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We introduce probability estimation, a broadly applicable framework to certify randomness in
a finite sequence of measurements subject to verifiable physical constraints and with respect to
classical side information. Examples include randomness from single-photon measurements and
device-independent randomness from Bell tests. Advantages of probability estimation include un-
problematic early stopping when goals are achieved, optimal randomness rates, applicability to Bell
tests with small violations, and unsurpassed finite-data efficiency. We greatly reduce latencies for
producing random bits and formulate an associated rate-tradeoff problem of independent interest.
We also show that the latency is determined by an information-theoretic measure of nonlocality
rather than the Bell violation.

Randomness is a key enabling resource for compu-
tation and communication. Besides being required for
Monte-Carlo simulations and statistical sampling, pri-
vate random bits are needed for initiating authenticated
connections and establishing shared keys, both common
tasks for browsers, servers and other online entities [1].
Public random bits from “randomness beacons” have ap-
plications to fair resource sharing [2] and can seed private
randomness sources based on quantum mechanics [3].
Common requirements for random bits are that they are
unpredictable to all before they are generated, and pri-
vate to the users before they are published.

Quantum mechanics provides natural opportunities for
generating randomness. The best known example in-
volves measuring a two-level system that is in an equal
superposition of its two levels. A disadvantage of such
schemes is that they require trust in the measurement ap-
paratus, and undiagnosed failures are always a possibil-
ity. This disadvantage is overcome by a loophole-free Bell
test [4, 5], which can generate output whose randomness
can be certified solely by statistical tests of setting and
outcome frequencies. The devices preparing the quan-
tum states and performing the measurements may come
from an untrusted source. This strategy for certified ran-
domness generation is known as device-independent ran-
domness generation (DIRG).

Loophole-free Bell tests have been realized with
nitrogen-vacancy (NV) centers [6], with atoms [7] and
with photons [8, 9], enabling the possibility of full ex-
perimental implementations of DIRG. However, for NV
centers and atoms, the rate of trials is too low, and for
photons, the violation per trial is too small. As a result,
previously available DIRG protocols [3, 10–18] are not
ready for implementation with current loophole-free Bell
tests. These protocols do not achieve good finite-data
efficiency and therefore require an impractical number
of trials. Experimental techniques will improve, but for
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many applications of randomness generation, including
randomness beacons and key generation, it is desirable
to achieve finite-data efficiency that is as high as possi-
ble, since these applications often require short blocks of
fresh random bits with minimum delay or latency.

Excellent finite-data efficiency was achieved by a
method that we described and implemented in Refs. [19,
20], which reduced the time required for generating 1024
low-error random bits with respect to classical side infor-
mation from hours to minutes for a state-of-the-art pho-
tonic loophole-free Bell test. The method in Refs. [19, 20]
is based on the prediction-based ratio (PBR) analysis [21]
for hypothesis tests of local realism. Specifically, in
Refs. [19, 20] we established a connection between the
PBR-based p-value and the amount of randomness certi-
fied against classical side information. The basis for suc-
cess of the method of Refs. [19, 20] motivates our devel-
opment of probability estimation for randomness certifi-
cation, with better finite-data efficiency and with broader
applications.

In the probability estimation framework, the amount of
certified randomness is directly estimated without relying
on hypothesis tests of local realism. To certify random-
ness, we first obtain a bound on the conditional prob-
ability of the observed outcomes given the chosen set-
tings, valid for all classical side information. Then we
show how to obtain conditional entropy estimates from
this bound to quantify the number of extractable ran-
dom bits [22]. By focusing on data-dependent proba-
bility estimates, we are able to take advantage of pow-
erful statistical techniques to obtain the desired bound.
The statistical techniques are based on test supermartin-
gales [23] and Markov’s bounds. Probability estimation
inherits several features of the theory of test supermartin-
gales. For example, probability estimation has no inde-
pendence or stationarity requirement on the probability
distribution of trial results. Also, probability estimation
supports stopping the experiment early, as soon as the
randomness goal is achieved.

Probability estimation is broadly applicable. In partic-
ular it is not limited to device-independent scenarios and
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can be applied to traditional randomness generation with
quantum devices. Such applications are enabled by the
notion of models, which are sets of probability distribu-
tions that capture verified, physical constraints on device
behavior. In the case of Bell tests, these constraints in-
clude the familiar non-signaling conditions [24, 25]. In
the case of two-level systems such as polarized photons,
the constraints can capture that measurement angles are
within a known range, for example.

In this rapid communication, we first describe the tech-
nical features of probability estimation and the main re-
sults that enable its practical use. We propose a general
information-theoretic rate-tradeoff problem that closely
relates to finite-data efficiency. We then show how the
general theoretical concepts are instantiated in experi-
mentally relevant examples involving Bell-test configura-
tions. We demonstrate advantages of probability estima-
tion such as its optimal asymptotic randomness rates and
show large improvements in finite-data efficiency, which
corresponds to great reductions in latency.

Theory. Consider an experiment with “inputs” Z and
“outputs” C. The inputs normally consist of the random
choices made for measurement settings but may include
choices of state preparations such as in the protocols of
Refs. [26, 27]. The outputs consist of the correspond-
ing measurement outcomes. In the cases of interest, the
inputs and outputs are obtained in a sequence of n time-
ordered trials, where the i’th trial has input Zi and out-
put Ci, and Z = (Zi)

n
i=1 and C = (Ci)

n
i=1. We assume

that Zi and Ci are countable-valued. We refer to the trial
inputs and outputs collectively as the trial “results”, and
to the trials preceding the upcoming one as the “past”.
The party with respect to which the randomness is in-
tended to be unpredictable is represented by an external
classical system, whose initial state before the experiment
may be correlated with the devices used. The classical
system carries the side information E, which is assumed
to be countable-valued. After the experiment, the joint
of Z, C and E is described by a probability distribution
µ. The upper-case symbols introduced in this paragraph
are treated as random variables. As is conventional, their
values are denoted by the corresponding lower-case sym-
bols.

The amount of extractable uniform randomness in C
conditional on both Z and E is quantified by the (clas-
sical) smooth conditional min-entropy Hε

min(C|ZE)µ
where ε is the “error bound” (or “smoothness”) and µ
is the joint distribution of Z, C and E. One way to
define the smooth conditional min-entropy is with the
conditional guessing probability Pguess(C|ZE)µ defined
as the average over values z and e of the maximum con-
ditional probability maxc µ(c|ze). The ε-smooth condi-
tional min-entropy Hε

min(C|ZE)µ is the greatest lower
bound of − log2 Pguess(C|ZE)µ′ for all distributions µ′

within total-variation distance ε of µ. Our goal is to
obtain lower bounds on Hε

min(C|ZE)µ with probability
estimation.

The application of probability estimation requires a

notion of models. A modelH for an experiment is defined
as the set of all probability distributions of Z and C
achievable in the experiment conditionally on values e of
E. If a joint distribution µ of Z, C and E satisfies that for
all e, the conditional distributions µ(CZ|e), considered
as distributions of Z and C, are in H, we say that the
distribution µ satisfies the model H.

To apply probability estimation to an experiment con-
sisting of n time-ordered trials, we construct the model
H for the experiment as a chain of models Ci for each
individual trial i in the experiment. The trial model Ci
is defined as the set of all probability distributions of
trial results CiZi achievable at the i’th trial condition-
ally on both the past trial results and the side infor-
mation E. For example, for Bell tests, Ci may be the
set of non-signaling distributions with uniformly random
inputs. Let z<i = (zj)

i−1
j=1 and c<i = (cj)

i−1
j=1 be the re-

sults before the i’th trial. The sequences z≤i and c≤i are
defined similarly. The chained model H consists of all
conditional distributions µ(CZ|e) satisfying the follow-
ing two conditions. First, at each trial i the conditional
distributions µ(CiZi|c<iz<ie) for all c<i, z<i and e are
in the trial model Ci. Second, at each trial i the in-
put Zi is independent of the past outputs C<i given E
and the past inputs Z<i. The second condition prevents
leaking information about the past outputs through the
future inputs, which is necessary for certifying random-
ness in the outputs C conditional on both the inputs
Z and the side information E. In the common situation
where the inputs are chosen independently with distribu-
tions known before the experiment, the second condition
is always satisfied.

Since the model H consists of all conditional distri-
butions µ(CZ|e) regardless of the value e, the analy-
ses in the next paragraph apply to the worst-case con-
ditional distribution over e. To simplify notation we nor-
mally write the distribution µ(CZ|e) conditional on e as
µe(CZ), abbreviated as µe.

To estimate the conditional probability µe(c|z), we
design trial-wise probability estimation factors (PEFs)
and multiply them. Consider a generic trial with trial
model C, where for generic trials, we omit the trial in-
dex. Let β > 0. A PEF with power β for C is a
function F : cz 7→ F (cz) ≥ 0 such that for all σ ∈ C,
Eσ
(
F (CZ)σ(C|Z)β

)
≤ 1, where E denotes the expecta-

tion functional. Note that F (cz) = 1 for all cz defines
a valid PEF with each positive power. For each i, let
Fi be a PEF with power β for the i’th trial, where the
PEF can be chosen adaptively based on the past results
c<iz<i. Other information from the past may also be

used, see Ref. [28]. Let T0 = 1 and Ti =
∏i
j=1 Fj(CjZj).

The final value Tn of the running product Ti, where n is
the total number of trials in the experiment, determines
the probability estimate. Specifically, for each value e of
E, each µe in the chained model H, and ε > 0, we have

Pµe

(
µe(C|Z) ≥ U(CZ)

)
≤ ε, (1)
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where Pµe
denotes the probability according to the distri-

bution µe and U(CZ) = (εTn)−1/β . The proof of Eq. (1)
is given in the Supplemental Material (SM) [29]. The
meaning of Eq. (1) is as follows: For each e and each
µe ∈ H, the probability that C and Z take values c and
z for which U(C = c,Z = z) ≤ µe(C = c|Z = z) is
at most ε. This defines U(CZ) = (εTn)−1/β as a level-ε
probability estimator.

A main theorem of probability estimation is the con-
nection between probability estimators and conditional
min-entropy estimators, which is formalized as follows:

Theorem 1. Suppose that the joint distribution µ of Z,
C and E satisfies the chained model H. Let 1 ≥ κ, ε > 0
and 1 ≥ p ≥ 1/|Rng(C)|, where |Rng(C)| is the number
of possible outputs. Define {φ} to be the event that Tn ≥
1/(pβε), and let κ ≤ Pµ(φ). Then the smooth conditional
min-entropy satisfies

Hε
min(C|ZE;φ) ≥ − log2(p/κ1+1/β).

The probability of the event {φ} can be interpreted as
the probability that the experiment succeeds, and κ is
an assumed lower bound on the success probability. The
theorem is proven in SM [29].

When constructing PEFs, the power β > 0 must be
decided before the experiment and cannot be adapted.
Thm. 1 requires that p, ε and κ also be chosen beforehand,
and success of the experiment requires Tn ≥ 1/(pβε), or
equivalently,

log2(Tn)/β + log2(ε)/β ≥ − log2(p). (2)

Since log2(Tn) =
∑
i log2(Fi), before the experiment we

choose PEFs in order to aim for large expected values of
the logarithms of the PEFs Fi. Consider a generic next
trial with results CZ and model C. Based on prior cal-
ibrations or the frequencies of observed results in past
trials, we can determine a distribution ν ∈ C that is a
good approximation to the distribution of the next trial’s
results CZ. Many experiments are designed so that each
trial’s distribution is close to ν. The PEF can be op-
timized for this distribution but, by definition, is valid
regardless of the actual distribution of the next trial in
C. Thus, one way to optimize PEFs before the next trial
is as follows:

Max: Eν
(
n log2(F (CZ))/β + log2(ε)/β

)
With:

∑
cz F (cz)σ(c|z)βσ(cz) ≤ 1 for all σ ∈ C,

F (cz) ≥ 0, for all cz. (3)

The objective function is strictly concave and the con-
straints are linear, so there is a unique maximum, which
can be found by convex programming. More details are
available in SM [29].

Before the experiment, one can also optimize the ob-
jective function in Eq. (3) with respect to the power β.
During the experiment ε and β are fixed, so it suffices to
maximize Eν

(
log2(F (CZ))

)
. If during the experiment,

the running product Ti with i < n exceeds the target

1/(pβε), we can set future PEFs to F (CZ) = 1, which
is a valid PEF with power β. This ensures that Tn = Ti
and is equivalent to stopping the experiment after trial i.
Since the target needs to be set conservatively in order
to make the actual experiment succeed with high prob-
ability, this can result in a significant reduction in the
number of trials actually executed.

A question is how PEFs perform asymptotically for a
stable experiment. This question is answered by deter-
mining the rate per trial of entropy production assuming
constant ε and κ independent of the number of trials. In
view of Thm. 1, after n trials the entropy rate is given by(
− log2(p)+log2(κ1+1/β)

)
/n. Considering Eq. (2), when

n is large the entropy rate is dominated by log2(Tn)/(nβ),
which is equal to

∑n
i=1 log2(Fi)/(nβ). Therefore, if each

trial has distribution ν and each trial model is the same
C, then in the limit of large n the asymptotic entropy
rate witnessed by a PEF F with power β is given by
Eν
(

log2(F (CZ))/β
)
. Define the rate

g(β) = sup
F

Eν
(

log2(F (CZ))/β
)
, (4)

where the supremum is over PEFs F with power β for
C. The maximum asymptotic entropy rate at constant ε
and κ witnessed by PEFs is g0 = supβ>0 g(β). The rate
g(β) is non-increasing in β (SM [29]), so g0 is determined
by the limit as β goes to zero. A theorem proven in
Ref. [28] is that g0 is the worst-case conditional entropy
H(C|ZE) over joint distributions of CZE allowed by C
with marginal ν. Since this is a tight upper bound on
the asymptotic randomness rate [30], probability estima-
tion is asymptotically optimal and we identify g0 as the
asymptotic randomness rate.

For finite data and applications requiring fresh blocks
of randomness, the rate g0 is not achieved. To understand
why, consider the problem of certifying a fixed number
of bits b of randomness at error bound ε and with as
few trials as possible, where each trial has distribution
ν. In view of Thm. 1, the PEF optimization problem in
Eq. (3), and the definition of g(β) in Eq. (4), n needs to
be sufficiently large so that

ng(β) + log2(ε)/β + (1 + 1/β) log2(κ) ≥ b. (5)

The left-hand side is maximized at positive β, whereas
g(β) increases to g0 as β goes to zero. As a result the
best actual rate b/n is less than g0.

Setting κ = 1 in Eq. (5) shows that the number of trials
n must exceed − log2(ε)/(βg(β)) before randomness can
be produced, which suggests that the maximum of βg(β)
is a good indicator of finite-data performance. Another
way to arrive at this quantity is to consider ε = 2−γn,
where γ > 0 is the “certificate rate”. Given ν and the
trial model, we can ask for the maximum certificate rate
for which it is possible to have positive entropy rate at
κ = 1. It follows from Eq. (5) with κ = 1 that this rate
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is at most

γPEF = sup
β>0

βg(β). (6)

We propose a general information-theoretic rate-tradeoff
problem given trial model C and ν ∈ C: For a given
certificate rate γ, determine the supremum of the en-
tropy rates achievable by protocols. Eq. (5) implies lower
bounds on the resulting tradeoff curve.

Our protocol assumes classical-only side information.
There are more costly DIRG protocols that handle quan-
tum side information [11, 13–17], but verifying that side
information is effectively classical only requires confirm-
ing that the quantum devices used in the experiment have
no long-term quantum memory. Verifying the absence
of long-term quantum memory in current experiments
is possibly less difficult than ensuring that there are no
backdoors or information leaks in the experiment’s hard-
ware and software.

Applications. We consider DIRG with the standard
two-party, two-setting, two-outcome Bell-test configura-
tion [31]. The parties are labeled A and B. In each trial,
a source prepares a state shared between the parties, and
each party chooses a random setting (their input) and ob-
tains a measurement outcome (their output). We write
Z = XY , where X and Y are the inputs of A and B, and
C = AB, where A and B are the respective outputs. For
this configuration, A,B,X, Y ∈ {0, 1}.

Consider the trial model N consisting of distributions
of ABXY with uniformly random inputs and satisfying
non-signaling [24]. We begin by determining and com-
paring the asymptotic randomness rates witnessed by
different methods. The rates are usually quantified as
functions of the expectation Î of the CHSH Bell function
(see Eq. (S27) in SM [29]) for Î > 2 (the classical upper
bound). We prove in SM [29] that the maximum asymp-

totic randomness rate for any ν ∈ N is equal to (Î−2)/2,
and the rate g0 witnessed by PEFs matches this value.
Most previous studies, such as Refs. [3, 10, 12, 18, 32–34],
estimate the asymptotic randomness rate by the single-
trial conditional min-entropy Hmin(AB|XY E). We de-

termine that Hmin(AB|XY E) = − log2((6 − Î)/4) < g0
when 2 < Î < 4. As Î decreases to 2 the ratio of g0
to Hmin(AB|XY E) approaches 1.386, demonstrating an
improvement at small violations.

Next, we investigate finite-data performance. We con-
sider three different families of quantum-achievable dis-
tributions of trial results. For the first family νE,θ, A
and B share the unbalanced Bell state |Ψθ〉 = cos θ|00〉+
sin θ|11〉 with θ ∈ (0, π/4] and apply projective measure-

ments that maximize Î. This determines νE,θ. This fam-
ily contains the goal states for many experiments suf-
fering from detector inefficiency. For the second family
νW,p, A and B share a Werner state ρ = p|Ψπ/4〉〈Ψπ/4|+
(1− p)1l/4 with p ∈ (1/

√
2, 1] and again apply measure-

ments that maximize Î. Werner states are standard ex-
amples in quantum information and are among the worst

Î
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FIG. 1. Maximum certificate rates γPEF (Eq. (6)) as a func-

tion of Î for each family of distributions.

states for our application. In experiments with photons,
measurements are implemented with imperfect detectors.
For the third family νP,η, A and B use detectors with
efficiency η ∈ (2/3, 1) to implement the measurements
and to close the detection loophole [35]. They choose
the unbalanced Bell state |Ψθ〉 and measurements such
that an information-theoretic measure of nonlocality, the
statistical strength for rejecting local realism [36–38], is
maximized.

For each family of distributions, we determine the
maximum certificate rate γPEF as given in Eq. (6).
For this, we consider the trial model N , but we
note that γPEF does not depend on the specific con-
straints on the quantum-achievable conditional distribu-
tions P(AB|XY ) (SM [29]). As an indicator of finite-

data performance, γPEF depends not only on Î, but also
on the distribution ν. To illustrate this behavior, we plot
the rates γPEF as a function of Î for each family of distri-
butions in Fig. 1. To obtain these plots, we note that Î is
a monotonic function of the parameter θ, p or η for each
family. We also find that γPEF is given by the statistical
strength of the distribution ν for rejecting local realism
(see SM [29] for a proof). Conventionally, experiments

are designed to maximize Î, but in general, the optimal
state and measurements maximizing Î are different from
those maximizing the statistical strength [37, 38].

We further determine the minimum number of trials,
nPEF,b, required to certify b bits of ε-smooth conditional
min-entropy with a given distribution ν of trial results.
From Eq. (5), we get

nPEF,b = inf
β>0

bβ − log2(ε)− (1 + β) log2(κ)

βg(β)
,

where for simplicity we allow non-integer values for
nPEF,b. We can upper bound nPEF,b by means of the
simpler-to-compute certificate rate γPEF given in Eq. (6).
For the trial model N , γPEF is achieved when β is above
a threshold β0 that depends on ν (SM [29]). From γPEF

and β0, we can determine the upper bound

n′PEF,b =
(
bβ0 − log2(ε)− (1 + β0) log2(κ)

)
/γPEF
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on nPEF,b. The minimum number of trials required can
be determined for other published protocols, which usu-
ally certify conditional min-entropy from Î. (An excep-
tion is Ref. [18] but the minimum number of trials re-
quired is worse.) We consider the protocol “PM” of
Ref. [3] and the entropy accumulation protocol “EAT”
of Ref. [17]. From Thm. 1 of Ref. [3] with κ = 1 and
b↘ 0, we obtain a lower bound

nPM,0 = −2 loge(ε)/
(
(Î − 2)/(4 + 2

√
2)
)2
.

For the EAT protocol, we determine an explicit lower
bound nEAT,b in SM [29]. This lower bound applies for
b ≥ 0 and ε, κ ∈ (0, 1], and is valid with respect to quan-
tum side information for the trial model consisting of
quantum-achievable distributions.

We compare the three protocols over a broad range
of Î for b ↘ 0, ε = 10−6, and κ = 1. For each
family of distributions above, we compute the improve-
ment factors given by fPM = nPM,0/n

′
PEF,0 and fEAT =

nEAT,0/n
′
PEF,0. For νW,p, the improvement factors de-

pend weakly on Î: fPM increases from 3.89 at Î = 2.008
to 4.36 at Î = 2

√
2, while fEAT increases from 84.97

at Î = 2.008 to 86.35 at Î = 2
√

2. For νE,θ and νP,η,
the improvement factors can be much larger and depend
strongly on Î, monotonically decreasing with Î as shown
in Fig. 2. The improvement is particularly notable at
small violations which are typical in current photonic
loophole-free Bell tests. We remark that similar com-
parison results were obtained with other choices of the

values for ε and κ.
The large latency reduction with probability estima-

tion persists for certifying blocks of randomness. For
randomness beacons, good reference values are b = 512
and ε = 2−64. We also set κ = 2−64. Setting κ = ε
is a common conservative choice, but we remark that
soundness for randomness generation can be defined with
a better tradeoff between ε and κ [28]. We consider
the trial model T of distributions with uniformly ran-
dom inputs, satisfying both non-signaling conditions [24]
and Tsirelson’s bounds [39]. Consider the state-of-the-
art photonic loophole-free Bell test reported in Ref. [20].
With probability estimation, the number of trials re-
quired for the distribution inferred from the measurement
statistics is 4.668× 107, which would require about 7.78
minutes of running time in the referenced experiment.
With entropy accumulation [17], 2.887× 1011 trials tak-
ing 802 hours would be required. We also reanalyzed the
experimental data from Refs. [10] and [19] obtaining sub-
stantially better results with probability estimation, see
SM [29] for details.

In conclusion, probability estimation is a powerful and
flexible framework for certifying randomness in data from
a finite sequence of experimental trials. Implemented
with probability estimation factors, it witnesses opti-
mal asymptotic randomness rates. For practical appli-
cations requiring fixed-size blocks of random bits, it can
reduce the latencies by orders of magnitude even for high-
quality devices. Latency is a notable problem for device-
independent quantum key generation (DIQKD). If prob-
ability estimation can be extended to accommodate secu-
rity against quantum side information, the latency reduc-
tions may be extendable to DIQKD by means of existing
constructions [17].
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