine learning and are hence of special interest for quan-
tum adaptation [14, 17, 25–27]. A collection of binary
or continuous-valued neurons are connected and evolve
in such a way that each neuron decides its state based
upon a weighted function of the neurons connecting to
it. The neurons can be organized into layers and may be
configured to allow for backflow of information (known
as a recurrent network, often constructed from building
blocks of long short-term memory [28]). We focus on the
Hopfield network, which is a single layer, recurrent and
fully connected neural network with undirected connec-
tions between neurons. Such networks can be trained
using the Hebbian learning rule [29], based on the notion
that the connection weights are stronger when they are
regularly fired together from training data. The Hopfield
network can act as a non-sequential associative memory,
with technological application in image processing and
optimization [30] and wider interest in neuroscience and
medicine.

State of the art neural networks are based on deep
learning methods with many hidden layers and using
learning rules such as stochastic gradient descent [31, 32].
While the Hopfield network is not competitive with these
modern neural networks, it is interesting to investigate
the quantum context for several reasons. The fully visi-
ble structure allows a simple encoding of the information
into the amplitudes of a quantum state. With such an
encoding, techniques such as quantum phase estimation
and matrix inversion can be applied which have expo-
nentially fast run times in certain cases. Learning rules
such as Hebbian learning find a relatively straightforward
representation in the quantum domain. Finally, Heb-
bian learning and the Hopfield network were one of the
early neural networks methods and fast quantum algo-
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rithms are interesting as building blocks for more ad-
vanced quantum networks.

We present in this article a method to construct a
quantum version of the Hopfield network (qHop), result-
ing from a new adaptation of the classical Hopfield net-
work when specialized to the situation of information era-
sure. The network state is embedded into the amplitudes
of a quantum system composed of a register of quantum
bits (qubits). Our approach differs from previous gener-
alizations of the Hopfield network; Refs. [33, 34] focussed
on the condensed matter/biology setting, Ref. [35] en-
coded neurons directly into qubits, Ref. [36] used a quan-
tum search, while Ref. [37] harnessed quantum anneal-
ing. The training of qHop is here addressed by introduc-
ing quantum Hebbian learning, whereby the symmetric
graph weighting matrix can be associated to a density
matrix stored in a qubit register. We show how this den-
sity matrix can be used operationally to imprint relevant
training information onto the system. The next step is to
operate qHop efficiently. To this end, we propose a new
approach to optimizing the classical Hopfield network us-
ing matrix inversion. Matrix inversion can typically be
performed efficiently using quantum algorithms with a
run time O(poly (log d)) in the size of the matrix d [8].
By combining these algorithms with the quantum Heb-
bian learning subroutine and sparse Hamiltonian simula-
tion [38], we formalize our algorithm qHop. Using qHop
can therefore provide speedups in the application of the
Hopfield network as a content addressable memory sys-
tem. As an example application, we consider the problem
of RNA sequence pattern recognition of the influenza A
virus in genetics. We use this scenario to compare the
recovery performances of both approaches to operating
the Hopfield network.

II. NEURAL NETWORKS

Let us first outline some basic features of neural net-
works. Consider a collection of d artificial binary-valued
neurons xi ∈ {1,−1} with i ∈ {1, 2, . . . , d} [39], that
are together described by the activation pattern vector
x = {x1, x2, . . . , xd}ᵀ, with xᵀ denoting the transpose
of x. The neurons are formed into a (potentially mul-
tilayer) network by wiring them to create a connected
graph, which can be specified by a real and square (d×d)-
dimensional weighting matrix W . Its elements wij spec-
ify the neuronal connection strength between neurons i
and j [40]. We note that each neuron is not typically
self-connected, so that wii = 0. Furthermore, for an
undirected network, W is symmetric. In addition, we
may also use continuously activated neurons in both clas-
sical and quantum settings, but focus in this work on the
binary case for the input and test patterns.

Setting the weight matrix W is achieved by teaching
the network a set of training data. This training data
can consist of known activation patterns for the visible
neurons, i.e. the input and output neurons, with the

learning achieved using tools such as backpropagation,
gradient descent and Hebbian learning. A network can
be fully visible, so that every neuron acts as both an
input and an output.

The Hopfield network is a single layered, fully visible,
and undirected neural network. Here, one can teach the
network using the Hebbian learning rule [29]. This rule
sets the weighting matrix elements wij according to the
number of occasions in the training set that the neu-
rons i and j fire together. Consider a training set of M
activation patterns x(m), with m ∈ {1, 2, . . . ,M}. The
(normalized) weighting matrix is given by

W =
1

Md

[
M∑
m=1

x(m)
(
x(m)

)ᵀ]
− Id
d
, (1)

with Id the d-dimensional identity matrix.

III. QUANTUM NEURAL NETWORKS

Now we consider the task of using multi-qubit quan-
tum systems to construct quantum neural networks. One
established method is to have a direct association be-
tween neurons and qubits [25], unlocking access to quan-
tum properties of entanglement and coherence. We in-
stead encode the neural network into the amplitudes of
a quantum state. This is achieved by introducing an as-
sociation rule between activation patterns of the neural
network and pure states of a quantum system. Consider
any d-dimensional vector x := {x1, x2, . . . , xd}ᵀ. We as-
sociate it to the pure state |x〉 of a d-level quantum sys-

tem according to x → |x|2 |x〉, with |x|2 =
√∑d

i=1 x
2
i

the l2-norm of x and |x〉 := 1
|x|2

∑d
i=1 xi |i〉 written with

respect to the standard basis such that 〈x|x〉 = 1. Note
that for activation pattern vectors with xi = ±1, the nor-
malization is |x|22 = d. The d-level quantum system can
be implemented by a register of N = dlog2 de qubits, so
that the qubit overhead of representing such a network
scales logarithmically with the number of neurons. We
discuss in the following section how the weighting matrix
W can be understood in the quantum setting by using
quantum Hebbian learning.

Crucial for quantum adaptations of neural networks
is the classical-to-quantum read-in of activation pat-
terns. In our setting, reading in an activation pattern x
amounts to preparing the quantum state |x〉. This could
in principle be achieved using the developing techniques
of quantum random access memory (qRAM) [41] or ef-
ficient quantum state preparation, for which restricted,
oracle based, results exist [42]. In both cases, the compu-
tational overhead can be logarithmic in terms of d. State
preparation routines can potentially be made more ro-
bust by the insight that certain errors can be tolerated
in the machine learning setting [43]. One can alterna-
tively adapt a fully quantum perspective and take the
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activation patterns |x〉 directly from a quantum device
or as the output of a quantum channel. For the former,
our preparation run time is efficient whenever the quan-
tum device is composed of a number of gates scaling at
most polynomially with the number of qubits. Instead,
for the latter, we typically view the channel as some form
of fixed system-environment interaction that does not re-
quire a computational overhead to implement.

IV. QUANTUM HEBBIAN LEARNING

Using our association rule, the training set of activa-
tion patterns x(m) can be associated with an ensemble
of pure quantum states |x(m)〉. Let us now focus on the
Hopfield network, with a Hamiltonian weighting matrix
W . We first introduce the quantum Hebbian learning al-
gorithm (qHeb), which relies on two important insights:
(i) that one can associate the weighting matrix W di-
rectly to a mixed state ρ of a memory register of N qubits
according to

ρ := W +
Id
d

=
1

M

M∑
m=1

|x(m)〉 〈x(m)| , (2)

and (ii), one can efficiently perform quantum algorithms
that harness the information contained in W .

To comment on (i), the problem of efficient prepara-
tion of |x(m)〉 can be addressed using any of the tech-
niques discussed in the previous section. We denote by
Tin the required run time to prepare each |x(m)〉. In the
situations discussed above Tin ∈ O (poly (log d)).

Regarding (ii), now suppose that we have prepared ρ
in the laboratory and want to harness the training in-
formation contained within. If ρ is the direct output of
an unknown quantum device, then we cannot recover the
training states |x(m)〉, since the decomposition of ρ into
pure states is not unique. On the other hand, we can
still obtain useful information about ρ, such as its eigen-
values and eigenstates. One approach to do this could
be to perform a full quantum state tomography of ρ.
For states with low rank r, there exists tomographical
techniques with a run time O (poly (d log d, r)) [44], al-
though for some cases the required run time for full state
tomography can grow polynomially with the number of
qubits [45].

We show that one can use ρ as a “quantum software
state” [24]. That is, it is possible to efficiently simulate
eiρt for time t to precision ε with a required run time
approximately TqHeb ∈ O

(
poly

(
log d, t,M, 1

ε

))
. One

can then use this ability to estimate the eigenvalues and
eigenstates of ρ to precision ε through the quantum phase
estimation algorithm [2], requiring an overall run time
Teigenvalues ∈ O

(
poly

(
log d, 1

ε ,M
))

.

Let us define the set of M unitary operators {Uk}Mk=1

acting on an N + 1 register of qubits according to

Uk := |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ e−i|x
(k)〉〈x(k)|∆t. (3)

The unitaries apply the different memory pattern projec-
tors |x(k)〉 〈x(k)| conditionally and for a small time ∆t.
We now show how to simulate these unitaries and that
one can simulate a conditional e−iρt by applying them
for a suitably large number of times. Let S be the swap
matrix between the subsystems for σ and |x(k)〉. Note
that

US := e−i|1〉〈1|⊗S∆t

= |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ e−iS∆t, (4)

where |1〉 〈1| ⊗ S is 1-sparse and efficiently simulat-
able. For sparse Hamiltonian simulation, the methods
in Ref. [38, 46] can be used with a constant number of

oracle calls and run time Õ(log d), where we omit poly-

logarithmic factors in O by use of the symbol Õ. Note
that

tr2

{
US
(
|q〉 〈q| ⊗ |x(k)〉 〈x(k)| ⊗ σ

)
U†S
}

= Uk (|q〉 〈q| ⊗ σ) U†k +O(∆t2). (5)

The trace is over the second subsystem containing the
state |x(k)〉. Thus the subsystem of ancilla qubit and σ
effectively undergoes time evolution with Uk.

We now apply the M unitaries Uk sequentially for n
repetitions. i.e. we perform

Ut :=

(
M∏
k=1

Uk

)n
(6)

with ∆t = t/nM . Consider for the sake of simplicity
the unconditioned evolution. Using the standard Suzuki-
Trotter method [47], it follows that

ε :=
∥∥∥(e−i|x(1)〉〈x(1)|t/(nM) . . . e−i|x

(M)〉〈x(M)|t/(nM)
)n

−e−iρt
∥∥ ∈ O( t2

n

)
. (7)

Hence, we require n ∈ O
(
t2

ε

)
repetitions, with each

repetition requiring M sparse Hamiltonian simulations.

This results in a run time O
(
Mt2

ε

)
. The advantages

of this approach is that we can use copies of the train-
ing states |x(m)〉 as “quantum software states” [24] and,
in addition, we do not require superpositions of the
training states. In summary, we can simulate ρ con-
ditionally to a precision ε with a number of applica-
tions of Uk of order O

(
Mt2/ε

)
. Each Uk can be re-

alized with logarithmic run time using sparse Hamilto-
nian simulation [38], resulting in the overall run time of
TqHeb ∈ O

(
poly

(
log d, t,M, 1

ε

))
.

The quantum phase estimation algorithm [2, 8] can
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then be implemented to find the eigenvalues µj(ρ) and
corresponding eigenstates |vj(ρ)〉 of ρ. Here we prepare
a register of T qubits additional to our register of N

qubits in the composite state
∑2T

t=1 |t〉 ⊗ |ψ〉 for some
arbitrary |ψ〉. The size of T is set by the precision
with which we wish to estimate the eigenvalues. Ap-
plying the controlled unitaries Ut results in the state∑
j βj |µ̃j(ρ)〉⊗|vj(ρ)〉. Each |µ̃j(ρ)〉 contains an approx-

imation of the eigenvalues µj(ρ) [2], and βj := 〈vj(ρ)|ψ〉.
If we take 2T ∈ O (1/ε), we can estimate the eigenvalues
of ρ to precision ε with a number of copies of the mem-
ory states |x(m)〉 of the order O

(
M/ε3

)
. This results in

an overall run time Teigenvalues ∈ O
(
poly

(
log d, 1

ε ,M
))

.
Our quantum Hebbian learning method thus shows how
to prepare the weight matrix from the training data as a
mixed quantum state and then specifies how that den-
sity matrix can be used in a quantum algorithm for
higher-level machine-cognitive function, specifically to
learn eigenvalues and eigenvectors.

V. THE HOPFIELD NETWORK

We return to the classical Hopfield network and discuss
its operation, having already shown the Hebbian learn-
ing rule to store M activation patterns in the weighting
matrix W , see also Fig. 1 for a diagram. Suppose that we
are supplied with a new activation pattern, x(new), in the
form of a noise-degraded version of one from the training
set or alternatively a similar pattern that is to be com-
pared to the training set. In the following, we show the
standard way of operating the network and then develop
a new method based on matrix inversion.

The standard method of operating the Hopfield net-
work proceeds by initializing it in the activation x(new)

and then running an iterative process whereby neuron i
is selected at random and updated according to the rule

xi →
{

+1 if
∑d
j=1 wijxj ≥ θi

−1 otherwise,
(8)

with θ := {θi}di=1 ∈ Rd a user-specified neuronal thresh-
old vector that determines the switching threshold for
each neuron. Each element θi should be set so that its
magnitude is of order at most 1. The result of every
update is a non-increase of the network energy

E = −1

2
xᵀWx+ θᵀx, (9)

with the network eventually converging to a local mini-
mum of E after a large number of iterations.

Since W has been fixed due to the Hebbian learning
rule so that each x(m) is a local minimum of the energy,
the output of the Hopfield network is ideally one of the
trained activation patterns. The utility of such a mem-
ory system is clear and the Hopfield network has been
directly employed, for example, in imaging [30].

We now introduce a new approach to operating the
classical Hopfield network, see Fig. 1. Suppose that we
are supplied with incomplete data on a neuronal acti-
vation pattern such that we only know the values of
l < d neurons with labels L ⊂ {1, 2, . . . , d}. This set-
ting corresponds to noise-free information erasure. We
can initialize our activation pattern to be x(inc) :=

{x(inc)
1 , x

(inc)
2 , . . . , x

(inc)
d }ᵀ with x

(inc)
i = x

(new)
i if i ∈ L

and x
(inc)
i = 0 otherwise. Our objective is to use the

trained Hopfield network to recover the original activa-
tion pattern x(new). An alternative use of the Hopfield
network when supplied with a noisy new pattern is shown
in Appendix A.

Let us first define the projector P onto the subspace of
known neurons, such that P is diagonal with respect to
the standard basis. We proceed by minimizing the energy
E in Eq. (9) subject to the constraint that Px = x(inc).
The Lagrangian for this optimization is

L = −1

2
xᵀWx+θᵀx−λᵀ

(
Px− x(inc)

)
+
γ

2
xᵀx, (10)

where we introduce a Lagrange multiplier vector λ ∈
Rd with support only on P and a fixed regularization
parameter γ ≥ 1. The first-order derivative conditions
for optimization are evaluated as

∂L

∂x
= (γId −W )x+ θ − Pλ !

= 0,

∂L

∂λ
= −Px+ x(inc) !

= 0. (11)

One can equivalently consider this as a system of linear
equations Av = w with

A :=

(
W − γId P

P 0

)
,

v :=

(
x
λ

)
, w :=

(
θ

x(inc)

)
. (12)

The solution of this system then provides a vector v con-
sisting of x and λ, where x extremizes the energy E sub-
ject to Px = x(inc). With ‖X‖ the spectral norm (largest
absolute eigenvalue) of a matrix X, note from the defini-
tion in Eq. (1) for the weight matrix W that ‖W‖ ≤ 1.
In addition, ‖σx ⊗ P‖ ≤ 1 and hence ‖A‖ ∈ O(γ). We
set a reasonable choice of value for the regularization pa-
rameter to be γ ∈ O(1). It is shown Appendix B that
the result of the optimization is necessarily a constrained
local minimum of the energy whenever γ is chosen such
that γ > ‖W‖. Hence, it suffices to choose γ > 1. As the
matrix A is rank-deficient, we solve the system of equa-
tions by applying the pseudoinverse A+ to w, recovering
a least-squares solution to v.

We find that the unconstrained elements of the resul-
tant vector x are continuous valued, i.e., xi ∈ R for i /∈ L.
This can be interpreted as a larger positive/negative
value indicating a stronger confidence for the activation
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FIG. 1: The Classical and Quantum Hopfield networks. We discuss three approaches to operating the network. The standard
classical approach is to iteratively update the neurons based on the connections to neighboring neurons. Our newly-developed
classical approach solves a relaxation of the problem posed a linear equation system and solvable through matrix inversion.
Hebbian learning is employed to set the weighting matrix W from d-length training data {x(m)}Mm=1. The third approach
uses qHop, encoding data in order log2 d qubits. Here, the pure state |w〉 is first prepared which contains user-defined neuron
thresholds and a partial memory pattern. Our qHop algorithm proceeds to calculate |v〉 = A−1 |w〉, with the matrix A
containing information on the training data and regularization γ. To achieve this, we introduce the quantum Hebbian learning
algorithm qHeb for density matrix exponentiation of the mixture ρ detailing training data |x(m)〉. The output pure state |v〉
contains information on the reconstructed state |x〉 and Lagrange multipliers, which are post-selected out. The result |x〉 can
be accessed through global properties such as the swap test, which uses multiple copies of |x〉 to measure the fidelity |〈x̃|x〉|2
with another state |x̃〉. The required run time for each step is given by the subscripted T .

±1, respectively. For a particular neuron, the value can
then be projected to the nearest element ±1 to obtain
a prediction for the activation of that neuron. The reg-
ularization term in the Lagrangian furthermore serves
to minimize the l2-norm |x|2 of x, and can be adapted
by the user to prevent the optimization returning overly-
large unconstrained elements, see Appendix C for further
details. Our approach to operating the Hopfield network
through matrix inversion is tested in the Application sec-
tion, using the example of RNA sequencing in genetics.

VI. THE QUANTUM HOPFIELD NETWORK

We now show how the Hopfield network can be run
efficiently as a combination of quantum algorithms that
we call qHop to perform the matrix inversion based ap-
proach. Utilizing the embedding method for quantum
neural networks already discussed, the system of linear
equations specified in (12) can be written in terms of pure
quantum states as A |v|2 |v〉 = |w|2 |w〉, with A as before,
P =

∑
i∈L |i〉 〈i|, and

|v〉 :=
1

|v|2
(|x|2 |0〉 ⊗ |x〉+ |λ|2 |1〉 ⊗ |λ〉) ,

|w〉 :=
1

|w|2

(
|θ|2 |0〉 ⊗ |θ〉+ |x(inc)|2 |1〉 ⊗ |x(inc)〉

)
,

(13)

being pure states of N+1 qubits. Here, |x(inc)〉 is the nor-
malized quantum state corresponding to the incomplete
activation pattern and |x(inc)|22 = l. The objective is to
optimize the energy function E in Eq. (9) by solving for
v = |v|2 |v〉 = A−1 |w|2 |w〉, with A−1 the pseudoinverse
of A.

It is possible to prepare A−1 |w〉 with a potential run
time logarithmic in the dimension of A by utilizing a com-
bination of quantum subroutines. The objective is to use
the quantum matrix inversion algorithm in Ref. [8]. This
algorithm requires the ability to perform quantum phase
estimation using efficient Hamiltonian simulation of A.
We now show that one can simulate e−iAt by concur-
rently executing the simulation of a sparse Hamiltonian
linked to the projector P as well as qHeb. To achieve effi-
ciency, certain conditions must be met. These conditions
are outlined in the following sections.

We want to simulate the unitary eiAt to a fixed error
ε for arbitrary t. Let us first write

A =

(
ρ−

(
γ + 1

d

)
Id P

P 0

)
=

(
0 P
P 0

)
+

(
−γ′Id 0

0 0

)
+

(
ρ 0
0 0

)
=: B + C +D, (14)

where we introduce the (2d× 2d)-dimensional block ma-
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trices

B =

(
0 P
P 0

)
C =

(
−γ′Id 0

0 0

)
D =

(
ρ 0
0 0

)
(15)

with γ′ = γ + 1
d . We now split the simulation time t

into n small time steps ∆t, i.e. so that t = n∆t, and
consider eiA∆t. The time evolution eiA∆t can be simu-
lated by using applications of eiB∆t, eiC∆t, and eiD∆t via
the standard Suzuki-Trotter method. Suppose that one
has operators UB(∆t), UC(∆t), and UD(∆t) that simu-
late eiB∆t, eiC∆t, and eiD∆t to errors at most O(∆t2),
respectively. In many cases much better error scalings
exist. Then, eiB∆teiC∆teiD∆t is simulated to error also
O(∆t2). By simply using the Taylor expansion, we see
that the error ε∆t of simulating eiA∆t is

ε∆t :=
∥∥eiA∆t − UB(∆t)UC(∆t)UD(∆t)

∥∥ ∈ O (∆t2) .
(16)

This means that by using n repetitions of
UB(∆t)UC(∆t)UD(∆t) we can simulate eiAt to an
error of ε ∈ O

(
n∆t2

)
. Hence, for a fixed error ε and

time t, one needs to perform n ∈ O
(
t2

ε

)
repetitions of

UB(∆t)UC(∆t)UD(∆t).

We now evaluate the run time of performing one such
repetition. Consider the block matrix B. Because P
is a diagonal projector, B is a 1-sparse self-adjoint ma-
trix, where sparsity is the maximum number of elements
in any column or row. A large series of works have ad-
dressed the efficient Hamiltonian simulation of sparse ma-
trices. Ref. [38] shows that sparse Hamiltonian simula-
tion for a simulation time t to error ε can be performed
with a run time TB ∈ Õ(t log(d)/ε). In our case, for
the maximum matrix element of B we have ‖B‖max = 1
and also ‖B‖ = O(1). The operator UC(∆t) is treated
in a similar way. Turning these operators U into their
conditional versions and extending into a larger space
as in Eq. (15) is in principle straightforward with the
sparse matrix methods. Simulating the operator UD(∆t)
is achieved using Hebbian learning, see Section IV, and
including a conditioning on an additional ancilla qubit in
state |0〉.

The essential steps of the algorithm are as follows and
also summarized in Fig 1. Let the spectral decomposition
of A be given by

A =
∑

j: |µj(A)|≥µ

µj(A) |vj(A)〉 〈vj(A)|

+
∑

j: |µj(A)|<µ

µj(A) |vj(A)〉 〈vj(A)| , (17)

where we have split into two separate sums dependent
upon the size of the eigenvalues µj(A) in comparison to
a fixed user-defined number µ > 0. As we see in the
following, as well as in Appendix D, the chosen value

of µ is a trade-off between the run time and the error
in calculating the pseudoinverse. The primary matrix
inversion algorithm returns (up to normalization) [8]

A−1 |w〉 =
∑

j: |µj(A)|≥µ

βj
µj(A)

|vj(A)〉 , (18)

where βj = 〈vj(A)|w〉.
To begin, we first prepare the input state |w〉 (which

contains the threshold data and incomplete activation
pattern) and consider it in the eigenbasis of A, i.e. so
that |w〉 =

∑
j βj |vj(A)〉. Our qHeb algorithm is then

initialized along with sparse Hamiltonian simulation [38]
to perform quantum phase estimation, allowing us to ob-
tain

∑
j βj |µ̃j(A)〉 ⊗ |vj(A)〉 with µ̃j(A) an approxima-

tion of the eigenvalue µj(A) to precision ε. We then use
a conditional rotation of an ancilla and a filtering process
discussed in Ref. [8] to select only the eigenvalues larger
than or equal to µ. This is followed by an uncomputing
of the first register of T qubits by reversing the quantum
phase estimation protocol. After measurement of the an-
cilla qubit, our result is (up to normalization) the pure
state A−1 |w〉.

A note regarding the input state |x(inc)〉. In princi-
ple, for each reconstruction of a new input state, we re-
quire new runs of qHeb and qHop. This feature arises
from the no-cloning theorem for quantum states. Dif-
ferent from classical computing, one in general cannot
efficiently copy intermediate data of single runs of the
algorithm for reuse to reconstruct other input patterns.
However, one can envision scenarios where one can re-
construct multiple patterns simultaneously via a quan-
tum superposition of the input patterns. Let |x(inc,k)〉,
k = 1, . . . ,K be K patterns. Assume we can prepare su-

perpositions of the form |x(inc,total)〉 =
∑K
k=1 αk |x(inc,k)〉

or |x(inc,total)〉 =
∑K
k=1 αk |k〉 |x(inc,k)〉, with coefficients

αk such that the total state is normalized in each case
and |k〉 a label register. Then we can use the qHop algo-
rithm by replacing |x(inc)〉 by |x(inc,total)〉. We then are
able to extract information about the K patterns from
the resulting state, see the discussion of the output state
in Section VIII. Of course obtaining information on each
individual pattern will again require O (K) operations
of qHop, but we can hope to extract summary statistics
with fewer resources.

VII. ALGORITHM EFFICIENCY

We now turn to addressing the efficiency of qHop. The
overall efficiency is not just dependent upon the run time
of our primary algorithm, and we must also consider the
read-in efficiency of inputting |w〉 as well as the read-
out efficiency of extracting useful information from the
output state |v〉. Here we review the input and run-time
efficiencies, while the next section discusses various ways
of using the output and their efficiency. The section after
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briefly compares our qHop to other classical and quantum
approaches to operating the Hopfield network.

The input pure state |w〉 contains data on the user-
specified neuronal thresholds θ, along with the incom-
plete activation pattern x(inc). As we have discussed, the
read-in of activation problems can add a computational
overhead to quantum neural network algorithms, poten-
tially cancelling any speed-ups yielded by the algorithm
itself. This can be addressed using, e.g., qRAM [41] or ef-
ficient state preparation techniques [42], or alternatively
by directly accessing the output of a quantum device.
Let us denote by Tin the run time of inputting |w〉, which
we take to be O (poly (log d)) using any of the discussed
techniques. Note that state preparation techniques may
introduce errors themselves, but these can be fixed to ε
and will typically add a polynomial overhead in ε to the
run-time [42].

Following similar calculations to those discussed in
Ref. [8], we see that our algorithm proceeds by a combina-
tion of phase estimation of A with run time Tphase along
with filtering and amplification operations to select the
eigenvalues |λj(A)| ≥ µ [8], requiring a run time Tfilter.
Let us consider first phase estimation, which requires us
to perform O

(
1
ε3

)
calls to eiAt. One can decompose A

into three block matrices B, C, and D, corresponding to
the off-diagonal projector P , an on-diagonal identity Id,
and, when using Hebbian learning, the embedded mixed
training state ρ, see Eq. (12). As we have shown, eiAt

is well approximated by applying for n short times ∆t
the unitaries UB/C/D generated by these block matrices,

resulting in an error ε ∈ O
(
t2

n

)
or equivalently requiring

a number of steps n = O
(
t2/ε

)
.

Since both B and C are 1-sparse matrices, we
can use efficient sparse Hamiltonian simulation tech-
niques [38] to evaluate UB/C(∆t) with run time TB/C ∈
O
(
poly

(
∆t, log d, log

(
1
ε

)))
. For the matrix D, we can

use the quantum Hebbian learning techniques discussed
earlier to simulate for a time ∆t, requiring a run time
TD ∈ O

(
poly

(
∆t,M, 1

ε , log d
))

. Note that the state ex-
ponentiation technique used for D means that TD is the
dominant run time compared to TB/C . Hence, overall

we have Tphase ∈ O
(
poly

(
M, log d, 1

ε

))
. The run time

for filtering and amplification adds an additional over-

head Tfilter ∈ O
(

1
µ

)
[8], meaning that the user should set

1/µ ∈ O (poly (log d)) to maintain efficiency. We hence
achieve an overall algorithm run time of

TqHop ∈ O
(

poly

(
M, log d,

1

ε
,

1

µ

))
. (19)

A note on the M dependence. The maximum capac-
ity of the classical Hopfield network is approximately
d/(2 log d) [48] memory patterns. The linear dependence
on M of the quantum algorithm means that for achiev-
ing a logarithmic dependency on the dimension, qHop
has to be operated substantially below the maximum ca-
pacity. Any potential exponential speedup arises from

the processing of these d-dimensional memory patterns,
while the number of the memory patterns has to be rela-
tively small. To extend the range when one may observe
speedups, we can consider a scenario when the density
weight matrix is directly given and we can use the origi-
nal density matrix exponentiation scheme [23, 24]. This
scenario does not require our Hebbian learning and avoids
the M dependence. In this case, it was shown that the
density matrix is required to be low-rank [23, 24], which
means that the M training examples only span a sub-
space of dimension O(log d). Moreover, in the case when
the weight matrix is given via oracle access to the ma-
trix elements and is sparse, one use the sparse simulation
techniques [38]. In this case, we can directly use qHop
without requiring the Hebbian learning procedure and
the M dependence is absorbed into the oracle.

The output of our algorithm is the pure state |v〉 given
in Eq. (13). We can then measure the first qubit in our
N + 1 qubit register and post-select on |0〉 to obtain |x〉.
This succeeds with probability |x|22 /(|x|

2
2 + |λ|22), adding

a processing overhead Tps ∈ O
(
|λ|22/|x|

2
2

)
. One can see

from Eq. (11) that xi ∈ O (1) for the constrained neurons

i ∈ L and xi ∈ O
(

1
γ

)
for the unconstrained neurons, so

that |x|22 ∈ O (d) whenever the number of constrained
neurons l is of the order d. On the other hand, since
λi ∈ O (γ) for i ∈ L and λi = 0 otherwise, we have

|λ|22 ∈ O
(
dγ2
)
. Hence, overall our processing overhead

is Tps ∈ O
(
γ2
)
. This means that our choice of γ is in

fact a compromise, one must pick γ ≥ ‖W‖ to guarantee
a local minimum, but if γ is too large then we add a run-
time overhead to qHop. The next section discusses what
to do with the output state at what cost to the efficiency.

VIII. OUTPUT

The next step is naturally to use the information con-
tained in |x〉 for a given task. One way to use the state
is to read-out the amplitudes of |x〉 by performing to-
mography. However, even for pure states, tomographical
techniques can introduce an overhead that scales polyno-
mially with the dimension d [44]. Instead, one has to ex-
tract useful information from |x〉 using other approaches,
which typically act globally on |x〉 rather than directly
accessing each of the d amplitudes. Such extraction of
global information aligns well with typical situations in
machine learning. Machine learning tasks often involve
dimensionality reduction or compression. For example
an image of many pixels is compressed to a single label
(‘cat’ or ‘dog’) or a short description of the scene in that
image. Classifications tasks often involve a small num-
ber of classes, for example users of a movie streaming
service can be assigned to a relatively small number of
categories [49]. In the context of neural networks, both
artificial and biological, the state of a single intermediate
neuron is rarely important to a learning task, but rather
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the final goal is to obtain a low-dimensional explanation
or action which relies on the output patterns of a larger
collection of neurons.

One option to extract global information could be to
measure the fidelity with another state |x̃〉, such as one
of the training states, which can be achieved by per-
forming a swap test with success probability Pswap =
1
2

(
1− |〈x̃|x〉|2

)
[50]. We can then determine the fidelity

to a precision ε by performing O
(
Pswap(1−Pswap)

ε2

)
swap

tests between copies of |x〉 and |x̃〉, with each swap test
requiring O (log d) qubit swaps and hence giving an ad-
ditional run time to qHop of Tout ∈ O

(
poly

(
log d, 1

ε

))
.

Alternatively, following the spirit of supervised learn-
ing, one may have access to a set of p binary valued
observables, corresponding to membership of some clas-
sification categories. Measuring the expectation values
of these observables with respect to |x〉 then allows for a
classification of |x〉 with respect to such categories. For a
given precision ε, each expectation value can be measured
with O

(
1
ε2

)
repetitions, resulting in a run-time overhead

to qHop of Tout ∈ O
(
poly

(
1
ε , p, Tobs

))
, with Tobs the

time of the observable measurement.

In addition, one can adopt a fully quantum perspective
and view the state A−1 |w〉 (or the post-selected activa-
tion pattern state |x〉), as the final output of the algo-
rithm. Our qHop algorithm then acts as an element of a
given quantum toolchain, whose action is to reconstruct
a quantum state from an incomplete superposition based
on the memory stored in ρ, and then to output to the
next element in the chain.

IX. COMPARISON

To summarize, the full operation of qHop can be

achieved with a run time O
(

poly
(
M, log d, 1

ε ,
1
µ

))
,

where Fig. 1 visualizes the individual run time contri-
butions. We now compare this efficiency with both of
the classical approaches: the original Hopfield proce-
dure [40], as well as the new matrix inversion based ap-
proach introduced here. It is clear that the original Hop-
field procedure has a run time polynomial in the number
of neurons, since one must typically sample every one
of the d neurons at least once. On the other hand, the
best sparse classical matrix inversion techniques have a

run time O
(

poly
(
d, 1√

µ , log
(

1
ε

)
, s
))

[51] where s is the

sparsity, and it has been shown in Ref. [8] that this run
time cannot be improved even if one needs access only to
the expectation values of A. We hence see that qHop is
potentially able to operate with lower computational de-
mands for a suitably large d. Of course, better classical
algorithms can be found for example harnessing the simi-
larities between the Hopfield network and the Ising model
that is studied in-depth in quantum physics [6, 52]. Tech-
niques such as simulated annealing [53] and mean field

theory [54] can help provide a better account of classical
performances.

We briefly compare with other quantum approaches.
The first quantum Hopfield network [36] encodes the
data in the basis states of an exponentially large quan-
tum state (instead of using the amplitudes) and uses
Grover search to attain quantum speedups for memory
recall. Such Grover search speedups are possible in rather
generic settings, achieving a performance of about

√
d. In

the adiabatic quantum computing framework, quantum
Hopfield networks are developed, exploiting the natural
connection of the Hopfield network and Ising-like energy
functions [37]. The critical quantity for the run time is
the spectral gap of the associated Hamiltonian. In many
cases, this spectral gap is exponentially small, leading
to similar run-times as the classical methods. In other
cases, when the gap is only polynomially small, exponen-
tial speedups may be possible. Ref. [35] considers an open
quantum system treatment of the Hopfield network and
develops the resulting phase diagram. Quantum effects
are shown to be included by an effective temperature.
Other works [33] have discussed single-electron quantum
tunneling in the context of the Hopfield network, which
can overcome local energy minima, where actual perfor-
mance will be determined by the physical implementa-
tion. Another work has discussed the potential occur-
rence of quantum effects in cellular microtubules at low
temperatures [34].

Our work uses an exponential encoding of the neuronal
information into quantum amplitudes, the gate model of
quantum computing, and a setting where quantum phase
estimation and matrix inversion can be used for the Hop-
field network. As discussed these techniques can lead to
potential performance logarithmic in the number of neu-
rons for specific applications. However, let us emphasize
that this analysis does not constitute a comprehensive
benchmark of qHop against possible classical and quan-
tum approaches to running the Hopfield network.

X. APPLICATION

Here we outline an application of the Hopfield network
in RNA sequencing. Consider H1N1 strain of the in-
fluenza A virus, which has 8 RNA segments that code
for different functions in the virus. The segments are
composed of a string of RNA-bases: A, C, G, and U.
Each segment can in turn be converted to a double sized
binary string, as shown in Fig. 2, which can be stored in
the weighting matrix of a Hopfield network. Suppose that
we are provided with partial information on a new RNA
sequence and would like to verify whether it belongs to
the H1N1 virus. For example, our sequence could be from
a recently collected sample originating in an area with a
new influenza outbreak. This scenario can be addressed
by resorting to the Hopfield network.

We use this setting as a motivation for our numer-
ics presented in Fig. 2, which contains a comparison
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FIG. 2: RNA recognition. (a) The Hopfield network can be used as a content addressable memory system for RNA-recognition
(Data source [55]). We encode 50 RNA-bases of the M = 8 strands originating from the H1N1 influenza A virus in W , and
then run the Hopfield network on partial information from a limited number of randomly selected RNA-bases from the first
strand. (b) The result of operating the Hopfield network on this example using the standard classical approach (dotted line)
and the matrix inversion based approach (solid line). The resultant Hamming distance to the true data is averaged over 1000
repetitions for varying amounts of partial information.

of the performance of the standard classical approach
to operating the Hopfield network with our new ma-
trix inversion based approach. Here, we store the first
50 RNA-bases from each of the 8 segments of the in-
fluenza A H1N1 strain (i.e. so that d = 100, M = 8)
in the weighting matrix W using the Hebbian learn-
ing rule (Data source [55]). For this small example,
the weighting matrix is filled to classical capacity, i.e.,
M = 5 ≈ d/(2 log d) [48], so that imperfect recoveries
are more easily identified. Note the discussion on the
M dependency after Eq. (19). We then generate incom-
plete data from the first segment of H1N1 by randomly
selecting l/2 RNA-bases for l/2 ∈ {1, 2, . . . , 50}. Both
approaches to operating the Hopfield network are then
implemented to reconstruct the full activation pattern,
with the Hamming distance measured between the result
and the original pattern. This is averaged over 1000 rep-
etitions of random choices of l/2 RNA-bases, with the
resultant data plotted in Fig. 2. We see that both the
conventional approach to the Hopfield network and the
new matrix inversion based approach have comparable
performances, with each able to recover the input seg-
ment for a suitably large l/2. Yet, by using qHop to
perform the matrix inversion based approach, we could
operate with a run time logarithmic in the system di-
mension and hence increase the dimension far beyond
d = 100, see the previous section and Fig. 1 for a com-
parison of run times. Note that for the matrix inver-
sion based approach, we set γ = 1 to guarantee a local
minimum since ‖W‖ ≈ 0.185. Moreover, the objective
is to classify whether the collected sample is the H1N1
virus. For the quantum version of the Hopfield network,
this can be achieved by performing a swap test with the
target state |x̃〉 set to correspond to the encoded H1N1
virus.

XI. DISCUSSION

Quantum effects have a profound potential to yield ad-
vancements in machine learning over the coming decade.
We have presented a quantum implementation (qHop) for
the Hopfield network that encodes an exponential num-
ber of neurons within the amplitudes of only a polynomi-
ally large register of qubits. This complements alterna-
tive encodings focussing on a one-to-one correspondence
between neurons and qubits. Crucially, the learning and
operation steps of the quantum Hopfield network can be
exponentially quicker in run time when compared to clas-
sical approaches. We have also introduced a method of
training a quantum neural network via quantum Hebbian
learning (qHeb).

As with many quantum algorithms, the efficient opera-
tion of qHop is subject to some important considerations.
One must first be able to efficiently read-in the classical
initialization data of the neural network into our quan-
tum device, which can be achieved using efficient pure
state preparation techniques [42] or qRAM [41], or al-
ternatively by directly using the output of a quantum
device. Next, it must be possible to operate efficiently
qHeb, and matrix inversion [8]. This relies on efficient
Hamiltonian simulation of the system matrix, which we
show to be possible by resorting to sparse Hamiltonian
simulation techniques [38] and density matrix exponen-
tiation [23, 24]. When using qHeb as a learning method,
we obtain a linear dependence on the number of train-
ing examples, which affects the capacity of the quan-
tum Hopfield network. This linear dependence may be
avoided by using sparse simulations or density matrix
simulation directly on the qHop matrix. The matrix in-
version algorithm then outputs the inverse only on a well-
conditioned subspace with (absolute) eigenvalues larger
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than a chosen fixed value µ whose inverse controls the
algorithm efficiency. It is crucial to note that classical
sparse matrix inversion algorithms also have a similar
efficiency-dependence on µ. Finally, it must be possible
to efficiently access the output of qHop, which is a pure
quantum state representing a continuous-valued neuronal
activation pattern. Since a quantum state tomography is
typically resource intensive, one can instead access global
information such as the fidelity with previously trained
activation patterns or the expectation values with respect
to observables.

We have introduced the subroutine qHeb, which adapts
the standard Hebbian learning approach [29] to the quan-
tum setting, a new addition to studies on quantum learn-
ing. Our subroutine relies on the important observation
that the weight matrix W describing a neural network
can be alternatively represented by a mixed quantum
state (or more generally, a Hamiltonian). Using den-
sity matrix exponentiation [23, 24], this quantum state
can then be used operationally for the extraction of, e.g.,
eigenvalues and eigenvectors of the weight matrix. We
have shown that quantum Hebbian learning can be imple-
mented by performing a sequential imprinting of memory
patterns, represented as pure quantum states, onto a reg-
ister of memory qubits. Although introduced here within
the context of the quantum Hopfield network, quantum
Hebbian learning can be of wider interest as a quantum

subroutine within other quantum neural networks.

Our findings, along with other work [14, 25–27, 56–
62], including quantum Hopfield networks [33–35, 63],
contribute to the goal of developing a practical quantum
neural network. The approach we use encodes an expo-
nential number of neurons into a polynomial number of
qubits. We have discussed a specific neural network, the
Hopfield network, which is a content addressable mem-
ory system. As an application, we have shown how the
matrix inversion-based Hopfield network can be utilized
for identifying genetic segments of RNA in viruses. Fu-
ture developments may focus on the nature of quantum
neural networks themselves, identifying entirely new ap-
plications that harness purely quantum properties with-
out being based upon previous classical networks. The
natural next step to benefit from the fruits of quantum
neural networks, and developments in quantum machine
learning more generally, is to implement these algorithms
on near-term quantum devices.
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Appendix A: Perturbed data

Instead of incomplete data, we here discuss the prob-
lem of correcting perturbed data. The new element is
x(new) and its perturbed version is x(pert). We pose the
classical problem by including the closeness to the per-
turbed version via an l2-norm constraint. Instead of the
Lagrangian Eq. (10), we have the error function

E := −1

2
xᵀWx+θᵀx+

β

2

∣∣∣x− x(pert)
∣∣∣2
2

+
γ

2
xᵀx, (A1)

where instead of Lagrange multipliers we use the regu-
larization parameter β. The first-order criterion now is

∂E

∂x
= (γId −W )x+ θ − βx(pert) !

= 0. (A2)

This leads to the matrix inversion problem for finding x
as

(γId −W )x = βx(pert) − θ. (A3)

The resulting quantum algorithm is similar, even slightly
simpler, than the method discussed in the main part of
this work, and not further discussed here.

Appendix B: Constrained Minimization of the
Energy Function

Here we show that the result of the constrained opti-
mization outlined in the Hopfield network section of the
main manuscript is necessarily a local minimum. Sup-
pose that we are to optimize a real-valued scalar function
f(x) of a vector x ∈ Rd subject to l < d constraints com-
posed into a real-valued vector function g(x) = 0. The
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corresponding Lagrangian is L (x,λ) = f(x) − λᵀg(x)
with Lagrange multiplier vector λ. Optimization can be
achieved by identifying vectors (x̃, λ̃) satisfying ∂xL = 0
and ∂λL = 0. To classify these optimal vectors we must
consider the ((l+d)× (l+d))-dimensional bordered Hes-
sian matrix [64]

H (x,λ) :=

(
0l ∇g(x)

∇g(x)ᵀ ∂2L
∂x2

)
. (B1)

In particular, (x̃, λ̃) is a local minimum if

(−1)ldet (Hk(x,λ)) > 0 (B2)

for all k ∈ {2l+1, 2l+2, . . . , l+d}, where Hk(x,λ) is the
k-th order leading principle submatrix of H (x,λ), com-
posed of taking the first k rows and the first k columns.

We now show that this condition is satisfied when f(x)
is the energy E in Eq. (9) of the main text and g(x) =
Px− x(inc). The bordered Hessian matrix is then

H (x,λ) =

(
0l −P̃

−P̃ ᵀ γId −W

)
, (B3)

with P̃ a rectangular (l×d)-dimensional matrix of rows of
unit vectors ei for i ∈ L, or equivalently the projector P
with all zero rows removed. We note that in our setting
the bordered Hessian matrix is in fact independent of x
and λ, meaning that we can classify any extremum found.
We therefore herein drop the following brackets around
H . Now consider the leading principle minor Hk for any
k ∈ {2l + 1, 2l + 2, . . . , l + d}, given by

Hk =

(
0l −P̃l×(k−l)

−(P̃l×(k−l))
ᵀ (γId −W )(k−l)

)
, (B4)

with P̃l×(k−l) composed of the first k − l columns of P̃
and (γId−W )(k−l) the (k− l)-th order leading principal
submatrix of γId −W .

Let us consider γ > ‖W‖ with ‖W‖ the largest eigen-
value of W , so that γId −W > 0. Sylvester’s criterion
tells us that (γId −W )(k−l) > 0 and is hence invertible.
Using the Schur complement, we have that

det (Hk) = (−1)ldet
(
(γId −W )(k−l)

)
(B5)

det
(
P̃l×(k−l)

(
(γId −W )(k−l)

)−1

(P̃l×(k−l))
ᵀ
)
,

with X−1 the inverse of X. On the other hand,

we know that
(
(γId −W )(k−l)

)−1
> 0. The action

of P̃l×(k−l)
(
(γId −W )(k−l)

)−1
(P̃l×(k−l))

ᵀ is to select

an l-th order principal minor of
(
(γId −W )(k−l)

)−1
.

It is a well known result in linear algebra that
any principle minor of a positive definite matrix
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FIG. 3: The average Hamming distance between one of the
reconstructed memory patterns and the original when l = 50
neurons are known a priori, given as a function of the regular-
ization parameter γ. The maximum eigenvalue ||W || ≈ 0.185
of W , which γ must exceed to guarantee a local minimum, is
shown as the vertical dashed line. Note that no increase of
the Hamming distance is observed for γ > 0.3.

is itself positive definite [65], so that we know

P̃l×(k−l)
(
(γId −W )(k−l)

)−1
(P̃l×(k−l))

ᵀ > 0 for any k.
Since the determinant of a positive definite matrix is pos-
itive, we hence know that

det
(
(γId −W )(k−l)

)
> 0,

det
(
P̃l×(k−l)

(
(γId −W )(k−l)

)−1
(P̃l×(k−l))

ᵀ
)
> 0.

This means that the sign of det (Hk) is given by (−1)l,
and that overall

(−1)ldet (Hk) > 0, (B6)

satisfying the condition for a minimum given above.

Appendix C: Setting the Regularization Parameter

From the previous section, we see that it is neces-
sary to introduce the regularization parameter to provide
a sufficient condition that our constrained optimization
reaches a local minimum. From the perspective of ma-
chine learning, the regularization parameter also func-
tions to penalize large values of |x|2 in the minimization
to prevent over-fitting. In Fig. 3, following the example
outlined in the main text, we plot the average Hamming
distance between the reconstructed pattern (using our
matrix-inversion based approach with discretized post
processing) and the original pattern for increasing val-
ues of regularization parameter and a constant number
of known neurons l = 50. Here, the average Hamming
distance drops off dramatically to zero for a sufficiently
high regularization parameter γ > ‖W‖ ≈ 0.185. How-
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ever, if one chooses an arbitrary large γ then this adds
a polynomial run time onto qHop (see the efficiency dis-
cussion in the main text). In the numerics of the main
part, we set γ = 1.

Appendix D: Setting the value of µ

Our algorithm finds the inverse of

Ã :=
∑

j: |µj(A)|≥µ

µj(A) |vj(A)〉 〈vj(A)| , (D1)

see Eq. (17) of the main text for comparison to A. It

holds that Ã−1 is equal to the pseudoinverse A−1 when-
ever µ does not exceed the smallest non-zero singular
value |µmin| of A. Otherwise, Ã−1 |w〉 approximates

A−1 |w〉 to an error

η :=
∣∣∣∣∣∣Ã−1 |w〉 −A−1 |w〉

∣∣∣∣∣∣ ∈ O( α

|µmin|

)
, (D2)

with α the number of non-zero singular values not ex-
ceeding µ.

From Eq. (19) of the main text, it can be seen that
qHop maintains the polylogarithmic efficiency in run

time whenever µ is such that µ ∈ O
(

poly
(

1
log d

))
.

Hence, for the matrix inversion to be effective, we re-
quire A to be such that either (1): |µmin| ≥ µ ∈
Θ
(

poly
(

1
log d

))
, with no errors in finding the pseudo in-

verse, or (2): |µmin| < µ but with α
|µmin| ∈ O (poly (log d))

so that the errors η in finding the pseudoinverse accumu-
late negligibly with increasing system dimension d.
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