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We investigate the quantum optical properties of Maxwell’s two-dimensional fish eye lens at the
single-photon and single-atom level. We show that such a system mediates effectively infinite-range
dipole-dipole interactions between atomic qubits, which can be used to entangle multiple pairs
of distant qubits. We find that the rate of the photon exchange between two atoms, which are
detuned from the cavity resonances, is well described by a model, where the photon is focused to
a diffraction-limited area during absorption. We consider the effect of losses on the system and
study the fidelity of the entangling operation via dipole-dipole interaction. We derive our results
analytically using perturbation theory and the Born-Markov approximation and then confirm their
validity by numerical simulations. We also discuss how the two-dimensional Maxwell’s fish eye lens
could be realized experimentally using transformational plasmon optics.

PACS numbers: 42.50.Ex 03.67.Bg 42.50.Dv

I. INTRODUCTION

Maxwell’s two-dimensional fish eye is an optical lens
with remarkable imaging properties. Light emitted from
any point inside the lens refocuses at the antipodal point
on the opposite side of the lens. Since J. C. Maxwell’s
original work that studied ray optics inside the lens [1],
the properties of the fish eye have been analyzed in a
variety contexts, including electromagnetic waves [2, 3],
scalar waves [4], quantum mechanics [5] and supersym-
metry [6].

More recently, it was proposed that Maxwell’s fish eye
lens may have the ability to perfectly refocus electromag-
netic waves emerging from a point source [7–9], thereby
overcoming the diffraction limit [10]. The idea of per-
fect imaging with Maxwell’s fish eye has generated vig-
orous debate [11–38] . It has focused on how the pres-
ence of a point-like detector, placed at the focus point,
changes the image formed and whether perfect imaging
is an artifact of the detector. On the one hand, it has
been argued that the presence of the detector, which can
absorb the incoming radiation, is necessary to form a
perfect image [7–9, 11–14]. On the other hand, concerns
have been raised that the detector itself would contribute
electromagnetic waves to the image formed, giving rise to
the apparent subwavelength focus point [14–17]. Subse-
quently, the discussion about perfect imaging has shifted
to finding a simple and realistic model for such detec-
tors [18–24]. More recently, it was suggested that perfect
imaging may be possible when operating very close to
the resonances of the fish eye lens [35–38].

In this paper, we study the imaging properties of
Maxwell’s two-dimensional (2D) fish eye lens at the
single-photon level using single atoms. In particular, we
assume that both the source and the detector of the pho-
ton are individual atoms and thus no ambiguity arises
regarding their fundamental properties. One atom, ini-
tially in its excited state, emits the photon and the second
atom, initially in its ground state, absorbs the photon,

FIG. 1. (color online) Light rays propagating within the in-
finite 2D fish eye lens trace out perfect circles (dashed red
lines). If a mirror of radius R0 is introduced (black dotted
circle), the trajectories remain closed (solid red lines). All
light rays emerging from an arbitrary point within the lens
(green dot) refocus at the antipodal point (blue star). The
color code and the inset show the spatial variation of the re-
fractive index as a function of the radius, where we assume
that n0 = 1 in Eq. (1). For r > R0 the refractive index of the
fish eye dips below 1.

storing it in a metastable state for fluorescent readout.
This is conceptually the simplest model for a source and
a detector [37].

We model the 2D lens as an effective photonic cav-
ity filled with an inhomogeneous dielectric material and
solve for the atom-photon dynamics inside the lens. Since
the rate of photon exchange between the atoms is set by
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the local electric field strength, the atomic dynamics is a
sensitive indicator of the electric field distribution of the
photon during absorption. In particular, we find the the
photon exchange rate between the two atoms, which are
detuned from the cavity resonances, is well described by
a simple model, which assumes that the photon is focused
to a diffraction-limited area during absorption.

We also analyze the capabilities of the fish eye to en-
hance the interaction between distant atoms. In particu-
lar, we show that the dipole-dipole interaction mediated
by the fish eye lens is effectively infinite in range. This
infinite-range interaction is a consequence of the unique
focusing properties of the fish eye lens and is analogous
to the infinite-range interactions mediated by quasi-1D
waveguides, which have been the subject of extensive re-
search in recent years in the context of hollow [39, 40],
plasmonic [41–43], microwave [44–46] and dielectric [47–
52] waveguides. Within this model, we quantitatively
evaluate entangling operations and discuss a realistic ex-
perimental realization.

This paper is organized as follows. In Section II we dis-
cuss the general formalism behind our work and derive
the dipole-dipole interaction mediated by the lens be-
tween atoms. In Section III we discuss the entanglement
of atoms within the lens. In Section V we discuss a pos-
sible physical realization of the 2D fish eye using trans-
formational plasmon optics. Key insights of our work are
summarized in Section VI.

II. GENERAL FORMALISM

In this section we describe the general formalism be-
hind our calculations for exploring the quantum optical
properties of the system and calculate the dipole-dipole
interaction between atoms placed inside the lens.

A. Maxwell’s Fish Eye Lens

The two-dimensional fish eye lens is a dielectric
medium of infinite size with refractive index [8]

n(r) =
2n0

1 + (r/R0)2
, (1)

where r =
√
x2 + y2, R0 is the natural length scale of the

problem and n0 ≥ 1 can be chosen arbitrarily. We as-
sume n0 = 1 for all numerical calculations in this paper.
In the limit of geometric optics, light rays propagate in
perfect circles (Fig. 1, dashed circles). All rays emitted
from a single point inside the lens ultimately meet at the
antipodal point. For |r| > R0 the refractive index varies
between n0 and 0, which is difficult to achieve in practice.
Thus the lens is modified by placing a mirror around the
circle of radius |r| = R0 (black circle in Fig. 1). In the
presence of the mirror the trajectories still remain closed
(solid red lines in Fig. 1) [7].

The 2D fish eye can be realized for electromagnetic
waves in a thin disk of radius R0 with a dielectric material
of radially varying refractive index given in Eq. (1), which
is constant along the ẑ direction. When the top and bot-
tom surfaces of the disk are covered with two parallel
mirrors, the lowest-frequency transverse electromagnetic
(TEM) mode is invariant along the ẑ direction and real-
izes the ideal dynamics of the 2D fisheye [9, 30]. While
other modes with higher frequencies will also be present,
when the operating frequency is below a certain cut-off,
only the lowest TEM mode is excited. Specifically, this is
achieved when the frequency of the radiating source ω0 is
much smaller than the cut-off frequency πc/b, where c is
the speed of light in vacuum and b is the thickness of the
disk [30, 53]. Later, we consider a realistic realization
of the two-dimensional fish eye with surface plasmons,
where the transverse confinement arises naturally from
the confinement of the plasmons to the metal-dielectric
interface [54, 55].

B. Hamiltonian

We model the atoms as two-level systems with ground
and excited states denoted by |g〉 and |e〉, respectively.
The Hamitonian describing the evolution of the system
composed of the two atoms and the fish eye modes is
given by

H = Hatom +Hfield + V, (2)

where the atoms evolve according to
Hatom = ~ω0

∑
i=1,2 |ei〉 〈ei| and the evolution

of the electromagnetic field is described by

Hfield =
∑
l,m ~ωla†l,mal,m, where al,m is the anni-

hilation operator of an eigenmode of the lens labelled
by (l,m). The interaction of the two atoms with the
electromagnetic field is given by V = −

∑
i=1,2 di ·E(ri),

where di = dz(σ
†
i + σi)ẑ with σi = |gi〉 〈ei| and dz is

the z-component of the dipole moment of the e → g
transition of the atom, E(ri) is the electric field operator
at position ri within the lens, and we neglect variations
of the field over the size of the atoms. The two atoms are
positioned at r1 and r2 (see Fig. 2(a)). Note that Eq. (2)
describes a closed lossless system composed of the lens
and the two atoms with no coupling to free-space modes.
Later we will consider how photon loss from the fish eye
modes affects our results.

C. Quantization in the Fish Eye Lens

We follow the quantization scheme of Glauber and
Lewenstein [56] to write down the expression for the
quantized electromagnetic field E(ri) of the lens

E(ri) = i
∑
l,m

(
~ωl
2ε0

)1/2

[al,mfl,m(ri)− a†l,mf∗l,m(ri)], (3)
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FIG. 2. (color online) (a) Schematic depiction of the two dipoles embedded in the fish eye cavity, which is surrounded by mirrors

on all sides. (b) Spectrum of the cavity (ωl =
√
l(l + 1)c/(R0n0), l = 1, 2, 3 . . . ) in the absence (κ = 0) and the presence (κ 6= 0)

of losses. The atomic resonant frequency ω0 is tuned between two resonances of the cavity. (c) Strength of the dipole-dipole
interaction δω(r1, r2)/Γ0 between two atoms for four different lens radii: (i) R0 = 4.93λ, (ii) R0 = 8.11λ, (iii) R0 = 11.3λ
and (iv) R0 = 14.48λ, assuming lens thickness b = λ/10 and Γ0 = d2zω

3
0/(3πε0~c3). The lens radii are chosen such that the

transition frequency of the atoms ω0 = 2πc/λ lies halfway between the resonances of the lens (l = 1, 2, 3 . . . ). In particular, we

chose the order parameters (i) ν = 30.5, (ii) ν = 50.5, (iii) ν = 70.5 and (iv) ν = 90.5, where ν = 1
2
(
√

16π2(R0n0/λ)2 + 1 + 1)
and n0 = 1. The atom on the left is positioned exactly λ away from the mirror, whereas the position of the second atom is
sweeped. The strength of the interaction peaks λ away from the opposite mirror surface with a height that is independent of
the radius of the lens and the interatomic distance. (d) Enlarged view of the dipole-dipole interaction near the antipodal point,
showing that the width of the peak is approximately λ/2.

where fl,m are the classical eigenmodes of the cavity that
are solutions of the wave equation

n(r)2
ω2
l,m

c2
fl,m(r)−∇× [∇× fm,l(r)] = 0, (4)

subject to the transversality condition

∇ ·
[
n(r)2 fl,m(r)

]
= 0, (5)

together with the boundary condition that

fl,m · ẑ = fl,m · φ̂ = 0 at |r| = R0 due to the pres-
ence of the mirror. The position-dependent refractive
index n(r) is given by Eq. (1). The solutions of Eq. (4)
and Eq. (5) can be chosen to form an orthonormal set
satisfying∫

V
d3r n(r)2 fl,m(r) · f∗l′,m′(r) = δll′δmm′ , (6)

where the integral is performed over the quantization vol-
ume V.

Solving these equations, the lowest TEM modes of the
fish eye take the following form

fl,m(r, φ) =

√
2

bR2
0n

2
0

Y ml

(
arccos

(
|r|2 −R2

0

|r|2 +R2
0

)
, φ

)
ẑ, (7)

where Y ml (θ, φ) are the spherical harmonic func-
tions, φ = arccos(x/|r|) is the azimuthal angle as-
sociated with position r and the eigenfrequencies

are ωl = c
√
l(l + 1)/(R0n0). The modes fl,m are la-

belled with the rescaled wavenumber l = 1, 2, 3 . . .
and the angular momentum index m, where
m(l) = −(l − 1),−(l − 3), ... , (l − 1) is enforced by
the boundary condition fl,m(R0, φ) = 0. The discrete
spectrum of the fish eye is schematically shown in
Fig. 2(b). The number of degenerate states increases
linearly with l, since

∑
m(l) 1 = l.

D. Photon transfer between two atoms via
dipole-dipole interaction

In this section, we investigate the resonant transfer of
a photon between two atoms via the dipole-dipole inter-
action, the strength of which we denote by δω.

In quantum optics, the most fundamental model for
photon emission and detection assumes that one atom is
initially in its excited state |e1〉, while the second atom is
in its ground state |g2〉. When the system evolves coher-
ently in time, the excited atom (virtually) emits the pho-
ton and after time tint ∼ π/(2δω) the second atom fully
absorbs the photon as its atomic population is transferred
to the excited state |e2〉 [43, 57].

Furthermore, by making use of additional metastable
states |si〉 with i = 1, 2 (see Fig. 3) that only couple to |ei〉
via the time-dependent classical control pulse Ωi(t) (such
that Ωi � δω), the photon transfer can be performed in
a controlled, realistic scheme [58–60]. In particular, by
adjusting Ω1(t) and Ω2(t), the photon transfer can be
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initiated via the excitation of |e1〉 and, as the photon is
reabsorbed, the atomic population of the second atom
can be transferred to the metastable state |s2〉. Then,
by switching off Ω2(t), reemission into the cavity can be
prevented. From the metastable state the photon can be
read out using standard fluorescence techniques [61, 62].
This completes the detection of the photon.

In a standard quantum optical setting, the dipole-
dipole interaction between two atoms with level spac-
ing ω0 between ground |gi〉 and excited states |ei〉 in
any environment can be expressed in terms of the clas-
sical Green’s function components Gαβ(r1, r2, ω0) (with
α, β = x, y, z) through the following expression [63–66]

δω(r1, r2) =
d2
zω

2
0

~ε0c2
Re{Gzz(r1, r2, ω0)}, (8)

where we assume that the two atoms are located at
r1 and r2 and their dipole moments dz are oriented
along the z-axis. Note that the real (imaginary) part
of the Green’s function Gzz(r1, r2, ω0) has the simple
interpretation of being the z-component of the in-phase
(out-of-phase) component of the electric field generated
at position r2 within the lens due to the presence of a
z-oriented point-like dipole at position r1 radiating at
frequency ω0.

FIG. 3. (color online) Schematic depiction of a realistic
scheme for the photon transfer between the two atoms. The
first atom emits the photon, while the second atom fully ab-
sorbs it. By applying classical time-dependent control pulses
Ω1(t) and Ω2(t), the transfer can be initiated and the photon
can be captured in the metastable state of the second atom,
from which the photon can be read out using fluorescence
techniques.

We note that, when the classical Green’s function of
a problem is analytically known, it is typically a sim-
ple matter to evaluate Eq. (8) and find the dipole-dipole
interaction between atoms. However, for the fish eye
there is debate about what Green’s function correctly
describes the imaging process. The subtlety of the issue
arises from the fact that the fish eye, which models the
closed surface of the sphere, is inherently a closed system
from which radiation cannot escape in the absence of
losses and detectors [7–9]. As mentioned previously, the
accurate mathematical modeling of detectors has been
a key focus of the discussion regarding perfect imaging
[11, 12, 14–34, 37, 38].

Here, since we model both the ‘source’ of the radia-
tion and the ‘detector’ as atoms, the exact expression for
the dipole-dipole interaction can be obtained from the

standard quantum optical master equation [67], where
no ambiguity arises in the derivation of the results. Fur-
thermore, as we show below, the expression obtained for
the dipole-dipole interaction from the master equation
exactly matches one of the two Green’s functions dis-
cussed extensively in the fish eye literature, allowing us
to directly use Eq. (8), which substantially simplifies nu-
merical calculations.

The quantum optical master equation in the Born-
Markov approximation, which governs the evolution of
the atoms inside the lens, takes the following form in the
interaction picture [67]

dρ̃

dt
= − 1

~2

∫ ∞
0

dτ Tr
[
Ṽ (t),

[
Ṽ (t− τ), ρ̃(t)⊗ |0〉〈0|

]]
, (9)

where |0〉〈0| is a projector onto the vacuum state of the
lens (i.e. no photons in the lens) and the trace is implied
over all photonic Fock states of the lens,

∑
n〈n|...|n〉, and

ρ̃(t) = eiHatomt/~ρ(t)e−iHatomt/~, (10)

and

Ṽ (t) = ei[Hatom+Hfield]t/~V (t)e−i[Hatom+Hfield]t/~. (11)

In Eq. (9), the Born approximation was performed by
writing the density matrix for the system in the form
ρ̃(t − τ) ⊗ |0〉〈0|, which amounts to neglecting correla-
tions between the atoms and the electromagnetic modes
of the lens [67]. The Markov approximation was made
by replacing ρ̃(t − τ) by ρ̃(t), which is based on the as-
sumption that the atom-field correlation time is negligi-
bly short compared to the time scale on which the system
evolves [67]. The Markov approximation allowed us to
self-consistently extend to infinity the upper limit of the
integration with respect to dτ . We confirm the validity
of the Born-Markov approximation in Section IV.

After performing the trace over the modes of the fish
eye lens, we need to evaluate the following standard in-
tegral∫ ∞

0

dτe−i(ωl∓ω0)τ = πδ(ω0 ∓ ωl)± iP
1

ω0 ∓ ωl
, (12)

where δ(x) stands for the Dirac delta and Pf(x) denotes
the principal value component of the function f(x). Since
the spectrum of the fish eye modes (which act as the
reservoir for the atoms) is discreet, the Dirac delta and
the principal value do not contribute away from reso-
nances and we may simply replace the right-hand side
of Eq. (12) with ±i/(ω0 ∓ ωl). More specifically, in the
absence of any mechanism for photon loss that would
broaden the energy levels, the atoms experience no spon-
taneous decay or cooperative emission when their tran-
sition frequency does not coincide with the resonant fre-
quencies of the lens. The master equation then describes
the fully coherent, lossless evolution of the atoms and
takes the form

dρ

dt
=

1

i~
[Hat, ρ]− i

∑
i,j=1,2
i6=j

δω(ri, rj) [σ†iσj , ρ], (13)
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where the dipole-dipole interaction between the atoms is
given by

δω(ri, rj) =
d2
z

~ε0

∑
l,m

ω2
l

ω2
l − ω2

0

f∗l,m(ri)fl,m(rj), (14)

where the fish eye modes fl,m(r) are given by Eq. (7) and
the summation runs over all eigenmodes of the fish eye.
Given the summation over an infinite number of modes,
it is difficult to work directly with the expression given
in Eq. (14) and it is desirable to replace it with a simple,
closed-form expression.

As shown in Appendix A, the right-hand side of
Eq. (14) can indeed be replaced by an expression of the
same form as Eq. (8) using a Green’s function, where the
Green’s function is given by the following expression

Gzz(r1, r2, ω) = −Pν(ξ(α1, α2))− Pν(ξ(α1, 1/α
∗
2))

4b sin(πν)
, (15)

where Pν is the Legendre function of (non-integer) order

ν = 1
2 (
√

16π2 (R0n0/λ)2 + 1− 1). Note that the order
parameter ν depends on the atom frequency ω0 through
the free-space wavelength λ = 2πc/ω0 and the order pa-
rameters with integer values (ν = 1, 2, 3 . . . ) correspond
to the resonances of the lens. We have also defined
ξ(α1, α2) = (|ζ(α1, α2)|2 − 1)/(|ζ(α1, α2)|2 + 1) and
ζ(α1, α2) = (α1 − α2)/(α1α

∗
2 + 1), with αj =

rj
R0
eiφj ,

where (rj , φj) are the cylindrical coordinates of the
positions of the two atoms (j = 1, 2) within the lens. In
Eq. (15) the second term on the right hand side accounts
for the presence of the mirror at |r| = R0, ensuring that
the electric field goes to zero [7]. This Green’s function
was first derived in Ref. [13], and is obtained from the
canonical equation of the dyadic Green’s function in the
presence of a single source term [7, 9, 12]. This Green’s
function has been used previously to describe the static
electric field distribution inside the lens for the case
when a diffraction-limited image forms at the antipodal
point in the presence of a classical source and in the
absence of a ‘drain’ [12, 15].

Using Eq. (8) and Eq. (15), the dipole-dipole interac-
tion can be calculated in a straightforward manner within
the lens. In Fig. 2(c) we plot the strength of the dipole-
dipole interaction between two atoms. The position of
the first atom is fixed exactly one wavelength away from
the mirror and the position of the second atom is var-
ied across the lens. We plot the interaction strength for
four different radii of the fish eye. As Fig. 2(c) shows,
the strength of the dipole-dipole interaction peaks at the
antipodal point, exactly one wavelength away from the
mirror.

As noted at the start of this section, in quantum optics
the strength of the dipole-dipole interaction sets the rate
at which a photon can be resonantly transferred from
one atom to the other. Physically, this exchange rate
depends on the strength of the photon field at the lo-
cation of the second atom that absorbs the photon. In
general, the smaller the volume the photon is focused to,

the larger the field strength gets. Thus, the dipole-dipole
exchange rate depends sensitively on the area the photon
is focused to. Fig. 2(d) provides an enlarged view that
shows the dipole-dipole interaction rate – and thus the
electric field strength – experienced by the second atom
near the antipodal point [68]. The width of the peak is
approximately λ/2, suggesting that the photon is focused
to a diffraction-limited area at the location of the second
atom. These results for the rate of photon transfer are
numerically confirmed in Section IV.

Fig. 2(c) also shows that the height of the peak remains
constant as the radius of the fish eye and, therefore, the
distance between the two atoms is increased. The pho-
ton emitted by an atom anywhere within the cavity gets
refocused at the antipodal point regardless of the size of
the lens. Such infinite range dipole-dipole interaction is
a well-known feature of quasi-1D waveguides [39–52]. In-
tuitively, the 2D fish eye lens acts as quasi-1D system
due to the fact that the lens mimics the propagation of
light on the surface of a sphere [8]. Just as in 1D light
is confined to propagate along a single axis without dis-
persion, the same way light emitted from a point on the
2D surface of a sphere is constrained to propagate along
the geodesics of the sphere and refocuses at the antipodal
point without any dispersion.

The functional form of the dipole-dipole interaction
can also be understood analytically by considering the
asymptotic behavior of the Green’s function near the
source and image points. In particular, note that
the source and image points in the lens correspond to
ξ(α1, α2) = −1 and ξ(α1, 1/α

∗
2) = +1 respectively [7].

As ξ → −1 we obtain the asymptotic expansion [7, 69]

Pν(ξ)→ sin(νπ)

π

[
log

(
1 + ξ

2

)
+ F (ν)

]
, (16)

where we have defined the function

F (ν) = γ + 2ψ(ν + 1) + π cot(νπ). (17)

Here γ is Euler’s constant and ψ is the digamma func-
tion. In addition, when ξ → 1 we obtain the asymptotics
Pν(ξ) → 1 [7, 69]. Thus, near the source point the first
term dominates in Eq. (15) and a logarithmic divergence
is formed. In contrast, near the image point, the second
term dominates and we can analytically approximate the
Green’s function as

Gzz ≈ −
1

4b sin(πν)
. (18)

This shows that the absolute value of the Green’s func-
tion is maximized when the frequency falls half-way be-
tween two resonances such that ν = m + 0.5, where
m ∈ N. Furthermore, this expression also shows that
the height of the peak at a given frequency only depends
on the transverse confinement of the modes b and is in-
dependent of the lens radius R0. Finally, we note that
Eq. (18) also shows that the dipole-dipole interaction is
independent of where we place the atoms within the lens
as long as they are situated at antipodal points.
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E. Spontaneous and cooperative decay of atoms

In all calculations so far, we assumed that the fish eye
lens is completely isolated from its surrounding environ-
ment and the photon cannot leak out of the cavity. Here,
we next consider the situation when the lifetime of the
eigenmodes of the fish eye are finite e.g. due to the imper-
fection of the mirrors and dissipation in the dielectrics.
We account for the gradual loss of photons from the fish
eye modes by modifying the Hamiltonian in Eq. (2) with
a non-Hermitian term [70–75] of the following form

Hfield =
∑
l,m

~(ωl − iκ)a†l,mal,m, (19)

where 2κ sets the rate of decay from the modes, which
is assumed to be frequency-independent in the range of
interest. The decay of the cavity modes broadens the dis-
crete energy levels of the fish eye, creating a continuous
spectrum, as shown schematically in Fig. 2(b).

With this modification, we can re-derive the master
equation from Eq. (10). We evaluate the following inte-
gral ∫ ∞

0

dτe−i(ωl∓ω0)τe−κτ =
1

i(ωl ∓ ω0) + κ
, (20)

and after neglecting the off-resonant decay terms [67] we
obtain the master equation in the following form

dρ

dt
=

1

i~
[Hat, ρ]− i

∑
i,j=1,2
i 6=j

δω(ri, rj) [σ†iσj , ρ]

−
∑

i,j=1,2
i 6=j

Γ(ri, rj)

(
σiρσ

†
j −

1

2

{
σ†iσj , ρ

})
, (21)

where the rate of decay is given by

Γ(ri, rj) =
d2
z

~ε0

∑
l,m

κ f∗l,m(ri)fl,m(rj)(L
+
l + L−l ), (22)

and the modified dipole-dipole interaction is given by

δω(r1, r2) =
d2
z

2~ε0

∑
l,m

ωl f
∗
l,m(r1)fl,m(r2)

(
D+
l +D−l

)
, (23)

where we have defined

L±l =
∓ωl

κ2 + (ωl ± ω0)2
and D±l =

ωl ± ω0

κ2 + (ωl ± ω0)2
.(24)

Since we are now including losses in the system, the ex-
cited states of the two atoms can irreversibly decay into
the eigenmodes of the lens and leave the cavity, lead-
ing to non-zero single atom decay γ(ri) = Γ(ri, ri) (with
i = 1, 2) and cooperative decay γcoop(r1, r2) = Γ(r1, r2).
The single atom decay γ describes how quickly an ex-
citation decays from state |e〉 of an individual atom to
the fish eye modes, whereas the cooperative decay γcoop

governs the coherent joint emission of the two atoms into
the modes leading to super (γ + γcoop) and subradiant
decay (γ − γcoop) of the symmetric and anti-symmetric
superpositions of the two atoms, respectively [67].

As for the lossless case, it is desirable to find closed-
form expressions to replace the expressions that involve
infinite summations on the right-hand side of Eq. (22)
and Eq. (23). As shown in Appendix A, the decay rates
and the dipole-dipole interaction can be expressed using
the Green’s function of Eq. (15) in the following form

Γ(ri, rj)=
2d2
z

~ε0c2
Im{(ω0 + iκ)2Gzz(ri, rj , ω0 + iκ)}, (25)

and

δω(ri, rj)=
d2
z

~ε0c2
Re{(ω0 + iκ)2Gzz(ri, rj , ω0 + iκ)}.(26)

These simple, analytic expressions provide a convenient
way to calculate the quantum optical properties of atoms
inside the lossy fish eye lens and to study the atomic
dynamics.

We also note that when κ� ω0, Eq. (25) and Eq. (26)
can be approximated as

Γ(ri, rj) ≈
2d2
zω

2
0

~ε0c2
Im{Gzz(ri, rj , ω0 + iκ)}, (27)

and

δω(ri, rj) ≈
d2
zω

2
0

~ε0c2
Re{Gzz(ri, rj , ω0 + iκ)}. (28)

Eq. (27) and Eq. (28) suggest an alternative way of ac-
counting for the loss of photons from the modes of the
fish eye. In particular, it can be shown (see Appendix
A) that Gzz(ri, rj , ω0 + iκ) is the Green’s function of the
fish eye lens with the following complex refractive index

ñ(r) = n(r)(1 + iα), (29)

where

α = κ/ω0, (30)

and n(r) is given by Eq. (1). Therefore, the loss of pho-
tons from the modes of the fish eye can also be thought to
arise from material absorption in the dielectric [7]. This
is a key observation, which allows us to associate a κ
value with material absorption and, therefore, treat all
losses that contribute to photon decay from the fish eye
modes in a unified manner. In particular, even if differ-
ent loss processes are present, e.g. material absorption
and leakage through the mirror, we can still associate a κ
value with each of these processes and calculate the total
decay rate via

κtotal = κabs + κmirror, (31)

which can be substituted into Eq. (27) and Eq. (28) to
calculate the relevant atomic properties in the lossy lens.
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This will be particularly useful when we consider a possi-
ble physical realizations of the fish eye lens with plasmons
(see Section V).

Furthermore, we can also find how ν, Γ and δω scale
with α for system parameters of interest. First, we
note that 16π2(R0/λ)2 � 1, whenever λ . R0. Assum-
ing α� 1, to first order in α we find that

ν ≈ 2πR0

λ
(1 + iα). (32)

Assuming that Re[ν] = m + 0.5 with m ∈ N (which
corresponds to tuning the atomic frequency between two
resonances), from Eq. (18) we obtain that, to lowest or-
der in α, the following approximation holds at the image
point (r1 = −r2)

Gzz(r,−r, ω0 + iκ) ≈ − 1

4b sin(πν)

≈ ∓ 1

4b(1 + (2π2R0α/λ)2)
, (33)

where the choice of sign ∓ depends on whether m is even
or odd. This is a purely real quantity and, therefore,
from Eq. (27) and Eq. (28) we find that the cooperative
decay is given by

γcoop = Γ(r,−r) ≈ 0, (34)

and the dipole-dipole interaction takes the form

δω(r,−r) ≈ ∓ d
2
zω

2
0

~ε0c2
1

4b(1 + (2π2R0α/λ)2)
. (35)

Finally, we can find the single atom decay rate γ
by substituting ri = rj into Eq. (27) and substituting
Eq. (16) and Eq. (32) into Eq. (15). We find that to
leading order in α the following approximation holds

γ = Γ(r, r) ≈ d2
zω

2
0

~ε0c2
π2R0α

bλ
. (36)

III. ENTANGLEMENT OF ATOMS

Structures that mediate long-range dipole-dipole in-
teractions are of significant interest in quantum infor-
mation processing, as such interactions make it possible
to entangle [40] and perform deterministic phase gates
between distant atoms [43]. In this section, we charac-
terize the potential of the fish eye to entangle distant
atomic quits. We focus on the simple case of a single ex-
citation being exchanged between two atoms due to the
dipole-dipole interaction. In what follows, for simplicity
we assume that the two atoms are located at antipodal
points (i.e. |r1| = |r2| and φ1 = φ2 + π) and, therefore,
γ = Γ(r1, r1) = Γ(r2, r2).

In the absence of a driving field, the no-jump evolu-
tion of the system can be described by a non-Hermitian

effective Hamiltonian of the form [76]

H0 = (~ω0 − iγ)|e1, e2〉〈e1, e2|
+ (δω − i(γ + γcoop)/2) |+〉〈+|
+ (−δω − i(γ − γcoop)/2) |−〉〈−|, (37)

where we have defined |±〉 = (|e1, g2〉 ± |g1, e2〉)/
√

2, and
recall from the previous section that γcoop = Γ(r1, r2)
and δω(r1, r2) stand for the cooperative decay and
dipole-dipole interaction of the atoms, respectively. Note
that the overall decrease of population in Eq. (37) due to
the non-Hermitian terms reflects the gradual loss of the
photonic excitation from the cavity.

FIG. 4. (color online) Excitation probability of two atoms
within the cavity as a function of time. Initially, atom 1 is
excited and atom 2 is in its ground state. As the system
evolves, the two atoms repeatedly exchange a photon via the
dipole-dipole interaction. The photon gradually decays from
the cavity modes, leaving the atoms in their ground states. A
fully entangled state with maximal fidelity is formed at t =
π/(4δω) (see arrow). The plot was obtained for R0 = 3.34λ
with a cavity loss rate of α = κ/ω0 = 5×10−4, assuming that
the two atoms are located at two antipodal points within the
lens such that |r1| = |r2| = 0.27R0 and φ1 = φ2 + π.

Assuming that at t = 0 the two atoms are in the state
|ψ(0)〉 =

∣∣e1, g2

〉
= (|+〉+ |−〉)/

√
2, the time evolution of

the atomic wavefunction is governed by

|ψ(t)〉 =
1√
2

(
e−i[δω−

i
2 (γ+γcoop)]t|+〉

+e−i[−δω−
i
2 (γ−γcoop)]t|−〉

)
, (38)

which, upon substitution, yields

|ψ(t)〉 = C+(t)|e1, g2〉+ C−(t)|g1, e2〉, (39)

where

|C±(t)|2 =
e−γt

2
[cosh(γcoopt)± cos(2δωt)] . (40)

The expressions |C+|2 and |C−|2 give the excitation prob-
ability of atom 1 and atom 2, respectively, as a function
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of time. In Fig. 4 we plot the excitation probability of
the two atoms as a function of time. As the plots shows,
the photon is coherently exchanged a number of times
between the two atoms before it gradually decays from
the cavity modes.

FIG. 5. (color online) Error (1 − F ) of the entangling
operation between two qubits located at two antipo-
dal points within the lens (|r1| = |r2| = 0.27R0 and
φ1 = φ2 + π). (a) Error of the entangling operation
as a function of the cavity loss rate α = κ/ω0 for
four different lens sizes R0 ∈ {1.75, 3.34, 8.11, 14.5}λ,
where the R0/λ ratio was chosen such that

Re(ν) = 1
2
(
√

16π2(R0/λ)2 + 1 + 1) ∈ {10.5, 20.5, 50.5, 90.5}.
The error increases as the losses and lens radii in-
crease. (b) Error of the entangling operation for a fixed
loss rate α = 5 × 10−4 as a function of the detuning
∆ν = Re(ν) − νcenter, where νcenter ∈ {10.5, 20.5, 50.5, 90.5}.
Error is plotted for the same four lens radii as in (a). The
error increases with radius and as the frequency approaches
one of the resonances. Numerical results are shown with
large dots. Good agreement is obtained between analytic and
numerical data, confirming the validity of the Born-Markov
analysis.

During time evolution, the state |ψ(t)〉 will have
maximal overlap with the maximally entangled state

|ξ〉 = (|e1, g1〉 − i|g1, e1〉) /
√

2 when |C+(t)| = |C−(t)|,
which happens when 2δωt ≈ π

2 +mπ, where m ∈ Z. Since
in the presence of losses the fidelity decreases over time,
we choose m = 0. Thus, the time needed to reach the
maximal overlap with the entangled state is t0 = π/(4δω)
(see arrow in Fig. 4) and the maximum fidelity of the en-
tanglement operation will be

F =
∣∣〈ξ|ψ(t0)〉

∣∣2 = exp
(
−π

4

∣∣∣ γ
δω

∣∣∣) cosh
(π

4

∣∣∣γcoop

δω

∣∣∣). (41)

Eq. (41) gives a simple, analytic expression for the fidelity
of the entangling operation in terms of γ = Γ(ri, ri),
γcoop = Γcoop(ri, rj) and δω(ri, rj), which can be evalu-
ated analytically through Eq. (25) and Eq. (26). Here,
the key figure of merit is the ratio β = δω/(γ+ γcoop). If
the frequency of the atoms is chosen to lie half-way be-
tween two resonances of the fish eye (see Fig. 2(b)), the
single atom decay γ and the cooperative decay γcoop are
small and the dipole-dipole interaction dominates [76].
Intuitively, in the absence of losses (γ = γcoop = 0), the
fidelity of the entangling operation is 1.

In Fig. 5(a) we plot the error in the entangling oper-
ation (1 − F ) for four different lens radii as a function
of α, where α = κ/ω0 = 1/Q is the inverse of the cavity
Q-factor, characterizing the ratio of the lifetime of the
eigenmodes of the lens to the frequency of the excitation.
For all lens sizes, the position of the two atoms is fixed at
two antipodal points such that |r1| = |r2| = 0.27R0 and
φ1 = φ2 +π. The ratio of the lens radius to the transition
wavelength (R0/λ) was chosen such that the real part

of the order parameter ν = 1
2 (
√

16π2(R0/λ)2 + 1 + 1)
associated with the atomic frequency falls half-way be-
tween two resonances of the fish eye for all four lens radii
(i.e. Re(ν) = q + 0.5 with q ∈ {10, 20, 50, 90}, where
note that for Re(ν) = 1, 2, 3 . . . the transition frequency
ω0 is resonant with one of the eigenenergies ωl of the
lens). Clearly, the error increases with increasing α and
increasing R0 (i.e. increasing interatomic distance). The
maximal value of the error is 0.5, which is reached when
β becomes so small that the initial state has the highest
fidelity (F = |〈ξ|ψ(0)〉|2 = 0.5).

Fig. 5(b) shows the error for a fixed value of
α = 5× 10−4 for the same four lens radii as in (a) and the
same antipodal atomic positions. The error is now plot-
ted as a function of the detuning ∆ν = (Re(ν)− νcenter),
where νcenter = q + 0.5 with q ∈ {10, 20, 50, 90}. Clearly,
the error is minimal half-way between the resonances and
increases as the frequency approaches the resonances.

To gain further insight, we assume that the atomic
frequencies lie between two resonances of the lens and
obtain the scaling of the fidelity with system parame-
ters by substituting Eq. (34), Eq. (35) and Eq. (36) into
Eq. (41). We obtain the following simple expression

F = e−π
3R0α/λ. (42)

In Fig. 6 we plot the fidelity of the entangling operation
as a function of the lens radius using both the exact ex-
pression in Eq. (41) and the analytic approximation in
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FIG. 6. (color online) Maximum fidelity of the entanglement
operation as a function of the lens radius. The fidelity was
evaluated at discrete values of R0/λ that correspond to tuning
the atomic frequency half-way between two resonances, i.e.
Re[ν] = m+ 0.5, where m is an integer. The red line marked
with circles was obtained from the exact analytical expression
in Eq. (41), whereas the blue line marked with squares was
obtained from the approximate expression in Eq. (42). Good
agreement is obtained between the two curves. The loss rate
was assumed to be α = κ/ω0 = 5× 10−4.

Eq. (42). Very good agreement is observed between the
two curves.

Finally, we note that the fish eye lens could be used
for entangling many pairs of atoms simultaneously. As
the radius of the fish eye is increased, the dipole-dipole
interaction at all points further than λ/2 away from the
antipodal point monotonically decreases. For lens radii
with R0 > 5λ, the dipole-dipole interaction at the antipo-
dal point is an order of magnitude larger than anywhere
else in the cavity (see Fig. 2(c)). Thus, by placing numer-
ous pairs of atoms into the cavity simultaneously, they
can be entangled pairwise, without substantial interac-
tion between the different pairs.

IV. VALIDITY OF THE BORN-MARKOV
APPROXIMATION

In our derivation of Eq. (14), Eq. (22) and Eq. (23)
we made use of the Born-Markov approximation, which
presupposes that the environment is large and the cor-
relation time of the environment is very short compared
to the evolution of the atomic states [67]. Since in our
formalism the role of the ‘environment’ is played by the
modes of the finite cavity, the validity of these assump-
tions needs to be evaluated carefully.

In order to verify the validity of the above results,
we numerically solve the Schödinger equation, where the
Hamiltonian is given by Eq. (2) together with the non-
Hermitian term introduced in Eq. (19). The form of V is
considerably simplified when the two atoms are placed at
two antipodal points within the lens such that |r1| = |r2|

and φ1 = φ2 + π. In this case the in-phase combina-
tion of the atomic dipole moments (dz(σ1 + σ2)/

√
2 +

h.c.) only couples to the odd modes (l = 1, 3, 5 . . .)
and the out-of-phase combination of the dipole moments
(dz(σ1 − σ2)/

√
2 + h.c.) only couples to the even modes

(l = 2, 4, 6 . . .) of the fish eye (see Appendix B). This
reduces the size of the Hilbert space, making it possible
to efficiently simulate the system while including a large
number of the eigenmodes of the lens with frequencies
close to ω0. We further restrict the Hilbert space to have
at most a single excitation in the system.

We numerically determine the time-evolution, start-
ing from the state |ψ(0)〉 = |e1, g2〉 via the operator
U(t) = exp[−iHt/~]. To obtain the maximum fidelity of
the entangling operation, the overlap of the time-evolved
atomic state is calculated with the maximally entangled
state (|e, g〉 − i|g, e〉)/

√
2. In Figs. 5(a) and 5(b) we plot

the numerically obtained values for the error (1−F ) (dot-
ted lines) for different lens radii as a function of losses and
atom frequencies, respectively. Even though the analyt-
ical results were derived using the Born-Markov approx-
imation and neglecting retardation [57], good agreement
is obtained between the analytic results and numerical
data. This confirms the validity of the analytical formal-
ism described in previous sections.

V. POSSIBLE EXPERIMENTAL REALIZATION

A promising way to realize the fish eye lens is via trans-
formational plasmon optics [54, 55]. The idea behind this
approach is to engineer an effective refractive index dis-
tribution for surface plasmon polaritons by depositing
a layer of high-index dielectric on top a 2D silver sur-
face (see Fig. 7). By varying the height of the dielectric
layer on the surface, the effective refractive index seen by
the plasmons can be changed. In particular, when there
is no dielectric on top of the silver, the effective refrac-
tive index seen by the plasmons is close to 1, whereas
in the presence of a thick dielectric layer, the effective
plasmonic refractive index will be close to the refractive
index of the dielectric itself. Through this experimen-
tal technique, complex spatially-varying refractive index
profiles can be engineered [54]. Crucially, the behavior
of plasmons in a plasmonic lens with a particular refrac-
tive index profile closely mimics the predicted behavior
of classical light rays in the corresponding 2D lens. This
correspondence between 2D classical lenses and quasi-2D
plasmonic lenses was theoretically established in Ref. [54]
and experimentally confirmed for the nanoscale Luneb-
urg and Eaton lenses [55].

We expect that the plasmonic version of the nanoscale
fish eye lens could be experimentally realized analogously
to the Luneburg and Eaton lenses. A dielectric layer of
varying height could be deposited on a flat silver sur-
face while the lens is surrounded by a circular mirror
(see Fig. 7(b)). To explore the quantum optical proper-
ties of the fish eye, atom-like color defects in diamond
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FIG. 7. (color online) Physical realization of the fish eye lens
using transformation plasmon optics. (a) Effective refractive
index n(d) = Re{ñ(d)} created as a function of the height of
the dielectric d deposited on the silver surface. The inset
shows the material losses χ(d) = Im{ñ(d)} as a function of
the dielectric height d. (b) Schematic depiction of the plas-
monic fish eye lens. The two emitters are embedded in the
dielectric. The height of the dielectric varies across the lens,
which creates the effective refractive index distribution of the
fish eye lens. The lens is surrounded by mirrors from all sides
(the front part of the mirror has been removed to show the
interior).

could be used as quantum emitters. Subwavelength po-
sitioning and coherent manipulation of such color defects
has been experimentally demonstrated previously [77–
80]. Recently, the entanglement of two silicon-vacancy
(SiV) color defects inside a nanoscale waveguide was also
demonstrated [81].

For illustration, we provide here an estimate of the en-
tanglement fidelity of two atoms inside a particular ex-
ample of a plasmonic fish eye lens. We assume that the
lens operates at 406.706THz, which is the zero-phonon
resonance of SiVs corresponding to a vacuum wavelength
of λSiV = 737nm. Furthermore, we assume that the lens
has a radius of R0 = 1.749λSiV, which ensures that the
SiV resonance falls between two resonant modes of cav-
ity (Re(ν) = 10.5). We also assume that the flat sil-
ver substrate is made of single-crystal silver [82], which
at the SiV resonance frequency has a permittivity of
εm = −25.23 + 0.589i and gives rise to plasmonic prop-
agation distances on the order of ∼ 160λSiv. It is also
assumed that there is a thin (∼ 10 − 15nm) diamond

layer on top of the metal that has two SiVs implanted
at two antipodal points such that |r1| = |r2| = 0.27R0

and φ1 = φ2 + π, as schematically shown in Fig. 7(b).
Due to their proximity to the silver surface, the two ẑ-
polarized emitters will couple strongly to the surface plas-
mons, which are tightly confined to the metal-dielectric
interface.

The spatially varying refractive index n(r) of the fish
(Eq. (1) with n0 = 1) could be experimentally realized
by depositing a dielectric of permittivity εd = 3.6 on
top of thin diamond layer. By varying the height of the
dielectric between 0 and 200nm, the effective refractive
index seen by the plasmons can be varied between 1 and
2. The refractive index of the dielectric (nd =

√
εd =

1.9) was chosen such that the effective index can reach 2,
but a dielectric with even higher index (such as diamond
with εdiamond = 5.76) was avoided to ensure that the
plasmons are not confined unnecessarily tightly to the
silver surface, which would give rise to significantly higher
ohmic losses.

The direct relationship between the height of the di-
electric layer d and the resulting (complex) refractive in-
dex ñ(d) = n(d)+ iχ(d) can be obtained from the follow-
ing implicit equation [54]

tanh(kdεdd) = −kairkd + kdkm
k2
d + kairkm

, (43)

where

kair =
√

(ñk0)2 − k2
0, (44)

kd =

√
(ñk0)2 − εdk2

0

εd
, (45)

and

km =

√
(ñk0)2 − εmk2

0

εm
, (46)

where k0 = 2π/λSiV and in our calculation we ignored,
for simplicity, the presence of the diamond layer, as it
does not significantly modify the effective index seen by
the plasmons as long as the diamond layer is much thiner
than the transverse confinement of the plasmons, which
is on the order of a wavelength.

Fig. 7(a) shows the real part n(d) and imaginary part
χ(d) (inset) of the complex refractive index ñ(d) seen
by the plasmons as the thickness of the dielectric d is
varied. The effective refractive index increases monoton-
ically with the thickness of the dielectric layer. Since the
refractive index of the fish eye increases radially inward
(see Eq. (1)), the dielectric layer in the fish eye lens takes
a conical shape as shown in Fig. 7(b).

From the imaginary part of the effective refrac-
tive index χ(d), we can estimate the average pho-
ton loss rate due to ohmic losses via the relation
κabs(r)/ω0 = χ(r)/n(r) (see Section II E). Since this loss
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rate varies significantly across the lens, we numerically
average χ(r)/n(r) over the radius of the lens and obtain

the averaged quantity κabs(r)/ω0 ≈ 3×10−3. This is the
leading order contribution to the photon loss.

Photons can also be lost from the lens by leaking out
through the mirror. Assuming that the reflectivity of the
mirror is r2, we can estimate the loss rate κmirror/ω0. In
the absence of other loss mechanisms, the photon would
bounce off the mirror ∼ 1/t2 times before being lost,
where t2 = 1−r2. The time interval between two bounces
is approximately (2R0)/(c/n̄), where R0 is the radius of
the lens, c is the speed of light in vacuum and n̄ is the
average index of refraction in the lens. Thus the lifetime
of the photon due to the finite mirror reflectivity is

τmirror ∼
1

κmirror
∼ 2R0

c/n̄

1

t2
. (47)

Making the conservative estimate that r2 = 0.95, we ob-
tain the following loss rate

κmirror

ω0
∼ 1

4π

1

n̄

λ0t
2

R0
∼ 4× 10−4, (48)

where we have used n(r) = 1.57, which is obtained by
numerically averaging the refractive index over the radius
of the lens. Note that this shows that the losses due to the
finite reflectivity of the mirror are an order of magnitude
smaller than the ohmic losses.

Next, we consider emission into free space γ0. In
the close proximity of a metal surface, the rate of de-
cay of the emitter into plasmonic modes γ can signifi-
cantly exceed the rate of emission into free-space modes
γ0 = d2

zω
3
0/(3πε0~c3) [41, 83]. Here, we take the Purcell

factor to be η = γ/γ0 ≈ 3, which is the approximate value
for a z-oriented dipole 10-15 nm away from a flat silver
surface emitting radiation at 737nm [84]. Furthermore,
we also make the conservative estimate that the emission
to free space is reduced by a factor of two due to the
presence of the silver surface [85]. In order to account for
the presence of this additional decay channel, we need to
make the replacement γ → γ+γ0/2 in Eq. (37), and thus
Eq. (42) becomes

F = e−π
3(1+ 1

2η )R0
λ α . (49)

Note that this equation holds only if the atomic frequen-
cies fall half-way between two resonances and the atoms
are placed at two antipodal points anywhere in the lens.

Substituting R0/λSiV = 1.749, α = (κabs + κmirror)/ω0 =
3.4 × 10−3 and η = 3 into Eq. (49), we obtain that the
fidelity of the entangling operation would be approxi-
mately F = 80%. We note that this fidelity could be
further improved by utilizing the adiabatic passage of a
dark state in a Raman scheme [58].

VI. CONCLUSION

In conclusion, we have investigated the single-photon
dynamics of atoms inside the fish eye lens. We demon-
strated that the lens mediates long-range interactions be-
tween distant emitters. The dipole-dipole interaction has
an infinite range, limited only by the decay rate of the
cavity modes. Furthermore, our results show that the fish
eye focuses a single photon to a diffraction-limited area
during the exchange of a photon between two antipodal
atoms, whose frequency is tuned between two resonances
of the cavity. We derived closed-form expressions for the
decay rates and dipole-dipole interaction of atoms in the
presence of losses and studied the fidelity of entangling
operations. We confirmed the validity of our analysis,
which relied on the Born-Markov approximation, by nu-
merically solving the Schrödinger equation. Finally, we
proposed a possible realization for the fish eye lens us-
ing tranformational plasmon optics and silicon-vacancy
centers that could open up the fish eye for practical ap-
plications.

We note that while this work has focused on atoms
whose frequencies were tuned in-between two resonances,
we expect that our analysis can be adapted near resonant
frequencies as well, where the Born-Markov approxima-
tion may not be accurate. In particular, our method
for numerically solving the Schrödinger equation for sin-
gle photons could shed further light on whether perfect
imaging is possible very close to the resonant frequencies
of the fish eye lens [35–38].
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APPENDIX

Appendix A: Derivation of a closed-form expression for the dipole-dipole interaction

In this section we show that the single-source Green function derived by Leonhardt [7, 12] for the 2D fish eye lens
can be written as a sum over the eigenmodes of the lens (Eq. (7)). This result enables us to connect the Green’s
function to the expressions obtained for the atomic properties from the master equation treatment.
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1. Green’s function of the 2D fish eye

The single-source Green’s function of Maxwell’s 2D fish eye (of radius R0, thickness b and refractive index profile
n(r) = 2n0

1+(r/R0)2 ) is a solution of the following equation

(∂α∂ν − δαν∂η∂η)Gνβ(r, r′, ω0)− ε(r)
ω2

0

c2
Gαβ(r, r′, ω0) = δαβδ(r− r′), (A1)

where α, β, µ, ν = x, y, z and summation is implied over repeated indices and ε(r) = n(r)2 =
[
2n0/(1 + (r/R0)2)

]2
is

the position-dependent electric permittivity. When b is chosen such that ω0 � πc/b, only the lowest TEM polarized
mode of the fish eye can be excited and the electric field is invariant along the z-axis (∂zE(r) = 0). The explicit
expression for the zz-components of the Green’s function (Eq. (15)) is then given by

Gzz(r1, r2, ω) = F (α1, α2)− F (α1, 1/α
∗
2), where F (α1, α2) = −Pν(ξ(α1, α2))

4b sin(πν)
, (A2)

where Pν is the Legendre function of (non-integer) oder ν,

ν =
1

2

[√
4
ω2

c2
R2

0n
2
0 + 1− 1

]
/∈ Z and ξ(α1, α2) =

|ζ(α1, α2)|2 − 1

|ζ(α1, α2)|2 + 1
,

where ζ(α1, α2) =
α1 − α2

α1α∗2 + 1
, and αj =

rj
R0︸︷︷︸
ρj

eiφj (j = 1, 2).

2. Virtual coordiantes

The stereographic transformation [8]

rj 7→
r2
j −R2

0

r2
j +R2

0

=
ρ2
j − 1

ρ2
j + 1

=: cos θj , (A3)

can be used to map any point (r, φ) on the real plane to a point (θ, φ) on the surface of a virtual sphere (where φ is
the same value in both coordinate systems). Using this transformation, we can simplify the definition of the Green’s
function

ζ(α1, α2) =
(ρ1 cosφ1 − ρ2 cosφ2) + i(ρ1 sinφ1 − ρ2 sinφ2)

ρ1ρ2 cos(φ1 − φ2) + 1 + iρ1ρ2 sin(φ1 − φ2)

|ζ(α1, α2)|2 =
ρ2

1 + ρ2
2 − 2ρ1ρ2 cos(φ1 − φ2)

(ρ1ρ2)1 + 1 + 2ρ1ρ2 cos(φ1 − φ2)

ξ(α1, α2) =
ρ2

1 + ρ2
2 − (ρ1ρ2)2 − 1− 4ρ1ρ2 cos(φ1 − φ2)

ρ2
1 + ρ2

2 + (ρ1ρ2)2 + 1
=

= −
[(

ρ2
1 − 1

ρ2
1 + 1

)(
ρ2

2 − 1

ρ2
2 + 1

)
+

(
2ρ1

ρ2
1 + 1

)(
2ρ2

ρ2
2 + 1

)
cos(φ1 − φ2)

]
=

= −
[

cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2)
]

= − cos θ12,

where θ12 is the spherical distance beetween two points, (θ1, φ1) and (θ2, φ2), on the surface of a unit sphere, since

cos θ12 = x1x2 =

 sin θ1 cosφ1

sin θ1 sinφ1

cos θ1

 ·
 sin θ2 cosφ2

sin θ2 sinφ2

cos θ2

 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). (A4)
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Similarly,

ζ(α1, 1/α
∗
2) =

(ρ1 cosφ1 − 1
ρ2

cosφ2) + i(ρ1 sinφ1 − 1
ρ2

sinφ2)
ρ1
ρ2

cos(φ1 − φ2) + 1 + iρ1ρ2 sin(φ1 − φ2)
,

|ζ(α1, 1/α
∗
2)|2 =

ρ2
1 + 1

ρ22
− 2ρ1ρ2 cos(φ1 − φ2)

(ρ1ρ2 )1 + 1 + 2ρ1ρ2 cos(φ1 − φ2)
,

ξ(α1, 1/α
∗
2) =

ρ2
1 +

(
1
ρ2

)2

− (ρ1ρ2 )2 − 1− 4ρ1ρ2 cos(φ1 − φ2)

ρ2
1 +

(
1
ρ2

)2

+ (ρ1ρ2 )2 + 1
=

= −
[(

ρ2
1 − 1

ρ2
1 + 1

)(
1− ρ2

2

ρ2
2 + 1

)
+

(
2ρ1

ρ2
1 + 1

)(
2ρ2

ρ2
2 + 1

)
cos(φ1 − φ2)

]
=

= −
[

cos θ1 cos(π − θ2) + sin θ1 sin(π − θ2) cos(φ1 − φ2)
]

= − cos θ′12,

where, now, θ′12 is the spherical distance between the points (θ1, φ1) and (π − θ2, φ2).

Now, we can write the Green’s function as

Gzz(r1, r2, ω) = −Pν(− cos θ12)− Pν(− cos θ′12)

4b sin(πν)
. (A5)

3. Expansion in Spherical harmonics

a. Expansion with respect to l

The full set of Legendre polynomials, Pl, form a complete, orthogonal basis on the space of smooth [−1, 1] → R

functions. This allows us to expand the Legendre function Pν in terms of the Legendre polynomials Pl

Pν(x) =

∞∑
l=0

clPl(x), where cl =
2l + 1

2

+1∫
−1

dxPl(x)Pν(x). (A6)

According to Abramowitz & Stegun, Section 8.14 [86]

+1∫
−1

dxPη(x)Pν(x) =
2

π2

2 sin(πη) sin(πν)[ψ(η + 1)− ψ(ν + 1)] + π sin(πν − πη)

(ν − η)(ν + η + 1)
, (A7)

where ψ is the digamma function and which expression, in case of η = l ∈ N, simplifies to

+1∫
−1

dxPl(x)Pν(x) =
2

π

(−1)l sin(πν)

ν(ν + 1)− l(l + 1)
, if l ∈ N. (A8)

This means that

Pν(x) =
sin(πν)

π

∞∑
l=0

(−1)l
2l + 1

ν(ν + 1)− l(l + 1)
Pl(x), (A9)

and we can write the Green’s function as

Gzz(r1, r2, ω) = − 1

4πb

∞∑
l=0

(−1)l
2l + 1

ν(ν + 1)− l(l + 1)

[
Pl(− cos θ12)− Pl(− cos θ′12)

]
. (A10)
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b. Expansion with respect to m

According to the addition theorem of spherical harmonics,

Pl(x1 · x2) = Pl(cos θ12) =
4π

2l + 1

+l∑
m=−l

Y m∗l (θ1, φ1)Y ml (θ2, φ2), (A11)

where the spherical harmonics are defined by

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (A12)

where Pml are the associated Legendre polynomials.
By using this theorem, and the property that Pl(−x) = (−1)lPl(x), we can write

P (− cos θ12) = (−1)l
4π

2l + 1

+l∑
m=−l

Y m∗l (θ1, φ1)Y ml (θ2, φ2),

P (− cos θ′12) = (−1)l
4π

2l + 1

+l∑
m=−l

Y m∗l (θ1, φ1) Y ml (π − θ2, φ2)︸ ︷︷ ︸
(−1)l−mYml (θ2,φ2)

,

P (− cos θ12)− P (− cos θ′12) = (−1)l
4π

2l + 1

+l∑
m=−l

[
1− (−1)l−m

]
Y m∗l (θ1, φ1)Y ml (θ2, φ2).

The expression inside the square brackets is zero if l and m have the same parity, and 2, if they have different parity.
The set of m values for which the corresponding term is non-zero is Ml = {−(l − 1),−(l − 3), . . . , (l − 3), (l − 1)}.
Using this notation, we can write the Green’s function as

Gzz(r1, r2, ω) = −2

b

∞∑
l=0

∑
m∈Ml

Y m∗l (θ1, φ1)Y ml (θ2, φ2)

ν(ν + 1)− l(l + 1)
(A13)

4. Expansion in cavity modes

Recall from Eq. (7) that the TEM eigenmodes of Maxwell’s fish eye with radius R0 and width b are

fl,m(r) =

√
2

bR2
0n

2
0

√
2l + 1

4π

(l −m)!

(l +m)!
Pml

(
r2 −R2

0

r2 +R2
0

)
eimφ =

√
2

bR2
0n

2
0

(−1)mY ml (θ, φ), (A14)

where r and φ are polar coordinates of r and cos θ =
r2−R2

0

r2+R2
0
. They satisfy the orthonormality condition,

δl,l′δm,m′ =

R0∫
0

dr r

2π∫
0

dφ

b∫
0

dz n2(r)f∗l,m(r, φ)fl′,m′(r, φ). (A15)

The corresponding (partially degenerate) eigenfrequencies are

ωl,m = ωl =
c

R0n0

√
l(l + 1) =: ckl. (A16)

Now, we can write the Green’s function in Eq. (A13) as

Gzz(r1, r2, ω/c) = −R2
0n

2
0

∞∑
l=0

∑
m∈Ml

f∗l,m(r1)fl,m(r2)

ν(ν + 1)− l(l + 1)

= −
∞∑
l=1

∑
m∈Ml

f∗l,m(r1)fl,m(r2)

(ω/c)2 − k2
l

, (A17)
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where we used the connection between ωl and l, and ω and ν. Using Eq. (8), we can then write the dipole-dipole
interaction within the fish eye in the following form

δω(r1, r2) =
d2
zω

2
0

~ε0c2
Re{Gzz(r1, r2, ω0)} =

d2
zω

2
0

~ε0c2

∞∑
l=1

∑
m∈Ml

f∗l,m(r1)fl,m(r2)

k2
l − (ω0/c)2

. (A18)

We note that this decomposition of the Green’s function in terms of the eigenmodes of the fish eye is a particular
example of Fredholm’s theorem [87].

5. Comparison with master equation results

Recall that the dipole-dipole interaction obtained from the master equation (see Eq. (14)) has the form

δω(r1, r2) =
d2
z

~ε0

∑
l,m

ω2
l

ω2
l − ω2

0

f∗l,m(r1)fl,m(r2). (A19)

Making use of the transformation

ω2
l

ω2
l − ω2

0

=

[
1 +

ω2
0

ω2
l − ω2

0

]
, (A20)

and the dipole-dipole interaction becomes

δω(r1, r2) =
d2
z

~ε0

∑
l,m

fl,m(r1)fl,m(r2) + ω2
0

∑
l,m

f∗l,m(r1)fl,m(r2)

ω2
l − ω2

0

 . (A21)

Since the modes fl,m form a complete basis, i.e.∑
l,m

f∗l,m(r1)fl,m(r2) = δ(3)(r1 − r2), (A22)

the first term inside the square brackets does not contribute if r1 6= r2, thus

δω(r1, r2) =
d2

~ε0

ω2
0

c2

∑
l,m

f∗l,m(r1)fl,m(r2)

k2
l − (ω0/c)2

, if r1 6= r2, (A23)

which is identical to Eq. (A18). This shows that the right-hand side of Eq. (14) can indeed be replaced by Eq. (8)
and Eq. (15).

More generally, using Eq. (A20) and Eq. (A22) we can express Eq. (A17) in the form

d2

~ε0

ω2
0

c2
Gzz(r1, r2, ω0) =

d2

2~ε0

∑
l,m

ωlf
∗
l,m(r1)fl,m(r2)

(
1

ω0 + ωl
− 1

ω0 − ωl

)
, (A24)

from which it is straighforward to show that

d2

~ε0

(ω0 + iκ)2

c2
Gzz(r1, r2, ω0 + iκ) =

d2

2~ε0

∑
l,m

ωl f
∗
l,m(r1)fl,m(r2)

{
(ωl + ω0)

κ2 + (ωl + ω0)2
+

(ωl − ω0)

κ2 + (ωl − ω0)2
(A25)

−i
(

κ

κ2 + (ωl + ω0)2
− κ

κ2 + (ωl − ω0)2

)}
, (A26)

which allows us to express the decay rates Eq. (22) and the dipole-dipole interaction (Eq. (23)) in the presence of
losses in the following closed form

Γ(ri, rj) =
2d2
z

~ε0c2
Im{(ω0 + iκ)2Gzz(ri, rj , ω0 + iκ)}. (A27)
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and

δω(ri, rj) =
d2
z

~ε0c2
Re{(ω + iκ)2Gzz(ri, rj , ω0 + iκ)}. (A28)

We note that Gzz(ri, rj , ω0 + iκ) is the solution of the following equation

(∂α∂ν − δαν∂η∂η)Gνβ(r, r′, ω0 + iκ)− n(r)2 (ω0 + iκ)2

c2
Gαβ(r, r′, ω0 + iκ) = δαβδ(r− r′), (A29)

which can be thought of as the dyadic equation for the fish eye lens with the complex refractive index
ñ(r) = n(r)(1 + iκ/ω0), since

n(r)2(ω0 + iκ)2 = n(r)2(1 + iκ/ω0)2ω2
0 = ñ(r)2ω2

0 . (A30)

Noting that for κ� ω0 the following approximations hold

Γ(ri, rj) ≈
2d2
zω

2
0

~ε0c2
Im{Gzz(ri, rj , ω0 + iκ)} and δω(ri, rj) ≈

d2
zω

2
0

~ε0c2
Re{Gzz(ri, rj , ω0 + iκ)}, (A31)

we find that photon loss from the modes of the fish eye of the form of Eq. (19) can simply be modeled with the
complex refractive index profile ñ(r).

Appendix B: Numerical Solution of the Schrödinger Equation

In this Appendix we describe an efficient way to numerically solve the Schrödinger Equation while including the
two atoms and the modes of the fish eye in the dynamics.

1. Hamiltonian

a. Electric dipole interaction of a single atom

Recall that the electric dipole coupling of a single atom, placed at ri, to the electromagnetic field modes of the fish
eye is given by

V = −di ·E(ri), where di = dz ẑ
(
σ†i + σi

)
, where σi = |gi〉〈ei|, (B1)

where dz is the magnitude of the transition dipole moment between the two states of the atom |ei〉 and |gi〉, whose
energy difference is ~ω0. Substituting Eq. (3) into Eq. (B1) and neglecting the counter-rotating terms in V , we arrive
at

VRWA =
∑
l,m

id

√
~ωl
bR2

0ε0

[
al,mσ

†Yl,m(θ, φ)− a†l,mσYl,m(θ, φ)
]
, (B2)

where n0 = 1 was assumed.

b. Two atoms

Assuming that there are two identical atoms positioned at r1 and at r2, the interaction term takes the form
VRWA(r1) + VRWA(r2). The total Hamiltonian then becomes

H = ~ω0σ
†
1σ1 + ~ω0σ

†
2σ2 +

∑
l,m

~ωla†l,mal,m +
∑
l

~gl

[
σ†1
∑
m

al,mYl,m(θ1, φ1) + σ†2
∑
m

al,mYl,m(θ2, φ2)

]
+ h.c., (B3)

where gl = idz√
~bR2

0ε0

√
ωl.
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The diagonal terms ~ω0

(
σ†1σ1 + σ†2σ2 +

∑
l,m a

†
l,mal,m

)
, simply give a constant energy shift to all eigenvectors in

the subspace of interest and can, therefore, be subtracted from the Hamiltonian. The modified Hamiltonian then
takes the form

H/~ =
∑
l

δl
∑
m

a†l,mal,m +
∑
l

gl

[
σ†1
∑
m

al,mYl,m(θ1, φ1) + σ†2
∑
m

al,mYl,m(θ2, φ2)

]
+ h.c., (B4)

where δl = ωl − ω0.

c. Opposite positions

If the two atoms are placed at opposite positions (θ = θ1 = θ2 and φ = φ1 = −φ2), then we can write the interaction
part of H as

V/~ =
∑
l

gl
∑
m

[
σ†1al,myl,m + σ†2al,m(−1)myl,m + h.c.

]
, (B5)

where yl,m = Yl,m(θ, φ). Here we used that Yl,m(θ,−φ) = (−1)mYl,m(θ, φ). Since the summation of m goes over
m = −l + 1,−l + 3, . . . l − 3, l − 1, m and l always have opposite parity, and we can pull out (−1)m = (−1)l+1 from
the summation, giving

V/~ =
∑
l

gl

[
σ†1 + (−1)l+1σ†2

]∑
m

al,myl,m + h.c. (B6)

We define an incomplete set of new modes,

Al =

∑
m al,myl,m
Nl

, N2
l =

∑
m

|yl,m|2, [Al, A
†
l ] = 1. (B7)

The normalization factor can be calculated as follows.∑
m∈M

|Yl,m(θ, φ)|2 =

+l∑
m=−l

1− (−1)l−m

2
|Yl,m(θ, φ)|2, where M = {−l + 1,−l + 3, . . . l − 3, l − 1}. (B8)

Recall the sum rule:

+l∑
m=−l

Y ∗l,m(θ1, φ1)Yl,m(θ2, φ2) =
2l + 1

4π
Pl(cos θ12), (B9)

where θ12 is the angle between point 1 and 2 on the unit sphere, and Pl is the lth Legendre polynomial. We use
Eq. (B9) to evaluate the two series:

+l∑
m=−l

|Yl,m(θ, φ)|2 =
2l + 1

4π
Pl(1) =

2l + 1

4π
, (B10)

+l∑
m=−l

(−1)l−m|Yl,m(θ, φ)|2 =

+l∑
m=−l

Y ∗l,m(π − θ, φ)Yl,m(θ, φ) =
2l + 1

4π
Pl
(

cos(π − 2θ)
)
, (B11)

where we used that (−1)l−mYl,m(θ, φ) = Yl,m(π − θ, φ) and that the angle between point (θ, φ) and point (π − θ, φ)
is θ12 = π − 2θ.

Using these new Al modes, the interaction can be written as

V/~ =
∑
l

glNl

[
σ†1 + (−1)l+1σ†2

]
Al + h.c. (B12)

Modes Al with different l parity couple to different combination of the two atoms. Let us define

σo =
σ1 + σ2√

2
, σe =

σ1 − σ2√
2

, (B13)
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and write

V/~ =
∑
l∈odd

Gl(Alσ
†
o +A†lσo) +

∑
l∈even

Gl(Alσ
†
e +A†lσe), (B14)

where

Gl =
√

2glNl =

√
d2
zc

~bR3
0ε0

√
(2l + 1)

√
l(l + 1)

4π

[
1− Pl(cos(π − 2θ))

]
. (B15)

2. Numerical analysis

a. Hilbert space

We are interested in the dynamics of a single excitation, i.e. we truncate the Hilbert space to

H = Span
{
|e〉|g〉|vac〉︸ ︷︷ ︸

|a〉

, |g〉|e〉|vac〉︸ ︷︷ ︸
|b〉

, {|g〉|g〉A†l |vac〉︸ ︷︷ ︸
|l〉

: l = 1, 2, . . . lmax}
}
, (B16)

and separate it into two subspaces

Ho = Span
{
σ†o|g〉|g〉|vac〉︸ ︷︷ ︸

|o〉

, {A†l |g〉|g〉|vac〉︸ ︷︷ ︸
|l〉

: l = 1, 3, 5, . . .}
}

(B17)

He = Span
{
σ†e|g〉|g〉|vac〉︸ ︷︷ ︸

|e〉

, {A†l |g〉|g〉|vac〉︸ ︷︷ ︸
|l〉

: l = 2, 4, 6, . . .}
}
, (B18)

each of which is governed by its own Hamiltonian block.

b. Hamiltonian

The following Ho, He act as two independent blocks on Ho and He.

Ho =
∑
l∈odd

[
δlA
†
lAl +Gl(Alσ

†
o +A†lσo)

]
=
∑
l∈odd

[
δl|l〉〈l|+Gl(|o〉〈l|+ |l〉〈o|)

]
(B19)

He =
∑
l∈even

[
δlA
†
lAl +Gl(Alσ

†
e +A†lσe)

]
=
∑
l∈even

[
δl|l〉〈l|+Gl(|e〉〈l|+ |l〉〈e|)

]
, (B20)

where

δl =
c

R0

[√
l(l + 1)−

√
l0(l0 + 1)

]
, (B21)

where l0 stands for the atomic frequency, i.e. ω0 = c
R0

√
l0(l0 + 1) and

Gl =

√
d2
zc

~bR3
0ε0

√
(2l + 1)

√
l(l + 1)

4π

[
1− Pl(cos(π − 2θ))

]
. (B22)

c. Results: Time series

We start the system from |ψ(0)〉 = |e〉|g〉|vac〉 = |a〉 = |o〉+|e〉√
2
, evolve it with U(t) = exp[−iHt/~], to get

|ψ(t)〉 =
1√
2

[
e−iHot/~|o〉+ e−iHet/~|e〉

]
=

1√
2

[∑
j

〈φo,j |o〉e−iΩo,jt|φo,j〉+
∑
k

〈φe,k|e〉e−iΩe,kt|φe,k〉
]
, (B23)
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where Ωo,j , |φo,j〉 and Ωe,k, |φe,k〉 are eigenvalues and eigenstates of Ho/~ and He/~, respectively.
Finally, we note that the numerical results shown in Fig. 5 are independent of the atomic parameters and the

thickness of the lens as only ratios of the dipole-dipole interaction, spontaneous decay and cooperative decay are
considered (each of which is proportional to the square of the prefactor

√
d2
zc/~bR3

0ε0).
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Miñano, New Journal of Physics 14, 083033 (2012).
[23] L. Xu and H. Chen, EPL (Europhysics Letters) 100,

34001 (2012).
[24] Y. Ma, T. Wu, and C. K. Ong, Journal of Optics 15,

125705 (2013).
[25] F. Sun and S. He, Progress In Electromagnetics Research

108, 307 (2010).
[26] F. Sun, X. C. Ge, and S. He, Progress In Electromag-

netics Research 110, 313 (2010).
[27] P. Kinsler and A. Favaro, New Journal of Physics 13,

028001 (2011).
[28] U. Leonhardt and S. Sahebdivan, Journal of Optics 13,

024016 (2011).
[29] L. A. Pazynin and G. O. Kryvchikova, Progress In Elec-

tromagnetics Research 131, 425 (2012).
[30] J. Liu, R. Mendis, and D. M. Mittleman, Applied Physics

Letters 103, 031104 (2013).
[31] M. A. Alonso, New Journal of Physics 17, 073013 (2015).

[32] S. A. R. Horsley, R. N. Foster, T. Tyc, and T. G. Philbin,
New Journal of Physics 17, 053050 (2015).

[33] S. He, F. Sun, S. Guo, S. Zhong, L. Lan, W. Jiang, Y. Ma,
and T. Wu, Progress In Electromagnetics Research 152,
1 (2015).

[34] G. Rosenblatt and M. Orenstein, Physical Review A 95,
053857 (2017).
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