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We examine theoretically how dipole-dipole interactions arising from multiple photon scattering
lead to a modified distribution of ground state populations in a driven, ordered one-dimensional array
of multilevel atoms. Specifically, we devise a level configuration in which a ground-state population
accumulated solely due to dipole-dipole interactions can be up to 20% in regimes accessible to
current experiments with neutral atom arrays. For much larger systems, the steady state can consist
of an equal distribution of population across the ground state manifold. Our results illustrate how
dipole-dipole interactions can be accentuated through interference, and regulated by the geometry of
ordered atom arrays. More generally, control techniques for multilevel atoms that can be degraded
by multiple scattering, such as optical pumping, will benefit from an improved understanding and
control of dipole-dipole interactions available in ordered arrays.

I. INTRODUCTION

Atomic ensembles are a prevailing platform for quan-
tum light-matter interfaces, with applications in quan-
tum information processing, metrology, and nonlin-
ear optics [1]. Conventionally, the interaction of an
atomic ensemble with light is modeled by the semi-
phenomenological Maxwell-Bloch equations [2, 3], where
the propagation of an electromagnetic field mode of in-
terest is described by a quasi-one-dimensional (1D) wave
equation, while the coupling of the atoms to all other
modes is assumed to yield independent spontaneous emis-
sion. On the other hand, interference and multiple scat-
tering in dense three-dimensional (3D) ensembles can
produce highly fundamental yet complex phenomena, of
which a complete theoretical understanding remains to
be developed. Examples include the linear optical re-
sponse and refractive index of dense ensembles [4–8], An-
derson localization [9, 10], radiation trapping [11–13], su-
perradiance [14–16] and subradiance [17].

Separately, experimental advances now allow highly or-
dered arrays of N ∼ 100 neutral atoms to be assembled
in 1D and 2D, providing a novel platform for controlled
investigation of fundamental atom-light interactions in
microscopic, atom-by-atom detail [18–23]. The inherent
periodicity in such systems can produce strong interfer-
ence in the emitted fields, and highly non-trivial optical
phenomena can occur, including subradiance in the form
of guided modes in 1D chains [24, 25], strong reflection

of incident fields from 2D arrays [26, 27], and topological
edge states [28, 29].
While these previous analyses considered atoms with

only a single ground state, in this Letter we show how
dipole-dipole interactions (DDIs) can manifest them-
selves in the steady-state population distribution of a
driven 1D array of multilevel atoms. Specifically, we con-
sider atoms with a manifold of ground and excited states
of total angular momenta Jg = 1/2 and Je = 3/2 respec-
tively, whose Zeeman sublevels are labeled by the mag-
netic quantum numbers mg and me. When a single such
atom is driven with a circularly polarized field, the atomic
population is pumped entirely into the two-level subspace
spanned by the ‘stretched’ states with mg = +1/2 and
me = +3/2 (the states of maximum angular momentum
in each manifold) – see Fig. 1(a). In particular, the
steady-state population of the mg = −1/2 sublevel is
identically zero.
While this independent-atom description may apply to

dilute or spatially unordered atomic ensembles, in an or-
dered 1D array multiple photon scattering can strongly
modify the distribution of atomic populations, even for
lattice spacings d exceeding a resonant wavelength λ.
Specifically, we show that in arrays containing a modest
number of atoms N , and where d = mλ for integer m,
the steady-state population of the mg = −1/2 sublevel is
∼ (λ/d)2 log2 N , and can be of order 10 - 20% under con-
ditions accessible to current experiments. Meanwhile, as
N →∞ the ratio of populations in the two ground states
approaches unity.
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Our results are appealing because they illustrate how
quantum optical phenomena arising from strong DDIs
can be first explored in neutral atom array experiments.
Specifically, our scheme does not require sub-wavelength
lattice spacings, as would be needed to observe subradi-
ance in 1D arrays (d < λ/2, [24, 25]) or full reflection
from 2D arrays (d < λ, [26, 27, 30]). Moreover, our pro-
posal explicitly accounts for – and relies on – multilevel
ground-state structure, a situation relevant to existing
experimental setups.

Furthermore, by illuminating the relationship between
multiple scattering and ground state populations, our re-
sults provide insight into the efficiency of techniques such
as optical pumping [31, 32] and laser cooling [33] in dense
ensembles [34, 35] and ordered arrays. Optical pumping
– widely used for initializing atoms in well-defined ground
sublevels – is essential for protocols in quantum compu-
tation, information processing, and precision measure-
ment, where fiducial state preparation is required [36–
38]. Our techniques also provide a way to scale between
small (N ∼ 2) systems, where the effect of multiple scat-
tering on populations can be studied exactly [39, 40], to
large systems [41], where it is qualitatively known that
such effects can be relevant, but have been historically
difficult to quantitatively model.

II. MODELLING OF SYSTEM

We consider a 1D chain of multilevel atoms extended
along the x direction, perpendicular to the atomic quan-
tization axis (z axis). The ground and excited manifolds
support two (mg = ±1/2) and four (me = ±1/2,±3/2)
Zeeman sublevels [Fig. 1(a)]. To lighten the notation,
we denote these sublevels in order as g = {1, 2} and
e = {3, 4, 5, 6} [Fig. 1(b)]. The atoms are driven by a
σ+-polarized incident field propagating along the z axis.
While we focus on this specific configuration, we empha-
size that our theoretical model may be applied to any
arrangement of atoms, in any dimension, with any in-
ternal structure. However, the system considered here is
elegant in its simplicity, while strong collective effects are
expected to be prominent under conditions accessible to
current experiments, as we now explain qualitatively.

As noted above, absent multiple scattering the steady-
state population for our configuration is entirely within
the stretched state subspace. In particular, the popu-
lation of state |1〉 is identically zero. However, photon
reabsorption can lead to population being acquired in all
magnetic sublevels. To appreciate this, first note that
the input field, whose polarization vector is ε̂L = σ̂+ =
−(x̂+ iŷ)/

√
2, induces an atomic dipole with both x and

y components. Along the array axis, the x component
produces no radiated field, and the far field is purely
y-polarized. Since this constitutes a superposition of cir-
cularly polarized components σ̂± = ∓(x̂ ± iŷ)/

√
2, the

atoms are also driven by a field component that instead
pumps to state |1〉, giving a distribution of population
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FIG. 1. (a) An atom with an initial distribution of ground
state populations is driven by a circularly polarized incident
field (blue arrows). Population in the mg = −1/2 state is
raised to the me = +1/2 state, following which it returns
to the mg = −1/2 state, or decays to the mg = +1/2 state
(dashed yellow arrows). In the long-time limit, all popula-
tion is pumped into the subspace containing the mg = +1/2
and me = +3/2 ‘stretched’ states (solid circles), while the
mg = −1/2 state is unoccupied (empty circle). (b) Schematic
illustration of our system. An atomic chain is oriented along
the x axis, with lattice constant d. The atomic internal struc-
ture is shown in the box, with states labeled |1〉 through |6〉.
Colored arrows (numbers) depict the electric dipole-allowed
transitions (corresponding Clebsch-Gordan coefficients). The
atoms are driven with a σ+-polarized field (electric field rotat-
ing clockwise with respect to the positive z axis) of wavevector
~k = kẑ propagating in the z direction, which coincides with
the atomic quantization axis.

across all levels. Intuitively, this effect should be en-
hanced where the scattered fields interfere constructively,
such as when the lattice spacing is an integer multiple of
the resonant wavelength λ.
We emphasize that our driving configuration and sys-

tem geometry are chosen to accentuate the effect of DDIs.
Specifically, the atomic dipoles will remain active under
continuous application of the driving field. In contrast, in
a typical optical pumping configuration the atoms would
be driven into a dark ground state with respect to the in-
coming field, and the DDIs would be disengaged. Mean-
while, if the array were instead extended along the z axis,
the polarization of the scattered fields seen by the atoms
would be identical to the incident field polarization, and
no population would be pumped into state |1〉.
The system dynamics may be described by a master

equation for the atomic density matrix ρ, given by ρ̇ =
−i[H, ρ] + L(ρ), derived by formally integrating out the
photonic modes [42–44]. The Hamiltonian H = HA +
Hint, where HA describes free atomic evolution and the
external driving (~ = 1):
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HA = −
∑
j

∑
g

∑
e

(
∆σee + Ωegσjeg + Ω∗egσjge

)
. (1)

Here, ∆ = ωL − ω is the detuning of the incident field
(of frequency ωL) from the resonant frequency ω of the
ground to excited manifold transition. The atomic oper-
ator for the jth atom – at position rj – is σjµν = |µj〉〈νj |,
for energy eigenstates |µ〉,|ν〉. Ωeg denotes the incident
field Rabi frequency on the transition |g〉 ↔ |e〉, and
is given by Ωeg = Cge (ε̂−(eg) · ε̂L)dGEE0. Here, E0
is the incident field amplitude (equal for all atoms in
our calculations), and dGE is the reduced dipole ma-
trix element of the ground-excited manifold transition.
Cge = 〈Jg,mg|Je,me; 1,mg − me〉 denotes the Clebsch-
Gordan coefficient of the transition connecting states |g〉
and |e〉 [Fig. 1(b)], and the spherical basis vectors are
written ε̂(eg), where the subscript (eg) denotes me−mg,
i.e. the difference in the corresponding magnetic quan-
tum numbers. The circularly polarized components and
spherical basis vectors are related by ε̂±1 = σ̂±, and
ε̂0 = ẑ.
The interaction Hamiltonian describes the photon-

mediated exchange of excitations between atoms:

Hint = −3πΓ
k

∑
j,l

∑
g,g′

∑
e,e′

(
ε̂∗(e′g′) · ReGjl · ε̂(eg)

)
(2)

× Cg
′

e′ C
g
e σ

j
e′g′σ

l
ge.

Here, Γ = (dGEC2
6 )2k3/3π~ε0 denotes the spontaneous

decay rate of the transition |6〉 → |2〉. The electromag-
netic Green tensor Gjl = G(rj , rl, ω) physically describes
the field at position rj due to a classical oscillating dipole
of frequency ω at position rl, and is given by [45]

Gαβ(rj , rl, ω) = 1
4πk2

(
k2δαβ + ∂α∂β

) eikrjl

rjl
, (3)

where α, β = {x, y, z}, k = ω/c, and rjl = |rj − rl|. The
dissipative term in the master equation, which encodes
collective spontaneous emission, is

L(ρ) = −3πΓ
k

∑
j,l

∑
g,g′

∑
e,e′

(
ε̂∗(e′g′) · ImGjl · ε̂(eg)

)
(4)

× Cg
′

e′ C
g
e

{
σje′g′σ

l
geρ+ ρσje′g′σ

l
ge − 2σlgeρσ

j
e′g′

}
.

To demonstrate the presence of strong DDIs, we com-
pute the steady-state population distribution in the
ground manifold, employing two calculational methods.
The first is a fully quantum approach, yielding the
steady-state density matrix ρss. Since the Hilbert space
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FIG. 2. (a) Mean steady-state population p1 vs. interatomic
separation d, computed using the MF method, for chains of
different atom number N (see legend). (b) p1 vs. N for
d = 2λ and d = λ, computed using the QMCW method with
the Hilbert space truncated at a single excitation (blue circles
d = 2λ; black circles d = λ), truncated at two excitations
(yellow crosses d = 2λ; magenta crosses d = λ), and the
MF method (red circles d = 2λ; green circles d = λ). Laser
parameters: Ω/Γ = 0.01, ∆/Γ = 0.

dimension grows with atom number N as 6N , it is in-
feasible to compute directly with density matrices, and
we instead use the quantum Monte Carlo wavefunction
(QMCW) method, computing the evolution of the atomic
wavevector |ψ〉 in individual quantum trajectories, and
subsequently averaging over many trajectories to obtain
an approximation of ρss (see Appendix A).
We will be interested in the case of weak driving: for all

results presented we take the Rabi frequency on the tran-
sition between states |2〉 and |6〉 to be Ω26 ≡ Ω = 0.01Γ.
The small population in the excited manifold then allows
truncation of the Hilbert space at one or two total exci-
tations. Even within this truncated regime, however, the
restricted subspace grows exponentially in the number of
atoms, since the ground manifold alone has dimension
2N .
To circumvent limitations on N arising from the large

Hilbert space, the second method we employ is a mean
field (MF) approach. The time evolution of the expec-
tation value of any atomic observable 〈σiµν〉 in general
depends on two-atom correlation functions of the form
〈σiµ′ν′σ

j
µ′′ν′′〉. We assume such correlation functions may

be factorized into products of single-atom expectation
values, 〈σiµ′ν′σ

j
µ′′ν′′〉 ≈ 〈σiµ′ν′〉〈σjµ′′ν′′〉. The resulting

equations of motion may be derived from an effective
Hamiltonian H = HA +HMF , where
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HMF = −
∑
j

∑
g,e

(
Rj
egσ

j
eg + Rj ∗

eg σ
j
ge

)
. (5)

Here we define an effective Rabi frequency on the |e〉 ↔
|g〉 transition of the jth atom, given by

Rj
eg = Cge ε̂∗(eg) ·

3πΓ
k

∑
l 6=j
g′,e′

Cg
′

e′ G
jl · ε̂(e′g′) 〈σlg′e′〉

 . (6)
Within the MF approach, all other atoms l 6= j are self-

consistently treated as classical coherent external driving
sources for the jth atom. Single atom emission processes
are described by the Lindblad operator

Lind(ρ) = −Γ
2
∑
j,g,e

(Cge )2 (σjeeρ+ ρσjee − 2σjgeρσjeg
)
. (7)

III. RESULTS AND INTERPRETATION

We first apply the MF approach to investigate the
mean steady-state population p1 of ground state |1〉, av-
eraged over all N atoms, as a function of the lattice spac-
ing d. For an incident field resonant with the transition
from the ground to excited manifold (∆ = 0), Fig. 2(a)
shows p1 vs. d for chains containing N = 10, N = 50
and N = 200 atoms. As anticipated above, at integer
multiples of the resonant wavelength λ, where the scat-
tered fields interfere constructively, sharp maxima are
observed in p1. Specifically, when N = 200 and d = 2λ,
p1 accounts for ≈ 20% of the total atomic population,
clearly signalling a breakdown of pumping in the absence
of DDIs.

The validity of the MF approximation is justified by
comparison with the results of the QMCW approach.
Figure 2(b) shows the predictions of both methods for
p1 vs. N , for spacings of 2λ and λ. The QMCW calcula-
tions, with Hilbert spaces truncated to both one and two
excitations, agree very well with mean field to the largest
atom numbers N that can be feasibly calculated. As dis-
cussed in Appendix B, further analysis shows that the
MF approximation works well down to d ∼ λ/2. This is
consistent with previous studies of 1D arrays, which have
shown that long-lived (subradiant) collective excitations
are supported when d < λ/2, resulting from strong atom-
atom interactions [25]. Intuitively, one would expect the
MF approximation to break down in this regime, due to
the presence of quantum correlations.

Having verified the validity of the MF model, we now
study how p1 scales with N , when the spacing d is
an integer multiple of λ such that constructive inter-
ference is prominent. Figure 3 shows how p1 grows as
(λ/d)2 log2 N . To explain this, we first note that for a
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FIG. 3. Scaling of p1 vs. (log10 N)2, for up to N = 100 atoms,
and for lattice spacings d/λ = 2, 3, ..., 8, from top (blue) to
bottom (magenta). The x-axis tick marks indicate the cases
N = {10, 25, 50, 100}, as shown in the upper part of the figure.
Laser parameters: Ω/Γ = 0.01, ∆/Γ = 0.

single atom driven with both σ+ and σ− external fields,
of respective amplitudes E+ and E−, the steady-state ra-
tio of the ground state populations is p1/p2 = |E−/E+|2.
For our problem we then expect that p1 = |Esc

− /(Einc
+ +

Esc
+ )|2p2, where the superscripts inc and sc denote inci-

dent and scattered fields. When the scattering is weak,
we further expect that p1 ≈ |Esc

− /E
inc
+ |2, since p2 ≈

1. Moreover, the atoms radiate predominantly on the
|2〉 − |6〉 transition, which is driven by the incident field.
As explained above, this dipole produces a y-polarized
far field along the array axis, with amplitude ∼ eikr/r a
distance r away [Eq. (3)]. When kr is an integer multiple
of 2π (i.e. when d is an integer multiple of λ), these fields
add constructively. In particular, the scattered field ex-
perienced by a typical atom – originating from all other
atoms – is Esc− ∼ (λ/d)

∑N
j=1(1/j) ∼ (λ/d) logN , which

explains the observed scaling behavior. This simple ar-
gument breaks down when N is sufficiently large that the
scattered and incident field amplitudes are comparable,
and depletion of population from state |2〉 cannot be ne-
glected. For spacings d different from an integer multiple
of λ, p1 is independent of N for N � 1, as discussed in
Appendix B.
In sufficiently large arrays with d = mλ for integer

m, the scattered field amplitude at the atomic positions
can exceed the incident field amplitude. This does not
violate energy conservation, since the solid angle within
which constructive interference occurs becomes increas-
ingly small with larger N , ensuring the emitted inten-
sity does not exceed the input intensity. This is illus-
trated in Figs. 4(b)-(d), which show the emitted field
intensity profile in the far-field region for systems with
N = (50, 100, 200), normalized to the maximum inten-
sity of the case N = 200. Ultimately, therefore, one ex-
pects that asN →∞, the steady-state population should
become equally distributed across the ground states |1〉
and |2〉, i.e. p1 = p2. While formally true, this satu-
ration behavior occurs only for unrealistically large sys-
tems, where N ∼ 109 – see Appendix B. Finally, we



5

φ/π

θ/π

−0.2 0 0.2
−0.2

−0.1

0

0.1

0.2

1

2

3

x 10−3

φ/π

θ/π

−0.2 0 0.2
−0.2

−0.1

0

0.1

0.2

0.02

0.04

0.06

φ/π

θ/π

−0.2 0 0.2
−0.2

−0.1

0

0.1

0.2

0.2

0.4

0.6

0.8

1

(a) (b)

(c) (d)

𝑥𝑥

𝑦𝑦
𝑧𝑧

𝒓𝒓𝑃𝑃

…

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝒓𝒓𝑃𝑃

FIG. 4. The total far-field intensity computed at position
rP relative to the atom with the largest x coordinate, as a
function of the angles θ and φ, defined in (a). The intensity
is plotted for (b) N = 10, (c) N = 50, and (d) N = 200,
and has been normalized to the maximum intensity of the
case N = 200. Other parameters: d/λ = 2, Ω/Γ = 0.01, and
∆/Γ = 0.

note that Figs. 4(b)-(d) display a small asymmetry about
the array axis: we attribute this to the relative phases
between the field components radiated by the different
atomic coherences.

IV. DISORDER IN THE ATOMIC POSITIONS

The results presented above assume that the atoms
form a perfectly ordered array, with a fixed distance d be-
tween neighboring atoms. However, within each tweezer
there is an uncertainty in the atomic position. In the
following, we will consider the effect of such random po-
sition disorder on the previous results. Intuitively, one
expects that the role of disorder is to degrade the strong
constructive interference of the emitted fields, resulting
in a reduction of the population p1 acquired in the ground
state |1〉.
We will consider a simple model, where the position

disorder is taken to be solely along the axis of the ar-
ray. Specifically, we define di,i+1 to be the separation
between the ith atom and its nearest neighbor, where
di,i+1 = (2 + ξi,i+1)λ. Here, ξi,i+1 is a small disorder pa-
rameter drawn randomly from the interval (0, ε), where
ε represents the disorder ‘strength’. Given a set of such
ξi,i+1 for all neighbouring pairs of atoms, we compute the
population p1 as explained in the previous section. We
repeat the computation for 500 different sets of ξi,i+1,
each yielding a characteristic value for p1. Finally, we
compute the mean of the resulting 500 values of p1 to
obtain the disorder-averaged population, which we de-
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〈p
1
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ǫ = 0.1
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FIG. 5. Population 〈p1〉 as a function of the number of
atoms N , averaged over atomic positions for different disorder
strengths ε.

note 〈p1〉.
Figure 5 shows 〈p1〉 as a function of the number of

atoms N for different ε. As anticipated, the population
transferred to state |1〉 is reduced, however for realistic
parameters the effect is relatively small, and the quali-
tative scaling of 〈p1〉 with N described in the previous
section is unaffected.

V. CONCLUSION AND OUTLOOK

Our results demonstrate that strong dipole-dipole
interactions due to multiple scattering exhibit unique
signatures in ordered arrays of multilevel atoms, and
moreover in a regime accessible to current experiments,
d > λ. We expect our findings to be of general interest
to experiments where strong collective effects in atomic
ensembles are desirable (e.g. in engineering correlated
atomic states or output fields), and also where they are
deleterious (e.g. in achieving efficient optical pumping).
Additionally, our work could be extended to study
residual light scattering in arrays of trapped ions [37, 46]
and neutral atoms [22], which constitute particularly
promising routes towards high-fidelity quantum simu-
lation, as well as to quantify errors in optical lattice
clocks resulting from DDIs [38]. In the context of atomic
arrays, in light of our results it would be interesting to
revisit phenomena such as perfect reflection from 2D
lattices, and subradiance in 1D chains, to understand
how multilevel structure may affect results previously
obtained for two-level atoms. Finally, we anticipate the
presence of strong quantum correlations in the ground
manifold for sub-wavelength lattice constants, whose
nature warrants further study.
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Appendix A: QUANTUM MONTE CARLO
METHOD

In the main text we noted that the dimension of the
full Hilbert space of our system is 6N , where N is the
number of atoms. The ground state manifold alone has
a dimension that scales exponentially in the number of
atoms, 2N , while the first excited manifold has dimension
4N × 2N−1. Clearly, even within the weak driving limit
we have considered, where we work only in the reduced
subspace of zero and one excitations, the Hilbert space
becomes very large for modest numbers of atoms N . It is
then infeasible to compute using density matrices, and we
instead turn to the quantum Monte Carlo wavefunction
(QMCW) approach.

Conventional implementations of the QMCW algo-
rithm [47–49] are not optimal for our problem, since
for weak driving the time to reach steady state τss is
orders of magnitude larger than the time scale of de-
cay, which is ∼ 1/Γ. However, quantum jumps are also
very infrequent, a feature which we may exploit by tak-
ing large time steps using the time evolution operator
U(∆t) = exp(−iHeff∆t). Here, the effective Hamilto-
nian Heff = H− i

∑
l γlJ

†
l Jl, where H is given by Eq. (1)

of the main text, and Jl denotes a set of operators de-
scribing the possible quantum jumps that can occur, with
corresponding rates γl. In order to obtain the operators
Jl and rates γl, we diagonalize the matrix of coefficients
appearing in the dissipative part of the master equation
(Eq. (4) in the main text), whose entries are formed from
the imaginary part of the Green tensor ε∗q′ ·ImG(rj , rl)·εq
and the appropriate Clebsch-Gordan coefficients.

We first generate a random number x from the uniform
distribution x ∈ (0, 1), as per the conventional QMCW
algorithm. We then evolve the state vector of the system
|ψ(t)〉 from an initial time t to a later time |ψ(t + ∆t)〉
using a combination of matrix exponentials as follows.
First, a large step tl = 1000/Γ is applied, and the loss
of probability ∆p due to the non-Hermitian evolution is
computed, given by ∆p = 1−|〈ψ(t+ tl)|ψ(t+ tl)〉|. If we
find ∆p < x, we simply renormalize the wavefunction,
and then apply the large time step evolution operator
again to this updated wavefunction.

On the contrary, if after the first time step tl we find
∆p > x, we return to the initial state |ψ(t)〉, and evolve
it using a medium time step tm = 25/Γ. We again com-
pute ∆p, and if ∆p < x, we renormalize the resulting
wavefunction and evolve again for a time tm. If ∆p > x,
however, we return to the initial state |ψ(t)〉 and evolve
it by the small time step ts = 1/Γ, until we finally find
the time at which ∆p becomes greater than x. We then

2 3 4 5 6 7 8

0.06

0.08

0.1

0.12

N

p1

 

 

QMCW (1 exc.)

QMCW (2 exc.)

MF

FIG. 6. Steady-state population p1 of state |1〉, averaged over
all atoms for the case d = λ/2, comparing the predictions of
the QMCW method (truncated at a single excitation up to
n = 8, and at two excitations up to n = 6) and the mean field
(MF) method. Laser parameters: Ω/Γ = 0.01, ∆/Γ = 0.

collapse the wavefunction with one of the jump operators
Jl.
In order to determine which jump takes place, we cal-

culate the relative probability pl of each of them occur-
ring,

pl =
〈ψ(τ)|J†l Jl|ψ(τ)〉∑
k〈ψ(τ)|J†kJk|ψ(τ)〉

, (A1)

where τ denotes the time at which the jump happens.
Based on the values of the pl, we may assign each jump
operator a corresponding proportion of the interval (0, 1),
and then generate a second random number y – again
drawn from the uniform distribution (0, 1) – whose value
is then used to determine which jump occurs. We repeat
this procedure until the desired final time tf is reached,
thus obtaining one possible trajectory for the system evo-
lution. We then repeat the method ntraj times, and ob-
tain an approximation to the full density matrix via

ρ(tf ) ≈ 1
ntraj

∑
j

|ψj(tf )〉〈ψj(tf )|, (A2)

where j = 1, ..., ntraj labels the individual trajectories.
For the results presented in the main text, ntraj = 2400.
Note that our choice of ts for the short time step places

a limit on how finely we can resolve the time that a given
quantum jump occurs: specifically, we may only resolve
to within one atomic lifetime. This will introduce a cer-
tain amount of error, because: (a) it is possible that two
jumps occur within one lifetime, or; (b) the relative prob-
abilities of different jumps occurring may vary over a time
scale of the order of 1/Γ, and thus when we determine
which jump to apply, we may make an error and apply
the wrong one.
However, given the weak driving and the small proba-

bility of atoms being excited in our system, the time be-
tween successive jumps should intuitively be very large
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FIG. 7. Scaling of the population p1 vs. N , for N ∈ (1, 100),
and for different interatomic separations d. Laser parameters:
Ω/Γ = 0.01, ∆/Γ = 0.

compared to the time required for the system to re-
equilibrate after a jump; we have confirmed this by nu-
merically by analyzing the time distribution of jumps. It
then follows that errors of type (a) will be very small.
It also follows that when a jump does occur, with high
probability the system state immediately before the jump
is the quasi-steady state, in which case the relative jump
probabilities will be stable. Errors of type (b) will there-
fore also be very small.

Appendix B: MEAN FIELD METHOD -
SUPPLEMENTARY RESULTS

1. Mean field solution for d = λ/2

In Fig. 2(b) of the main text we showed that the mean
field and QMCW methods agree in their predictions for
the population p1 for the cases d = 2λ and d = λ. Fig-
ure 6 shows that the mean field model remains approxi-
mately consistent with the QMCW method even for the
case d = λ/2. As noted in the main text, in 1D subra-
diant effects are only prominent for separations d < λ/2,
where one therefore expects strong quantum correlations
to occur [25]. For d > λ/2, the corresponding absence
of strong correlations implies that a mean field approach
should be a good approximation to the full quantum mas-
ter equation.

2. Atoms separated by non-integer multiples of a
wavelength

Provided that the lattice spacing is not close to an in-
teger multiple of a resonant wavelength λ, from Fig. 2 of
the main text one sees that the population p1 is largely
independent of the number of atoms. This is shown ex-
plicitly in Fig. 7, where p1 is plotted as a function of
atom number N for systems whose lattice constant satis-

fies d = (m+ 1/2)λ for integer m, as well as for a system
with d =

√
2λ where the spacing is an irrational multiple

1.25 1.3 1.35 1.4 1.45 1.5
x 10

9

0.85

0.9

0.95

1

N

p
1
/
p
2

FIG. 8. Ratio p1/p2 as a function of N in the limit where the
system size is very large, and the mean field equations reduce
to a single-atom problem as described in the text. Here, the
lattice spacing is d = 2λ, and the laser parameters are Ω/Γ =
0.01, ∆/Γ = 0.

of the wavelength. In both cases, the population p1 is
seen to converge to a constant value, which may be ex-
plained by arguments similar to those given in the main
text.
In particular, for the case d = (m + 1/2)λ the σ−-

polarized scattered field is proportional to an alternating
harmonic series

Esc− ∼
λ

d

n∑
j=1

(−1)j

j
. (B1)

The sum converges to a value of log 2, thereby imply-
ing that for sufficiently large N – seen from Fig. 7 to be
around N & 20 – the population p1 is determined only by
the lattice constant d, i.e. p1 ∼ (λ/d)2. Similar behavior
is observed for the irrational lattice constant d =

√
2λ: in

this case, the field Esc− is proportional to a random har-
monic series, where the numerator of each term is simply
a random complex number. This series also converges,
so that again p1 ∼ (λ/d)2 for sufficiently large N .

3. Very large N limit

In the regime where the number of atoms becomes very
large, it is possible to simplify the mean field equations
significantly by assuming that all atoms in the system
behave identically. In particular, the mean value of a
given coherence 〈σge〉 is equal for all atoms, and the full
N -body problem is reduced to solving for the variables
of just a single atom; the N dependence in this case then
enters via the sum over Green tensor elements in Eq. (6)
of the main text. Figure 8 shows the steady-state ra-
tio p1/p2 as a function of N in this regime, which tends
to unity for very large arrays. The number of atoms
required to reach this limit, however, is seen to be unre-
alistically large.
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