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Quantum states are the ultimate touchstone to produce sequences of random numbers. Spatially spread entangled states allow the 
generation of correlated random sequences in remote locations. The impossibility of observing a quantum state, without disturbing it, 
ensures that the messages encoded using these sequences cannot be eavesdropped. This is the basis of Quantum Key Distribution. It 
is then of crucial importance knowing whether the sequences generated in the practice by spatially spread entangled states are truly 
random, or not. Yet, that knowledge is not immediate. One of the obstacles is the very definition of randomness. “Statistical” 
randomness is related with the frequency of occurrence of strings of data. “Algorithmic” randomness is related with compressibility 
of the sequence, what is given by Kolmogorov complexity. Sequences generated by entangled pairs of photons are analyzed, 
focusing on estimations of their complexity. Standard tests of statistical randomness are also applied. 
 
PACS: 03.67.Dd Quantum cryptography and communication security. 05.45.Tp Time series analysis. 03.65.Ud Entanglement and 
quantum non-locality (EPR paradox, Bell’s inequalities, etc.).  
 
1. Introduction. 
   

Sequences of random numbers are a basic supply in 
many applied sciences of information, from statistics to 
cryptography. Yet, the randomness of a given sequence 
is difficult to establish in the practice. Even the very 
definition of “random” is controversial. All definitions 
agree that “predictable” ⇒ “not random”, hence 
“random” ⇒ “unpredictable”. But, the unpredictability 
of an event is, in general, an ambiguous property. It 
depends on the available information. Some consensus 
has been reached, that appropriate measurements 
performed on quantum systems guarantee randomness. 
This is a consequence of von Neumann’s axiom: 
quantum measurements violate the principle of 
sufficient reason. Or, in other words, a quantum 
measurement produces one or another outcome without 
cause. It is intuitive to conclude that a sequence of 
such outcomes is unpredictable, although this 
conclusion is difficult to formalize [1]. Note that it is 
still logically possible the existence of sequences that 
are both “unpredictable” and “not random”. Depending 
on the precise definitions of “random” and 
“predictable” involved, chaotic sequences may be an 
example of this case. 

There are at least two definitions of randomness 
that are relevant from a practical point of view [2]: 

i) “Statistical” randomness. Imagine a sequence of 
1 and 0. The sequence is “statistically random” if the 
number of strings of 1 and 0 of different length n (say, 
110101 for n=6), in the total sequence, coincides with 
the number one would get if the sequence had been 
produced by tossing an ideal coin (statistical spread is 
taken into account, of course). Yet, certifying this 
property for any value of n and/or different ways of 
choosing the strings is not easy. Other tests of 
statistical randomness involve the decay of the self-
correlation or the mutual information. They all involve 
measuring probabilities. The battery of tests provided 
by the National Institute of Standards and Technology 
(NIST) is mostly based on this approach. 

ii) “Algorithmic” randomness. A sequence can pass the 
tests mentioned above and still be predictable, hence, 
not random. A well known example is the sequence of 
the digits of π (or any other transcendental number). A 
sequence is “algorithmically random” if there is no 
algorithm or program code able to generate the 
sequence using a number of bits shorter than the said 
sequence. Note that this definition does not employ 
probabilities. It applies even to sequences that are not 
statistically stationary. By the way, practical tests of 
randomness often include subroutines aimed to 
recognize the digits of the best known transcendental 
numbers. 

Algorithmic randomness is directly related with the 
definition of complexity developed by Kolmogorov [3], 
Chaitin [4] and Solomonoff [5]. In few words, the 
complexity K of a binary sequence of length N is the 
binary length of the shortest program (running on a 
classical Turing machine) whose output is the said 
binary sequence. A sequence is “algorithmically 
random” if K ≈ N. As there is no way of expressing the 
sequence using less bits that the sequence itself, the 
sequence is said to be incompressible. This definition 
is intuitive and appealing, but it has two main 
drawbacks. One: it is possible to demonstrate that all 
sequences are (partially) compressible; hence, the 
precise condition K ≈ N cannot be reached. This is 
solved by appropriately rescaling the definition. Two: 
K cannot be actually computed, for one can never be 
sure that there is no shorter program able to generate 
the sequence. Nevertheless, K can be estimated from 
the compressibility of the sequence using, f.ex., the 
algorithm devised by Lempel and Ziv [6].  

Randomness of quantum origin has been proved to 
be non-computable [7], which is a condition weaker 
than algorithmic randomness. Algorithmic randomness 
of sequences produced by quantum devices based on 
detecting single photons after a beam splitter has been 
compared with sequences produced by others means 
[8,9]. It was found that the quantum-device generated 
sequences were not always the most random ones. This 



result is probably caused by detectors’ deficiencies (see 
Conclusions).  

Measurements performed on quantum entangled 
states can generate correlated outcomes in two remote 
stations. The sequences of outcomes, assumed random, 
allow the encryption of messages in a secure way using 
one-time-pad Vernam’s cipher. This technique is 
known as Quantum Cryptography [10], or Quantum 
Key Distribution (QKD). The purity of the achieved 
entanglement puts a minimum bound on the entropy of 
the generated sequences [11] and hence, to the degree 
of statistical randomness. The loophole-free 
verification of the violation of Bell’s inequalities was 
required as a necessary step to certify the randomness 
of the sequences and the invulnerability of QKD [1]. 
This loophole-free verification has been recently 
achieved by several groups using different techniques 
[12-15] (for a sort of critical review, see [16]). 
Loophole-free generated sequences have been recently 
used to produce series of numbers of “quantum 
certified” statistical randomness [17,18]. Yet, the 
algorithmic randomness of quantum-produced finite 
sequences is controversial. An experimental approach 
has been proposed to explore this problem [1,9]. 

In this paper, we carry out that proposal. We study 
the algorithmic randomness of time series generated in 
Bell’s experiments by using the realization of Lempel 
and Ziv algorithm developed by Kaspar and Schuster 
[19] and implemented by D.Mihailovic et al. [20]. We 
also use part of the battery of tests of NIST to evaluate 
statistical randomness of the same files. It is evident 
that the results of these tests, performed on actual 
Bell’s sequences, are crucial to ensure the in-
vulnerability of QKD in the practice. In Section 2, we 
briefly describe the idea in Lempel and Ziv algorithm. 
We also review some previous attempts to detect 
deviations from randomness in Bell’s experiments. In 
Section 3 we report results for the main set of data of 
the experiment performed in Innsbruck in 1998 [21], 
generously provided by Prof. G.Weihs. We also 
include some data recorded in our own setup. Although 
our experiment is far more modest, it puts light on the 
probable cause of the regularities found in some runs 
of the Innsbruck experiment.  

 
2. Background. 
2.1 Lempel and Ziv algorithm. 

 
Complexity has advantages over other methods of 

detecting regular behavior. Regarding the statistical 
methods, complexity does not need to assume 
stationary probabilities. Regarding non-statistical 
methods, as the ones extracted from the theory of 
nonlinear dynamical systems (Takens’ theorem), 
complexity does not need to assume the existence of a 
low dimensional object in phase space. On the other 
hand, complexity cannot be properly calculated; it can 
only be estimated.  

Assuming a time series of elements {s1,s2…sN} the 
Lempel and Ziv algorithm adds a new “word” to its 
memory every time it finds a substring of consecutive 
elements not previously registered. The size of the 

compiled vocabulary, and the rate at which new words 
are found, are the basic ingredients to evaluate 
complexity. In the realization of the algorithm [19,20], 
the time series is encoded so that a binary string is 
produced. Then the complexity counter c(N), which is 
defined as the minimum number of distinct words in a 
given sequence of length N, is calculated. As N→∞, 
c(N) → N/log2(N) in a random sequence. The 
normalized complexity measure K is then defined as: 

 
K(N) ≡ c(N) × log2 (N)/N  (1) 

 
The value of K(N) is designed to be near to 0 for a 
periodic or regular sequence, and near to 1 for a 
random one, if the available value of N is large enough. 
For a chaotic sequence it is typically halfway between 
0 and 1. For a “strongly” random sequence of relatively 
short length, K(N) can be considerably larger than 1. 
As references, the sequence of the digits of π has 
K(27,000) = 0.95. A typical chaotic time series 
(dimension of embedding dE = 4, one positive 
Lyapunov exponent) recorded from a solid-state laser 
with modulated losses [22] has K(105) = 0.4. A 
numerically generated quasi-periodical (2-torus) time 
series has K(106) < 0.02.  

 
2.2 Some previous studies on deviations from 
randomness in Bell’s experiments. 

 
Some years ago, we looked for regularities in the 

time series generated in the Innsbruck experiment. This 
experiment is not only crucial to the foundations of 
Quantum Mechanics, but also is a superb realization of 
the quantum channel of a QKD setup. 

In that experiment, each run includes 4 files, that is: 
for each of the two stations, one has the time of photon 
detection, and also a code for the angle setting and 
detector that fired (see Fig.1). We firstly looked for 
periodicities in one of the runs (named longdist35) 
using standard linear transforms [23], finding none. 
Later, we sought for low dimensional objects in phase 
space, using Takens’ reconstruction theorem, on the 
whole set of available data [24]. We found a chaotic 
attractor with dE=10, and four positive Lyapunov 
exponents, in the longest run in real time. It is named 
here longtime, and is made of the runs originally 
named longtime1 and newlongtime2. It was possible to 
reconstruct the attractor and to predict the outcomes in 
the sequence roughly up to the inverse of the largest 
positive Lyapunov exponent, as expected. Remarkably, 
the same was possible for the 16 subsets corresponding 
to the different settings in spite of their shorter length. 
If the files in longtime were used for QKD, it would be 
possible to predict until 20 bits of the key, what is a 
vulnerability of a new kind [24].  

The run longtime was the only one where dE was 
reliably measured. In order to check if the cause was its 
time length, we perform a simpler Bell’s experiment, 
but with an unusually long continuous time of 
observation. It amounts to more than half an hour, 
about five times longer than longtime. In this run, 
named here SL1722, no value of dE is reliably 



measured. The cause of the regularity in longtime is 
believed to be a drift between Alice and Bob’s clocks. 
File SL1722 is recorded with a single clock instead, so 
that the obtained result is consistent with this belief. 
Unfortunately, when the attractor in longtime was 
found the Innsbruck experiment had been dismantled, 
so it is impossible to know its cause by sure. 

Inequalities involving algorithmic complexity of 
series of outcomes produced by local realistic theories 
(bounds that are violated by the quantum mechanical 
predictions) have been derived [25-27]. Some of these 
inequalities are valid even if the series are not 
independent and identically distributed, which is a 
condition often stated as necessary for the validity of 
the usual Bell’s inequalities. The violation of a 
measurable version of an algorithmic inequality has 
been experimentally verified [28]. Be aware that these 
inequalities involve series of outcomes (regardless the 
time each outcome is measured), while our study here 
deals mainly with the time elapsed between 
measurements (regardless the outcome, to get longer 
series). Nevertheless, a relevant result regarding the 
complexity of series of outcomes is briefly commented 
at the end of Section 3.2. 
 
3. Results. 
3.1 Structure of the Innsbruck experiment’s runs. 

 
The Innsbruck experiment includes fast switching 

of the analyzers’ settings, driven by independent and 
quantum-based random number generators, and 
spatially distant stations, what is named the “remote, 
switched” condition. Most of the results obtained in 
this condition are the set of runs named longdist*. We 
also study some preparatory runs with the stations 
close to each other and slowly varying settings 
(condition “local, static”). Also, with close stations and 
fast and random switched settings (condition “local, 
switched”). There are no “remote, static” runs. We 
discard most of the runs that do not violate the 
involved Bell’s inequality (SCHSH ≤ 2). 

The structure of the runs is shown in Figure 1. For 
each of the two stations, there are two files: the one 
with extension *_V.dat (left column in the Figure) is 
the (always increasing) series of photon detection 
times, in seconds. The one with the same name but 
extension *_C.dat (right column in the Figure) 
indicates the setting of the analyzer and the detector 
that fired at that time, using a two-bit code. Both files 
have the same length. There is a pair of similar files for 
the other station. The files’ length is the number of 
single photons detected. It is, in general, different in 
each station. 

A coincidence occurs when the difference of the 
values in the *_V.dat for each station is smaller than a 
certain value, what is called “time coincidence 
window” Tw. Once a coincidence is found, we pick up 
the time value in *_V.dat of station Alice (this 
choosing is arbitrary, it may well to be Bob, or the 
average between them, in any case the difference is 
small) to write down a time series of coincidences. The 

corresponding codes in the two *_C.dat files allow 
calculating the value of the SCHSH parameter. 

Regarding the algorithmic inequality mentioned in 
the previous Section, the subsets corresponding to the 
different settings are, in general, too short to allow a 
reliable estimation of their complexity. Besides, the 
basic angle setting here is θ = 22.5o, a value for which 
quantum mechanical predictions do not violate the 
inequality. It is therefore impossible testing the 
violation of the algorithmic inequality with the 
available data. 

 

 
Figure 1: Structure of the files of the Innsbruck experiment 
[21]. The left column (*_V.dat file) indicates the time 
photons were detected, in seconds. The right column 
(*_C.dat file) indicates the detector that fired and the 
analyzer’s orientation, according to a code. The displayed 
files belong to Alice station of run longdist35.  

 
In time stamped setups like these, the value of Tw 

can be chosen at will after the experiment has ended. 
Due to different response times of detectors and 
electronic channels, cable lengths, etc. a time delay 
between the files in each station must be added. The 
value of the delay is found by maximizing the number 
of coincidences for a given value of Tw. This leads to 
some ambiguity in the definition of the coincidences’ 
file. Here we use the values of Tw and delay reported 
by the Authors of the experiment. 
 
3.2 Algorithmic and statistic randomness. 

 
The time stamped files are translated into binary 

sequences assigning the value 1 (0) if the time 
difference between two successive inputs is above 
(below) the average for the whole file [20]. We 
calculate K of these sequences and also submit them to 
statistical tests developed by NIST. The complete 
battery includes 15 tests. Here we use the simplest 6, 
namely: Frequency (Monobit) Test, Frequency Test 
within a Block, Runs Test, Tests for the Longest-Run-
of-Ones in a Block, Binary Matrix Rank Test and 
Discrete Fourier Transform (Spectral) Test. We say a 
run to have positive (“yes”) NIST randomness only if 
passes the 6 tests. The calculation of K and these 6 tests 
form a set of relatively simple and fast running 
programs that are feasible to be included as a control of 



randomness in a QKD setup in the practice. As will be 
seen, all runs that are discarded by the complexity 
criterion (arbitrarily, K<0.9) are also discarded by 
NIST tests. Yet, it must be kept in mind that this result 
is specific for the set of runs included in this study. 
Given the different nature of the two types of 
randomness, the safe criterion is that a sequence can be 
considered random only if it passes both types of tests. 

 The main results are summarized in the Table 1. 
The last column is the length of the sequence. It 
corresponds to the number of coincidences, excepting 
for the “singles” files, in which case they correspond to 
the Alice station. There are three groups of sequences 
with different complexities (Fig.2): the ones with 
K<0.9, which are not considered random, the ones with 
K≈1, which are “normally” random, and the ones with 
K>1, which are “strongly” random, what means that 
the normalization factor in eq.(1) is insufficient. Most 
of the sequences belong to the latter two groups, 
meaning that Bell’s experiments often generate 
sequences of algorithmically random numbers (as 
expected).  

The run longtime has not only low K and is 
discarded by NIST statistical tests (3 over 6), but is 
even partially predictable, as it was discussed before. 
The subset corresponding to analyzers’ settings and 
firing detectors Alice=0, Bob=3 shows a slightly higher 
K than the complete sequence (probably because it is 
shorter), and is also unable to pass NIST. Runs 
longdist22 and longdist35 have low K and, 
correspondingly, they do not pass NIST. Runs 
longdist10 and 12 have high K but do not pass NIST. 
None of these five runs can be considered random 
despite they violate the involved Bell’s inequality. 
They are indicated by open circles in Figure 2. 

 
Figure 2: Graphical representation of main data in Table 1. 
Open circles (full squares) indicate the runs that do not pass 
(do pass) NIST tests. Horizontal line indicates Bell’s limit, 
vertical line K=0.9. 

 
All runs with K>1 pass NIST excepting longdist10. 

As a reference, run Conlt3 is obtained from the 
coincidences between detectors observing uncorrelated 
fields, it has K=7.29 and passes NIST.  

It seems that higher K may correspond to lower 
SCHSH. F.ex., the three runs with higher K (longdist30, 
32 and 37, all with K>12) have an average SCHSH = 
2.28, while the three ones with lower K (but still K≈1, 

longdist0, 36 and 31) have an average SCHSH = 2.62. 
Runs longdist10 and 12 are not included in this set 
because they do not pass NIST. Run longdist34, which 
has the highest complexity of all (12.26), is also 
discarded because it has SCHSH = 1.87 < 2.  

The complexity of single files and coincidence files 
is, in general, nearly the same. There are exceptions: in 
runs longdist22 and 35 the value of K in coincidence 
files is smaller than in singles ones, down to the point 
that they cannot be considered random. On the other 
hand, in longdist36 the value of K is larger for 
coincidences than for singles, although both can be 
considered random. 

All runs obtained in the “local” condition 
(regardless if “switched” or “static”) have high K and 
pass NIST. Finally, the complete sequences of 
outcomes (the columns on the right in Fig.1) have high 
K and also pass NIST. This confirms the reliability of 
the random number generators used to drive the 
settings in the Innsbruck experiment. This also 
experimentally confirms the main result theoretically 
implied in [25]: if the experimenter is able to generate 
an incompressible string (the one that drives the 
settings) then the measured photons come up with a 
noncomputable behavior as well.  
 
Summary. 

 
An estimation of Kolmogorov complexity of 

sequences recorded in Bell’s experiments has been 
performed. Almost all sequences have complexity K≈1 
or K>1, what means they are algorithmically random, 
as expected. The few with low K belong to the 
“remote, switched” condition. They do not pass NIST 
tests either. This deviation from randomness is 
presumably caused by a drift between the clocks in 
each station, an effect that had been independently 
detected. It is worth mentioning that in random number 
generators based on detecting photons after a beam-
splitter, the deviation from randomness is caused 
mostly by detectors’ different efficiencies, blind time 
and spurious after pulses. In the Innsbruck experiment 
these deficiencies have negligible impact, because of 
relatively low detection rate, and filtering provided by 
the time-coincidence selection.  

Even though low K does not allow, by itself, to 
predict outcomes, it implies that the involved 
sequences are compressible, and hence potentially 
vulnerable. In our opinion, the main conclusion of this 
study is that, although random sequences are generated 
in many cases, it is not safe taking randomness for 
granted in experimentally generated sequences, even if 
they violate the involved Bell’s inequality by a wide 
margin with a maximally entangled state. Deviations 
from randomness are observed even in the controlled 
conditions of the Innsbruck experiment, which are very 
difficult (perhaps impossible) to achieve in a QKD 
setup operating in a real world situation. Therefore, 
applying additional statistical and algorithmic tests 
and, if necessary, using distillation and extraction 
techniques are advisable before coding a message in 
the practice. 
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Filename  (description) Complexity NIST (RND=?) SCHSH N 
Longtime (remote, switched) 0.55 NO 2.51 95801 
Longtime, subset {0,3} 0.65 NO Not applicable 2122 
Longdist0 (remote, switched) 0.97 yes 2.53 15501 
Longdist0, singles  0.96 NO Not applicable 471017 
Longdist1  11.94 yes 2.63 16168 
Longdist2 11.21 yes 1.98 26675 
Longdist3 11.25 yes 2.67 24335 
Longdist4 11.24 yes 2.66 25402 
Longdist10 10.88 NO 2.20 26529 
Longdist11 10.82 yes 2.41 25573 
Longdist12 0.93 NO 2.37 27158
Longdist12, singles  0.97 yes Not applicable 934979 
Longdist13 10.84 yes 2.36 27160 
Longdist20 10.37 yes 2.06 41549 
Longdist22 0.59 NO 2.16 39915 
Longdist22, singles  0.96 yes Not applicable 1237058 
Longdist23 10.37 yes 2.63 41058
Longdist30 12.24 yes 2.10 14145 
Longdist31 0.97 yes 2.62 13022 
Longdist32 12.24 yes 2.70 10992 
Longdist33 12.18 yes 2.06 13004 
Longdist34 12.26 yes 1.87 14289 
Longdist35 0.34 NO 2.73 14562
Longdist35, singles  0.96 yes Not applicable 388455 
Longdist36 11.0 yes 2.72 14573 
Longdist36, singles  0.96 yes Not applicable 388573 
Longdist37 12.16 yes 2.05 14661 
Loccorr1 (local, switched) 0.96 yes 2.74 72533 
Loccorr3 0.96 yes 2.74 73269
Loccorr3, singles  0.96 yes Not applicable 853985 
Bluesin1 (local, static), α= 0o, β= 7.5o 0.98 yes Not applicable 6797 
Bluesin2, α= 0o, β=15o 0.97 yes Not applicable 6815 
Bluesin3, α= 0o, β =22.5o 0.97 yes Not applicable 6822 
Bluesin4, α= 0o, β=30o  0.96 yes Not applicable 6824 
Bluesin5, α= 0o, β=37.5o 0.97 yes Not applicable 6784 
SL1722 (local, static) α=0o, β=22.5o 0.96 yes Not applicable 56913 
Conlt3 (local, static, uncorrelated) 7.29 yes Not applicable 4950

 
TABLE 1: Summary of results. They correspond to total coincidences between stations, unless indicated otherwise. The condition of 
the experiment is indicated for the first run with the same name, f.ex.: the condition of being “remote, switched” applies to all runs 
whose names start with Longdist. The “static” runs have fixed settings, which are indicated. All runs belong to the Innsbruck 
experiment [21], excepting SL1722 and Conlt3, which are ours. The second column is “yes” only if the run passes all the 6 test of 
NIST named in the main text. 
 
  
 


