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Abstract: Loss and decoherence are a major problem in the transmission of non-classical states of 

light over large distances.  It was recently shown that the effects of decoherence can be reduced by 

applying a probabilistic noiseless attenuator before transmitting a quantum state through a lossy 

channel, followed by probabilistic noiseless amplification (M. Micuda et al, Phys. Rev. Lett. 109, 

180503 (2012)).  Here we show that similar results can be obtained for certain kinds of macroscopic 

quantum states by squeezing the signal before transmission, followed by deterministic amplification 

and anti-squeezing to restore the original amplitude of the state.  This approach can greatly reduce 

the effects of decoherence in the transmission of non-Gaussian states, such as Schrodinger cat states, 

without any reduction in the data transmission rate. 

       

I.  INTRODUCTION 

 

 Schrodinger cats [1-2] and other macroscopic 

superposition states are very susceptible to the effects of loss 

[3-5], which makes it difficult to transmit them over large 

distances.  Here we show that the decoherence of 

Schrodinger cat states can be greatly reduced by applying an 

appropriate squeezing operation [6-19] before their 

transmission through a lossy medium [20-21], followed by 

deterministic amplification and anti-squeezing [18-19, 22] to 

restore the original amplitude of the state.  This process can 

reduce the amount of decoherence in non-Gaussian 

macroscopic states by many orders of magnitude while 

maintaining the original data rate. 

 Micuda et al. [23] previously proposed a somewhat 

similar technique in which the amplitude of the signal is 

attenuated using a probabilistic noiseless attenuator before 

transmission, followed by a probabilistic noiseless amplifier 

to restore the original amplitude as shown in Fig. 1(a).  

Noiseless attenuation [23-26] and noiseless amplification 

[27-29] can both be implemented using various post-

selection and heralding techniques.  The output of the system 

is only accepted when certain conditions are met, which 

reduces the data transmission rate exponentially.  Thus the 

decreased decoherence is achieved at the cost of a reduced 

data rate. 

 The exponential decrease in the data rate can be 

avoided for Schrodinger cat states by applying squeezing [6-

19], deterministic amplification, and anti-squeezing [18-19, 

22] operations instead, as illustrated in Fig. 1(b).  An incident 

Schrodinger cat state is first squeezed in such a way as to 

reduce the overall amplitude of its two phase components as 

illustrated in Fig. 2.  After passing through a lossy channel, 

the signal is amplified using a deterministic amplifier, such 

as an optical parametric amplifier (OPA) [30-32], and then 

restored to its original amplitude by applying an appropriate 

anti-squeezing operation.  The anti-squeezing operation 
†ˆ ( )S r  is the inverse of the squeezing operation ˆ( )S r , where 

r  is the usual squeezing parameter as defined below.  We 

will show that this process can reduce the decoherence by 

many orders of magnitude under the appropriate conditions.  

Similar results are expected for other kinds of macroscopic 

superposition states. 

 

 

 
 
 

Fig. 1.  (a) Reduction in the decoherence of a quantum signal by applying a 

noiseless attenuation factor   before transmission through a lossy channel, 

followed by noiseless amplification with gain g [23].  The probabilistic 

nature of the noiseless attenuation and amplification results in an 

exponential decrease in the data transmission rate in this approach. (b)  

Reduction in the decoherence of a Schrodinger cat state by applying an 

appropriate squeezing operation Ŝ  before transmission, followed by a 

deterministic amplifier (OPA) and anti-squeezing †Ŝ .  This approach has 

the advantage that all of the operations are deterministic and the data 

transmission rate is not reduced as a result. 
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 A recent experiment by Le Jeannic et al. showed 

that squeezing a Schrodinger cat state can help to maintain 

the negative part of its Wigner distribution in the presence of 

loss [21], as was first suggested by R. Filip [20].  These 

earlier papers did not include the effects of amplification, 

however, which is required to restore the original amplitude 

of the cat state.   

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 2:  (Color online) Phase-space diagram illustrating the squeezing of a 

Schrodinger cat state before transmission through a lossy channel to 

minimize decoherence as shown in Fig. 1.  The real and imaginary axes 

labelled Re and Im correspond to either the Wigner distribution or the Q-

function, while the solid and dashed lines represent the 1-  contours of the 

relevant Gaussian distributions.  The initial cat state is assumed to have 

components that differ by a phase shift of   as indicated by the blue (solid) 

lines.  The squeezing parameters are chosen to reduce the amplitudes along 

the real axis as indicated by the red (dashed) lines. This process decreases 

the overall amplitude of the signal and thus the number of photons left in 

the environment due to loss and amplification.  

 

 One of the goals of this paper is to include the 

effects of an amplifier in addition to loss.  It will be found 

that the residual decoherence due to amplification is 

comparable to that due to loss when the cat state is restored 

to its original amplitude.  We provide an analytic solution to 

this problem using the Q-function quasiprobability 

distribution.  This provides insight into the optimal amount 

of squeezing, which will be found to minimize the number 

of idler photons generated in the OPA.  Another goal is to 

investigate trade-offs between the relevant physical 

parameters, which is necessary to minimize the overall 

decoherence and determine the expected performance of the 

system.   

Niset et al. have proven a no-go theorem which 

shows that Gaussian operations, such as squeezing, cannot 

protect Gaussian states from decoherence [33].  The Wigner 

distribution of a Schrodinger cat state is not a Gaussian and 

this no-go theorem does not apply to our approach. The use 

of squeezing and anti-squeezing in this way is limited to non-

Gaussian states, however, and there are limits on the amount 

of decoherence reduction that can be achieved.   

Section II begins by discussing a Schrodinger cat 

interferometer that can be used to measure the amount of 

quantum coherence between the two components of the cat 

state after loss and amplification.  An analytic solution for 

the visibility of the quantum interference is calculated in 

Section III using the Husimi-Kano Q-function [34-35].  The 

results of the calculations are described for a range of 

parameters in Section IV, which includes a comparison of 

the effects of loss versus amplification.  A summary and 

conclusions are provided in Section V. 

   

II.  SCHRODINGER CAT INTERFEROMETER 

 

 The reduction in the decoherence can be observed 

using the Schrodinger-cat interferometer of Fig. 3 [3-5].  A 

Schrodinger cat state is probabilistically generated using the 

source enclosed in the dashed lines on the left, starting from 

a coherent state 0  with complex amplitude 
0  as 

described in the figure caption.  After passing through the 

squeezer, transmission channel, amplifier, and anti-

squeezing operations, the coherence of the resulting state can 

be measured by looking for quantum interference between 

the two components of the original cat state using the 

analyzer enclosed in the dashed lines on the right-hand side 

of Fig. 3.  The Schrodinger cat interferometer itself was 

described in more detail in Refs. [2-5]. 

 A Schrodinger cat state is created [1-2] in the 

source box on the left by passing an initial coherent state 

0  through a Kerr medium K  that is located in one path of 

a single-photon interferometer.  The Kerr medium is 

assumed to produce a phase shift of 2  if single photon 1  

passes through it.  By applying a constant phase shift of −  

and post-selecting on the detection of 1  in the detector 

shown, this process will produce a cat state whose 

components have been shifted by   depending on the path 

taken by 1 , as illustrated in Fig. 2 for / 2 = .     

 After passing through a squeezer, lossy 

transmission channel, OPA, and an anti-squeezer, the 

visibility of the quantum interference between the two 

components of the cat state can be measured using the 

apparatus shown in the box on the right of Fig. 3.  Here a 

second phase shift of   is applied depending on the path 

taken by photon 2 , with post-selection based on the 

detection of 2  in the detector shown.  The phase of the 

signal is then measured with a homodyne detector and the 

events are further post-selected based on a measured phase 
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shift of approximately zero.  With a net phase shift of zero, 

the two components of the original cat state will now overlap 

in phase space as illustrated in more detail in Fig. 4.  

Quantum interference between these two probability 

amplitudes will then occur with a visibility that that depends 

on their degree of coherence. 

 

  

 

 

 
Fig. 3: (Color online) Measurement of the amount of decoherence using a 
Schrodinger cat interferometer [3-5].  The source box on the left produces 

a Schrodinger cat state as illustrated in Fig. 2.  Here 
0  is an initial 

coherent state and K is a Kerr medium located in one path of a single-

photon interferometer.  The Kerr medium produces a phase shift of 2  if 

single photon 
1  passes through it.  A constant phase shift of −  is applied 

in both paths (not shown), which gives a net phase shift of  depending 

on the path taken by 
1 . A variable phase shift   is also applied to 

1  in 

one path of the single-photon interferometer, with post-selection on the 

detection of 
1  in the detector shown.  After passing through a squeezer 

ˆ,S lossy transmission channel, OPA, and an anti-squeezer 
†ˆ ,S the 

visibility of the quantum interference between the two components of the 

cat state is measured using the apparatus shown in the analyzer box on the 

right.  Here a second photon 
2  passes through a single-photon 

interferometer with a Kerr medium in one of its paths, which produces 

another phase shift of .   The events are post-selected based on single-

photon detection in the detectors shown, along with a net phase shift of zero 

as measured by the homodyne detector (H.D.).  This results in quantum 
interference between the two components of the original cat state, as 

described in more detail in Fig. 4. 

 

 In the limit of 0| | 1  , most of the decoherence 

during transmission is due to which-path information left in 

the environment.  For example, passing a cat state through a 

beam splitter (a common model for loss) will produce a 

second coherent state in the other output port of the beam 

splitter, with a phase that is different for the two components 

of the cat state [1-5].  As a result, entanglement between the 

components of the cat state and the beam splitter output will 

substantially reduce the quantum interference.  

Entanglement between the signal and idler modes of an OPA 

will also produce which-path information of this kind, which  

can be the dominant source of decoherence in a linear 

amplifier [5].  In either case, the squeezing operation of Fig. 

2 reduces the overall amplitude of the cat state components 

during transmission and amplification, which reduces the 

number of photons left in the environment and thus the 

which-path information.    

 

 
 
 

Fig. 4: (Color online) Phase-space representation of the state of the system 
as it progresses through the apparatus shown in Fig. 3 for the case of 

/ 2. =   The horizontal axes correspond to the real part of the Wigner 

distribution or Q-function as in Fig. 2, while the vertical axes correspond to 

the imaginary part.  (a)  The initial coherent state 
0  (solid circle) along 

with the idler mode of the OPA (dotted circle) which is initially in its 

vacuum state.  (b)  Cat state created by the first single-photon 

interferometer, where the Kerr medium and a constant phase shift apply a 

net phase shift of / 2  depending on the path taken by the single photon.  

(c)  Reduced overall amplitude of the cat state components due to squeezing 

along the real axis.  The squeezing also increases the amplitude along the 

imaginary axis.  (d)  Compensation for the effects of loss using a 

deterministic amplifier, which also displaces the idler modes.  This results 

in a state where the signal and idler modes are entangled.  (e) Restoration of 
the original amplitude of the cat state using anti-squeezing.  (f) A second 

phase shift of / 2  is produced in the analyzer of Fig. 3, depending on 

the path taken by the second single photon.  Post-selecting on a net phase 

shift of zero results in an overlap between the two original components of 

the cat state.  This gives quantum interference, whose visibility provides a 
measure of the amount of decoherence, as described in more detail in Ref. 

[5]. 

 

III.  ANALYSIS USING THE Q-FUNCTION 

 

The visibility of the quantum interference can be 

calculated analytically using the Husimi-Kano Q-function 

[34-35].  After the first post-selection process, the initial 

state in,s|   of the Schrodinger cat is given by  
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                    ( )in,s 0 0

1
| | | .

2

i i ie e e     − =  +                    (1) 

 

The factor of 1/2 comes from the post-selection and the ie   

results from the phase shift   inserted into one arm of the 

first single-photon interferometer in Fig. 3. The state in Eq. 

(1) is not normalized and its norm reflects the probability of 

achieving that output, as will the norms of subsequent post-

selected states. The factor of 1/2 does not affect the 

calculated visibility but it is useful in calculating the 

probability of success for the post-selection process.  

 The four terms in the corresponding density 

operator can be written as ˆ ˆ ˆ ˆ ˆ ,    ++ +− −+ −−= + + +  where 

  

           0 0ˆ 0 0 / 4i i
i ie e   −

+− =   (2) 

 

for example, with a similar notation for the other three terms 

[5].  Here the   signs correspond to the sign of the phase 

shift   in the original cat state of Eq. (1).  We have 

assumed that the idler mode of the OPA is initially in its 

vacuum state 0i . 

 The single-mode squeezing operation produces a 

unitary transformation ˆ( )S r  given by [18-19] 

 

                            
2 † 2ˆ ˆ( )/2ˆ( ) ,

i ir e a e aS r e
 − −                                  (3) 

 

where â  is the photon annihilation operator for the signal 

field.  Here r  is the usual squeezing parameter which 

depends on the coupling between the pump and signal, the 

interaction time, and the phase   of the pump [19].  Eq. (3) 

can be factored into a more useful form given by [37] 

 

            
2 †2 2 2†ˆ ˆ1 /2 ˆ ˆ 1 /21ˆ ,

i ie a e aa aS e e
    




−− − −−=              (4) 

 

where cosh r =  and we have dropped the explicit 

dependence of ˆ( )S r  on .r  

 For simplicity, the analysis presented in the text 

will only include amplification using an OPA, since the 

effects of the amplifier is one of the main topics of interest.  

The more general case of loss followed by amplification 

gives similar results as shown in the appendices.  The 

amplification process corresponds to a unitary 

transformation Û  given by [32, 37-38] 

 

                
2 † † 2† † ˆˆˆ ˆ1 / ˆ ˆˆ /)ˆ 1(1ˆ .

g a g g ab ga b bab
U e g e

g

− − −− +=             (5) 

 

Here b̂  is the annihilation operator for the amplifier’s idler 

mode and cosh( )g t=  is the gain of the amplifier, where 

  is the coupling between the pump and the signal and idler 

modes and t  is the interaction time [32].  

The final single-photon interferometer in Fig. 3 

performs a probabilistic phase shift that can be represented 

by the operator T̂  given by [5] 
 

                              ( )
† †ˆ ˆ ˆ ˆ1ˆ .

2

i a a i a aT e e −= +                             (6) 

 

Combining Eqs. (1) through (6) allows the final state of the 

system in Fig. 3 to be written as 

 

                          †
out in,

ˆ ˆˆ ˆ| | | 0 .s iTS US  =                          (7) 

 

This corresponds to a pure state that is a superposition of four 

terms, since we have not yet traced over the idler modes.  

Post-selection on a net phase shift of 0 in the homodyne 

measurement will reduce this to a superposition of two 

terms, since the other two terms correspond to phase shift of 
  and they are eliminated as indicated by the red cross in 

Fig. 4f. The two remaining terms produce quantum 

interference between the two components of the original cat 

state.  

 The two-mode Q-function is defined by 

 

        
2

ˆ( , ) | |
1

| | .Q       


       (8) 

 

Here   and   are arbitrary complex variables 

corresponding to the amplitudes of coherent states |  and 

|  in the signal and the idler mode of the OPA, 

respectively, while ̂  is the density operator of Eq. (2).  

Since the Q-function is linear in ̂ , the four terms in the 

initial density operator allow the Q-function to be written in 

the analogous form 

 

( , ) ( , ) ( , )

( , ) ( , ).

Q Q Q

Q Q

     

   

++ +−

−+ −−

= +

+ +
  (9) 

 

After post-selection, inserting the final state of Eq. (7) into 

Eq. (8) gives 

 

           
†

†

ˆ ˆ †
02

ˆ ˆ† †
0

( , )

ˆ ˆˆ| | | | 0
16

ˆ ˆˆ0 | | | | ,

i a a i
i s s i

i i a a
i i

i

s s

Q

e S US

S U

e
e

e Se

 

 



 

  


  

−

+−

− +

− −

=

   

   

            (10) 
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with similar results for the other three terms.  It should be 

noted that both terms in the operator T̂  in Eq. (6) are 

retained, but they appear separately in the four Q  terms. 

It will be convenient to define f+  as the first factor 

on the right-hand side of Eq. (10):  

 

      
†ˆ ˆ †

0
ˆ ˆˆ| | ( ) ( | ,) | 0i a a i

i s s if e S r US r e   − +
+           (11) 

 

with an analogous definition for f− .  In  that case 

 

                          *

2
( , ) .

16

ie
Q f f



 


+ +

−

− −=                           (12) 

 

The completeness property of the coherent states allows f+  

to be rewritten as  

 

              
2 2 2

†

4

0
2

1 ˆ| | | |

ˆ| | | |

ˆ| | | ,| 0

i
i s s i

i s s i

i
i s s i

f

d d d d

e S

U

S e





  


  





    

+
+

+

=    

   

   

   
     (13) 

 

where we let the operator 
†ˆ ˆi a ae −  act to the left. 

 Inserting the factored forms of the operators Û  and 

Ŝ  into Eq. (13) gives 

 

       

22 2

0 2 *2 ( 2 ) 2 ( 2 )
0

2 2 2 2 2 2 *2

2 * * * *

* * *
0

( )/2
1( )/2

4

( ) 1( )/2

1( )/ ( )/

( )/ 2 2 2 2 .

i i

i i

i i

e e

e e

g g g

e e g

e
f e

g

e e

e e

e e d d d d

   

 

 

  
   

       

      

     

 

   

− − −

−

−

− + +
− +

+

− + + + − − +

− − +

+

=







     (14) 

 

with an analogous expression for .f−   

The integrals in Eq. (14) can be evaluated 

analytically to calculate the Q-function and the visibility, as 

described in more detail in the appendices [37].   

 

IV.  RESULTS AND COMPARISONS 

 

Squeezing and anti-squeezing reduce the amount of 

decoherence by reducing the number of photons left in the 

environment. This effect can be seen in Fig. 5, where the 

visibility of the interference pattern is plotted as a function 

of the squeezing parameter r  for an initial amplitude of 

0| | 100 = .  The solid red curve shows the visibility for a 

relatively small gain of 1.001, while the dotted blue curve 

corresponds to loss modeled by a beam splitter with a 

transmission coefficient of 0.999t = . (The loss and gain 

both refer to the change in the amplitude of the signal rather 

than the intensity.)  The black dotted curve shows the 

combined effects of loss and gain.  It can be seen that loss 

and gain have essentially the same effect on the visibility of 

the quantum interference under these conditions of low gain, 

if the gain is chosen to be 1/g t=  in order to restore the 

original signal amplitude. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. (Color online) Plot of the visibility of the quantum interference as a 

function of the squeezing parameter r.  The solid red curve corresponds to a 

relatively small gain of g = 1.001 while the dotted blue line corresponds to 

a loss factor of 0.999.t =  The black dashed curve shows the combined 

effects of both loss and gain.  The amplitude of the coherent state was 

0| | 100 =  and the parameters in the interferometer of Fig. 3 were chosen 

to be / 2 =  and 0. =  These results show that squeezing and anti-

squeezing can produce a large improvement in the visibility even when the 

loss and gain are relatively small. 

 

   Even the relatively small loss and gain shown in 

Fig. 5 will produce an exponentially large reduction in the 

visibility for 0| | 100 =  in the absence of any squeezing and 

anti-squeezing ( 0r = ).  The visibility at 0r =  has a value 

of 
18~ 10−

 in Fig. 5, although that is not apparent from the 

plot.   It can be seen that squeezing and anti-squeezing can 

produce a large improvement in the visibility under those 

conditions, although it cannot eliminate the decoherence 

altogether.   

The effects of squeezing and anti-squeezing can be 

understood from Fig. 6, which is a plot of the mean number 

of photons left in the environment as a function of the 

squeezing parameter for the same conditions as in Fig. 5.  

The solid red line corresponds to the number of idler photons 

produced by the OPA, while the blue dotted line corresponds 

to the number of photons left in the environment by a beam 

splitter used to model the loss. It can be seen the optimal 

value of the squeezing parameter in Fig. 5 corresponds 

approximately to the minimum number of photons left in the 

environment in Fig. 6.  It can also be seen that loss and gain 

leave approximately the same number of photons in the 
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environment if 1/g t= .  These results show once again that 

squeezing and anti-squeezing increase the visibility by 

reducing the number of photons left in the environment and 

thus the amount of which-path information. 

 

 

 

 

Fig. 6. (Color online) Plot of the average number of photons left in the 

environment as a function of the squeezing parameter r  under the same 

conditions used in Fig. 5.  The solid red line corresponds to the number of 
idler photons emitted by the OPA, while the blue dots correspond to the 

number of photons left in the environment by a beam splitter used to model  

loss.  The optimal value of the squeezing parameter r minimizes the number 

of photons left in the environment. 

 

The visibility in Fig. 5 decreases after reaching a 

maximum value as the squeezing parameter is further 

increased.  This can be understood from the fact that more 

squeezing will also increase the amplitude of the field along 

the imaginary axis in Fig. 2.  The minimum transmission 

intensity and thus the maximum visibility occur when the 

real and imaginary components are approximately equal. 

That will be the case when the squeezing reduces the 

amplitude along the real axis from 0  to 0 , which 

increases the amplitude along the imaginary axis to 0  

from the uncertainty principle for the product of the two 

quadratures.  Thus the optimal amount of squeezing reduces 

the amplitude by a factor ~ 0  and it reduces the number 

of photons left in the environment by a factor  ~ 0| | .  

The decoherence due to entanglement with the idler 

photons in an OPA does not appear to be widely appreciated.  

It is a separate mechanism from the well-known quantum 

noise added by an amplifier.  In fact, the decoherence from 

an OPA can be exponentially large even when the added 

quantum noise is negligible, as we showed in an earlier paper 

[5].  The quantum noise from the amplifier is included in 

these calculations, but its contribution to the decoherence is 

negligible compared to the which-path information in the 

limit of large 0| |  and small gain.   

The visibility of the interference pattern depends on 

four parameters 0 , ,t g , and r , which results in a number 

of possible trade-offs in the choice of these parameters.  If 

we assume that the gain is chosen to be 1/g t=  to restore 

the original amplitude of the quantum state, then the 

visibility only depends on three independent parameters.   

Here we will concentrate on the effects of gain, which have 

not been analyzed previously [20-21]. 

The maximum achievable visibility is plotted as a 

function of the initial amplitude  0| |  in Fig. 7 for several 

values of the gain ( g =1.001, 1.01, or 1.1).  Here the optimal 

value of the squeezing parameter r  was calculated and used 

to evaluate the maximum visibility.  Fig. 7a shows the 

optimal value of the squeezing parameter while Fig. 7b 

shows the corresponding visibility.  It can be seen that the 

visibility decreases much faster as a function of  0| |  for 

large gains than it does for smaller gains.  This is due to the 

fact that the average number of idler photons generated by 

an OPA is equal to 2 2| | ( 1)A g − , where A  is the 

amplitude of the field at the input to the amplifier [5]. 

Roughly speaking, the visibility will be substantially 

reduced when one or more idler photons are emitted on 

average, which corresponds to 2 2| | ( 1) 1A g − .  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. (Color online) Maximum achievable visibility as a function of the 

initial coherent state amplitude 
0| |  for several values of the gain .g   (a)  

The optimal value of the squeezing parameter r  as a function of 
0| | .  (b)  

The corresponding maximum visibility as a function of 
0| | .  It can be seen 

that the maximum visibility decreases more rapidly as a function of 
0| |

for larger values of the gain.   
 

The optimal squeezing parameter and the 

corresponding maximum visibility are plotted in Fig. 8 as a 
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function of the gain for several values of  0| |  (1, 10, and 

100).  It can be seen once again that larger values of the gain 

require smaller values of  0| |  in order to achieve useful 

visibilities.  The trade-off between the gain and 0| |  is 

further illustrated in Fig. 9, which shows the maximum 

visibility as a function of the gain or 0| |  for several values 

of the squeezing parameter .r   It can be seen from Fig. 9b 

that a significant amount of visibility can be maintained even 

for relatively large mean photon numbers by using a 

sufficiently large amount of squeezing.    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  (Color online) Optimal squeezing parameter r  and the 

corresponding maximum visibility as a function of the gain for several 

values of 
0| | .  

These results are summarized in the contour plots 

of Figs. 10 and 11.  Fig. 10 shows the visibility as a function 

of r  and the gain for two values of the amplitude 0| |  (10 

and 100), while Fig 11 shows the visibility as a function of 

r  and 0| |  for two values of the gain (1.01 and 1.1).  It can 

be seen that relatively large visibilities can be obtained using 

squeezing and anti-squeezing as long as the product 
2

0| | ( 1)g − is less than unity, which corresponds to less 

than one idler photon on average.  The relevance of this 

parameter can be seen in Fig. (10), where 0| |  is increased 

by a factor of 10 while 2( 1)g −  is decreased by 

approximately a factor of 10 in going between Figs. (10a) 

and (10b), so that the product 2

0| | ( 1)g −  is essentially the 

same in the two parts of the figure.  As a result, the visibility 

contours have roughly the same magnitude in Fig. (10b) as 

in Fig. (10a), although shifted to larger amounts of 

squeezing.  Without any squeezing, the visibility would be 

seriously degraded when 2 2

0| | ( 1)g −  is on the order of 

unity instead.  Thus squeezing and anti-squeezing can 

substantially reduce the amount of decoherence, but this 

approach is still limited to relatively small gains or initial 

amplitudes. 

 

 

 

V.  SUMMARY AND CONCLUSIONS 

 

In summary, we have shown that squeezing, 

amplification, and anti-squeezing can be used to reduce the 

decoherence of Schrodinger cat states during their 

transmission through a lossy medium, such as an optical 

fiber.  Earlier studies [20-21] did not include the effects of 

amplification, which is required to restore the signal to its 

original amplitude.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. (Color online)  Plots of the visibility for several different values of 

the squeezing parameter r .  (a)  The visibility plotted as a function of the 

gain with 
0| |  fixed at a value of 10.  (b)  The visibility as a function of 

0| |  with the gain fixed at a value of 1.1.   

The visibility of quantum interference effects 

without any squeezing and anti-squeezing can be 
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exponentially small due to which-path information left in the 

environment by loss or amplification.  Squeezing the state 

before transmission through a lossy channel can reduce the 

overall intensity of the signal and thus the decoherence due 

to which-path information left in the environment.   

This approach has the advantage that it uses 

deterministic devices and does not reduce the data 

transmission rate as a result.  On the other hand, the 

decoherence is not completely eliminated for any value of r, 

whereas the probabilistic approach of Ref. [23] can reduce 

the decoherence to an arbitrarily small amount at the expense 

of an exponentially small data transmission rate.  In addition, 

this approach is only useful for non-Gaussian states with an 

asymmetrical Wigner distribution, such as a Schrodinger cat, 

whereas the approach of Ref. [23] can be applied to any state.  

Thus, there are several trade-offs to be considered in the use 

of these two approaches.   

Macroscopic states and their decoherence 

mechanisms are a topic of fundamental interest, and our 

results provide further insight into this important topic.  

These results may also have practical applications in 

quantum sensor systems, for example, where the use of 

macroscopic superposition states may be beneficial in the 

presence of noise, and very high fidelities may not be 

required as is the case for quantum computing applications. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  (Color online) Contour plots of the visibility as a function of the 

amplitude gain and the squeezing parameter .r   (a) 
0| | = 10.  (b)  

0| | = 

100. 

  
 

 
Fig. 11.  (Color online) Contour plots of the visibility as a function of 

0| |  and the squeezing parameter r .  (a) Gain 1.01.g =   (b)  Gain 

1.1.g =   
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Appendix A: Q-function and visibility 

 

 In this appendix, we will calculate the effects of the 

squeezing, loss, amplification, and anti-squeezing operations 

outlined in Fig. 3 of the main text.  The corresponding 

unitary operators will be used to calculate the overall Q-

function and the visibility of the Schrodinger-cat 

interferometer.  

From Fig. 3 we see that the output state that arrives 

at the Homodyne detector is given by 

 

             
†

out 2 1 0
ˆˆ ˆ ˆ ˆ| | | 0 | ,0ˆ

a b s e iT U U STS  =                (A.1) 

 

where mode s  represents the signal mode which 

corresponds to annihilation operator ˆ,a  e  represents the 

ancillary mode of the loss operation (the environment) which 

corresponds to annihilation operator b̂ , and i  represents the 

idler mode of the parametric amplifier which corresponds to 

annihilation operator ĉ . The form of the various operators is 

described below.  This expression differs from Eq. (7) in the 

text because loss and amplification have both been included 

here.   

 The effect of the first single-photon interferometer 

acting on the input coherent state is given by [5] 

 

                     ( )
† †ˆ ˆ ˆ ˆ

1

1ˆ ,
2

i a a i i a aT e e e  −= +                        (A.2) 

 

which describes the creation of the Schrodinger cat state. 

 The squeezing operator Ŝ  is given by [18, 19, 37] 

 

            

2 2
† 2 2

†

1 1
ˆ ˆ

ˆ ˆ2 21ˆ ,

i ie a e a
a aS e e

  

 


−− −
−

−=               (A.3) 

 

where   is the hyperbolic cosine of the squeezing parameter 

r . This is equivalent to Eq. (4) in the text but it has been 

included here as well for completeness.  The operator in Eq. 

(A.3) describes the initial single-mode squeezing while its 

inverse describes the anti-squeezing operation.  

 Loss can be modeled by a beam-splitter as is 

commonly done.  The effects of the beam splitter correspond 

to a unitary operator ˆ
bU  given by [37] 

 

                             
† †ˆ ˆˆ ˆ( )ˆ ,i a b ab

bU e  +=                                (A.4) 

 

where the transmission amplitude t  is given by cost =  

[37]. 

 The effects of the parametric amplifier are 

described by the unitary operator ˆ
aU  given by [32, 37-38] 

 

         
2 † † 2† †ˆ ˆ ˆ1 / ˆ ˆ ˆ(ˆ ˆ 1 /)1ˆ ,

g a g g ac ga a c
a

c cU e g e
g

− − −− +=             (A.5) 

 

where g is the gain of the amplifier.  

 Finally, the second single photon interferometer is 

described by the operator [5] 

 

                        ( )
† †ˆ ˆ

2
ˆ ˆ1ˆ ,

2

i a a i a aT e e −= +                         (A.6) 

 

which has the same form as 1T̂ . 

We will now calculate the Q-function 

corresponding to the final state of Eq. (A.1). The three mode 

Q-function can be defined as [34-36] 

 

  
3

1
ˆ( , , ) | | | | | | .i e s s e iQ          


=              (A.7) 

 

Here   and   are the complex amplitudes of arbitrary 

coherent states in the signal and idler, respectively, while   

is the amplitude of an arbitrary coherent state in the other 

output of the beam splitter.  From equation (A.1) the final 

density operator is given by 

 

                
†

†
out 2 1 0

† † †
0 1

†
2

ˆ ˆˆ ˆ ˆ ˆˆ | | 0 | 0

ˆ ˆˆ ˆ ˆ ˆ0 | 0 .| |

a b s e i

i e s ab

T S U U ST

T S U U ST

 



=   

  
               (A.8) 

 

 Since we post-select on homodyne detector outputs 

that correspond to a net phase shift of zero as described in 

the main text, it will be convenient to define the variable f  

by 

 

† †ˆ ˆ ˆ ˆ†
0

†
0

ˆ ˆˆ ˆ| | | | | 0 | 0
4

ˆ ˆˆ ˆ| | | | | 0 | 0
4

.

i a a i a a
i e s a b s e i

i i
i e s a b s e i

f

e S U U Se

e S U U S e



 

 


   


   

−     

     =

   

(A.9) 

 

Here   is to be replaced with either   or −  as appropriate 

and  

 

                      
for

.
1 for

ie 



 


 

 =
 

= −
                        (A.10) 

 

We can then define a general term in the post-selected Q-

function as  
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                          *
, 3

1
( , , ) ,Q f f     


=                    (A.11) 

 

which allows the full post-selected Q-function to be written 

as 

 

        
, ,

, ,

( , , ) ( , , ) ( , , )

( , , ) ( , , ).

Q Q Q

Q Q

   

   

        

     

− −

− −

= +

+ +
       (A.12) 

 

 The value of f  can be calculated using the 

completeness property of the coherent states: 

 

                             
21 ˆ| | 1.d  


 =                          (A.13) 

 

This allows Eq. (A.9) to be rewritten as 

 

  

2 2 2 2 2 2 2 2 2
1

†
1 2 39

3 2 1 4 5 6

6 5 4 7

2 3 4 5 6 7

8 9

9 8 7

8 9

0

ˆ| | | | | |
4

ˆ

ˆ

ˆ 0 0

.

i
i e s s e i

ae s si e i

bsi e s e i

e ii e s s

i

f e S

U

e

d d d d d d d d d

U

S











     



     

     

  

       



=      











 (A.14) 

 

The factor involving 
†Ŝ  in Eq. (A.14) can be reduced to 

  

2 2 2 2 2 2
1 2 3

2 ( 2 ) *2 2 2* * *
11 2 3

(| | | | | | | | | | | | )/2

1 /2

†

2

1 2 3

1 //

ˆ| | |

.

| |

1

|

i ii

i
i e s s e

e ee

i

e

e e

e S

  

     

          





     



− −−

− + + + + +

− − −+ +



=



    

    (A.15) 

 

Here we have used the adjoint of Eq. (A.3) and the fact that 

 

                    
2 2 *(| | | | 2 )/2 .| e      − + − =                       (A.16) 

 

 Next, Eqs. (A.5) and (A.16) give 

 

           
2 2 2 2 2 2

1 2 3 4 5 6

2 * * 2* * *
1 3 4 61 4 2 5 3 6

(| | | | | | | | |

3 2 1 4

| | | )/2

1 / 1

6

// /

5
ˆ| | | | |

1

.

|i e s a s e i

g g g gg g

e

e

U

g

e

     

        

     

− + + + + +

− − + −+ +

     

=



      (A.17) 

 

 The factor involving the operator ˆ
bU  in Eq. (A.14)  

can be factored into a form similar to Eqs. (A.3) and (A.5) 

[37], but it is easier to use the fact that ˆ | 0 0bU  =  and [18, 

19, 37] 

 

                         

† † 2 †

† † 2 †

†

†

ˆ ˆˆ

ˆˆ

ˆˆ 1  

ˆ ˆ ˆ1 .

b

b

b

b

U a U

U b U

ta i t b

tb i t a

= + −

= + −

                (A.18) 

 

Using Eqs. (A.16) and (A.18) we have  

 

              
2 2 2 2 2 2

4 5 6 7 8 9

* * * 2 * 2 *
4 7 5 8 6 9 4 8 5 7

(| | | | | | | | | | | |

6 5 4 7 8 9

)/2

1 1

ˆ| | | | | |

.

i e s a s e

t t i t i

i

t

e

e

U

e

     

         

     

− + + + + +

+ + − + −

   



 

=            (A.19) 

 

 The final factor in Eq. (A.14) can be evaluated by 

using Eqs. (A.3) and (A.16) again, which gives 

 

             
2 2 2 2 *

7 8 9 0 7 0

2 *2 2 ( 2 ) 2
7 0

(| | | | | | |

9 8 7

| )/2 /

1 /2 2

0

1 /

ˆ| | | | | 0 |

1

.

0

i

i i

i
i e s s e

e

i

e

e

S e

e e

e



  

      

     

   



− −

− + + +

− − + −





    

=              (A.20) 

 

Combining Eqs. (A.14), (A.15), (A.17), (A.19) and (A.20) 

gives the factor f  in the form 

 

2 ( 2 ) *2 2 ( 2 ) 2
0

2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9

* * * * * * * * *
1 2 3 1 4 2 5 3

2 2 2 2
0

6 4 7 5 8 6 9

1 /2 1 /2

(| | | | | | | |

(| | | | | | | | )

| | | | | | | | | | )

/

2

9

/ /

/

4

i i

i

e e

e g g t t

e

e

f e
g

e

e

   



     

        

      

 

          

 






 

− − −

−

− + −

− + + + + + + + +

+ + + + + + +

− +

+

+ +
=









* 2 2 2 * * 2
7 0 1 1 3 4 6

2 * 2 * 2 *2
4 8 5 7 7

/ 1 /2 1 / 1 /

1 1 1 /2

2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 .

i i

i

e e g g g g

i t i t e
e

d d d d d d d d d

 



         

      

        

−− − − − + −

− + − − −





 

(A.21) 

 

 The higher-dimensional Gaussian integral in Eq. 

(A.21) looks complicated but it can be evaluated using an 

appropriate change of variables.  As described in more detail 

in an earlier online version of this paper [39], the result is 

that 
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2 2 2 ( 2 ) 2
0

2 2 2 ( 2 ) *2

2 2 2

2 2 2 2
0

2 2 2 2

2 2 2 2

2 2 2 2

2

*2

2 2 * 2 22

(| | | | | | | | )/2

2 2 2 2

( 1)]

( 1)]

( 1)

1( ) /2[

1( ) /2[

(1 ) 1 /2[

1 (( 1) /2[

]

4 ( 1)

i

i

i

i

g t e

g t e

t

g

g e

g e

t

g t

g t

g t

e
f

g t

e

e

e

e

 

 





   




   

  

 



 

  

   



 

− −

−

−

− −

− −

− −

−

− + + +

− −

−

−

−−

−

−

=
− −








2

2 2 2 2 2 * 2 2 2 2
0
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Inserting Eq. (A.22) into (A.11) gives the general term of the 

Q-function as 

 

    

2 2 2 2
0

2 22 2 2 ( 2 ) 2 ( 2 ) *2
0 0

2 2 2 ( 2 ) 2 ( 2 ) *2

2 2

2 2

2 2 2

2 2

2

1( )[ ]/2[

1

(| | | | | | | | )*

, 3 2 2 2 2

( 1)]

(( )[ ]/2[

(1 )

1

1[

)]

( , , )
16 [ ( 1)]

i i

i i

i i

g t e e

g t e e

t e e

g

g

g

t

t

e

e

g

e

Q
t

e

   

   

 

   
 

 

   

 









 

 
  

  

− − −

− − −

−

− − +

− − +

− − +

− + + +

− −

− −

=
− −






2 2 2 2

2 2 2 2

2 2 2 2

2 * * 2 2 2 2
0 0

2 2 ( ) * ( ) * 2 2

*2

2 2 2 *2

* *
0 0

2

2 2
0 0

]/2[

1( 1)[ ]/2[

[ ]/[

1

( 1)]

( 1)]

( 1)]

[ ]/ ( 1)]

1 1[ ]/ ( 1)]

[

[

1

i

i

i i

i

i

g t

g t

g t

i g e e g t

t g e e g

g e e

tg

t

it

t

e

e

e

e

e

 

  







 

 

 

      

     



   

   



−

− −

−

−

− −

− −

− −

+ −

− − +

+

− −

− − + −

−

−











( ) ( ) 2 2 2 2

2 * * 2 2 2 2

2 2 *

2 2 * *

2 * 2 2 2 2

( 11[ ] )]

1[ ]/ ( 1)]

1( 1)[ ]/ ( 1)]

/[

[

1 [
,

i i

i i

e e g t

g g e e g t

it g gt t

t g

e

e

   

 

   

     

    

 



− − −

−

− −

− − + − −

− − − − −

− −

−





    (A.23) 

 

with the full Q-function being given by Eq. (A.12).  

 We can now calculate the visibility V  of the 

quantum interference, which is defined as 

max min max min( ) / ( )V P P P P − + .  Here   maxP  and minP  are the 

maximum and minimum probabilities obtained by varying 

the phase   of the phase shifter in the first single-photon 

interferometer. In order to do this, we use the fact that the 

total probability P  of a post-selected event is given by [5, 

34-36] 

 

            2 2 2 ( , , ).P d d d Q     =                          (A.24) 

 

By inspection of equations (A.12) and (A.23) we see that the 

visibility is given by  
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             (A.25) 

 

 Unlike Eq. (A.21), the integrals in Eq. (A.24) are 

relatively complicated. The same change of variables can 

still be used if we write the complex parameters in terms of 

their real and imaginary parts: 

 

                                   ,r ii  = +                               (A.26) 

 

and 

 

                                 
2 ,r id d d  =                               (A.27) 

 

for the signal mode. Similar expressions exist for   and   

of the environment and idler modes, respectively. This 

allows the integral in Eq. (A.24) to be evaluated analytically, 

although the resulting equations are very lengthy and not 

included here.   Examples of the resulting visibility are 

plotted in Section IV of the text. 

 

Appendix B: Idler photons created in the amplification 

of a squeezed coherent state 

 

As noted in the main text, the reduction in the decoherence 

from the squeezing and anti-squeezing operations is due to a 

decrease in the number of photons left in the environment, 

which reduces the amount of which-path information.  We 

will illustrate this by calculating the number of photons 

produced during the amplification process, as shown in Fig. 

6 of the main text.  

Consider a general input state expanded in a basis 

of number states: 

 

                             in

0

| 0 .| |n s i

n

c n


=

 =                        (B.1) 

 

Here the nc  are the probability amplitudes for number state 

| n  and the idler is assumed to initially be in its vacuum 

state. Applying the evolution operator for a parametric 

amplifier ˆ ,U  given by Eq. (5) of the main text or Eq. (A.5), 

to a number state can be shown to give 
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Thus, we have 
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 We can calculate the two-mode Q-function using 

[34-36]  
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Combining Eqs. (B.3) and (B.4), using Eq. (A.16) and 

performing the sum over j we get the Q-function in the form 
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We now trace over the signal mode, which is 

equivalent to integrating over the real and imaginary parts of 
  in the Q-function. Performing the integral gives the 

reduced Q-function ( )Q   in the form  
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(B.6) 

 

where 
a
nL  are the associated Laguerre polynomials. 

 Our goal is to calculate the number of photons left 

in the idler mode. The expectation value ˆ
in   is given by  

     
† † 2 2ˆ ˆ ˆ ˆˆ 1 ( )(| | 1) ,in b b bb Q d    =   =  −  = −        (B.7) 

 

where the integral is to be performed over all values of the 

real and imaginary parts of  .  Here we have made use of 

the fact that the Q-function is an antinormally ordered 

quasiprobability distribution [34-36].  

 Inserting (B.6) into (B.7) and evaluating the 

integral gives the simple expression 

 

                                      

 (B.8) 

Note that any terms with m n  do not contribute to the 

integral. Equation (B.8) gives the average number of idler 

photons generated by amplification of the general state given 

in equation (B.1). 

 We are interested in the number of idler photons 

created by amplifying a squeezed coherent state given by 
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where Ŝ  is the single-mode squeeze operator given by Eqs. 

(3) or (4) in the main text or Eq. (B.3). It can be shown that 
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Inserting (B.10) into (B.9), using the fact that in| ,nc n =  

and performing the sum over j and k gives 
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    (B.11) 

 

where nH  are the Hermite polynomials.  

To find the number of idler photons generated by 

the amplification of a squeezed coherent state, we insert Eq. 

(B.11) into (B.8) and perform the sum over n.  The result is 

that  
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Eq. (B.12) is plotted in Fig. 6 in the text for several sets of 

parameters.  It can be seen that squeezing an input coherent 

state with an appropriate value of   and the squeezing 

parameter can reduce the number of idler photons created 

during amplification.  The inclusion of loss as well as 

amplification gives a similar result. 

 


