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The Fermi-Hubbard model describes ultracold fermions in an optical lattice and exhibits anti-
ferromagnetic long-ranged order below the Néel temperature. However, reaching this temperature
in the lab has remained an elusive goal. In other atomic systems, such as trapped ions, low tem-
peratures have been successfully obtained by adiabatic demagnetization, in which a strong effective
magnetic field is applied to a spin-polarized system, and the magnetic field is adiabatically reduced
to zero. Unfortunately, applying this approach to the Fermi-Hubbard model encounters a funda-
mental obstacle: the SU(2) symmetry introduces many level crossings that prevent the system from
reaching the ground state, even in principle. However, by breaking the SU(2) symmetry with a spin-
dependent tunneling, we show that adiabatic demagnetization can achieve low temperature states.
Using density matrix renormalization group (DMRG) calculations in one dimension, we numerically
find that demagnetization protocols successfully reach low temperature states of a spin-anisotropic
Hubbard model, and we discuss how to optimize this protocol for experimental viability. By sub-
sequently ramping spin-dependent tunnelings to spin-independent tunnelings, we expect that our
protocol can be employed to produce low-temperature states of the Fermi-Hubbard Model.

I. INTRODUCTION

Ultracold fermions in an optical lattice can be quan-
titatively described by the Fermi-Hubbard model [1],
a central model of solid state physics that can de-
scribe Mott insulators, antiferromagnetism, and poten-
tially high-temperature superconductivity[2, 3]. Despite
substantial progress in cooling fermionic gases into the
Mott insulating phase [3–8], the antiferromagnetic phase
has remained out of reach due to the low transition tem-
perature (Néel temperature). Reaching the antiferro-
magnetic phase requires temperatures T ∼ J2/U , the
superexchange energy, where J is the tunneling and U is
the on-site interaction [9].

Many cooling schemes have been proposed for Fermi-
Hubbard and other atomic systems. These include evap-
orative cooling [10], entropy expulsion [11–13], entropy
localization [14, 15], disorder induced cooling [16], and
conformal cooling [17]. Progress has been made in a
number of recent experiments [18–23]. In Ref. [18],
antiferromagnetic correlations were observed at a tem-
perature 1.4 times the transition temperature, a regime
where high-temperature series expansions are not valid.
The longest range antiferromagnetic correlations were
observed in Ref. [19] with an exponential correlation
length of ξ ∼ 8 sites in a square lattice, consistent with
a temperature of T ∼ 0.2J .

Nevertheless, these methods have not reached regimes
with a temperature well below superexchange and a cor-
relation length longer than a handful of sites. Even the
strongest cooling methods, as demonstrated in Ref. [19],
reach only T ∼ 0.2J and ξ ∼ 8. Moreover, these meth-
ods rely on potential shaping techniques that are diffi-
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cult to transplant to higher-dimensional systems. The
temperatures are limited by various sources of heating
and atom decay in the system. For example, the heat-
ing due to spontaneous emission can be on the order of
1kB per second [24, 25]. Other heating processes include
three-body collisions [3]. In order to reach long-ranged
antiferromagnetic order, the initial entropy needs to be
removed substantially faster than the rate at which these
heating mechanisms introduce entropy.

In atomic and solid state systems, cooling through adi-
abatic demagnetization has been proposed [9, 26–32], and
implemented experimentally [33–39] in a variety of situ-
ations. Spins begin aligned with an extremely strong ex-
ternal magnetic field, so that the system is in the ground
state. As the field is slowly ramped to zero, the system
remains in the ground state, ending close to the desired
ground state of the model. Such a protocol has recently
been successful in cooling ions obeying Ising dynamics to
a temperature displaying antiferromagnetism [39].

However, as explained below, such a protocol fails
for the Fermi-Hubbard model because the spin-polarized
ground state of a strong external field is not adiabati-
cally connected to the ground state of the Fermi-Hubbard
model,

HFH = −J
∑
〈i,j〉,σ

(
c†jσciσ + h.c.

)
+ U

∑
i

ni↑ni↓ (1)

Here σ ∈ {↑, ↓},
∑
〈i,j〉 sums over nearest neighbors, J

is the tunneling energy, and U is the onsite interaction

energy. The fermionic annihilation operator ciσ destroys

a particle of spin σ on site i, and niσ = c†iσciσ is the
corresponding number operator.

The reason that adiabatic demagnetization fails for the
Fermi-Hubbard model is its global SU(2) spin symmetry.
An external field breaks this symmetry down to the U(1)
symmetry associated with rotation about the magnetiza-
tion direction, but even with this reduced symmetry, the
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magnetization along the magnetic field direction is a con-
served quantity. Hence, the initial state, with maximal
magnetization along this direction, is not adiabatically
connected to the zero-magnetization ground state of in-
terest. Rather, as the magnetic field is ramped to zero,
levels cross and the initial magnetized state remains an
eigenstate, merely becoming a highly excited one. Thus,
unlike the Ising systems studied in Refs. [26, 33, 39],
which lack an SU(2) symmetry, adiabatic demagnetiza-
tion is incapable of reaching the Hubbard ground state.

We show that by breaking the SU(2) symmetry of the
Fermi-Hubbard model by making the tunnelings spin-
dependent, adiabatic preparation may be used to prepare
low temperature antiferromagnetic states. Such spin-
dependent tunnelings can be implemented in experiment
in a few alternative ways, as described in Sec. IV. With
spin-dependent tunnelings, the initial ground state of the
strong external field is adiabatically connected to a low
energy antiferromagnetic state. We demonstrate this ex-
plicitly in one dimensional systems numerically using the
density matrix renormalization group (DMRG) method
[40, 41], but we expect the idea to work more generally,
both for higher dimensions and for preparing other low-
temperature states.

Using DMRG calculations [42, 43], we compute the
one-dimensional ground state phase diagram for the spin-
anisotropic model, and we provide and analyze adia-
batic demagnetization protocols to reach its ground state.
We demonstrate in 1D that these protocols successfully
reach low-temperature states that exhibit long-range, an-
tiferromagnetic spin correlations for the system at half-
filling, and that exhibit observables that are close to their
ground state values. The model parameters necessary to
implement this procedure are readily achievable in cur-
rent experiments.

In Sec. II, the spin-anisotropic Hubbard model is dis-
cussed. Sec. III shows that low-temperature states can
be obtained via ramps with modest timescales. In Sec.
IV, we discuss the experimental viability of our protocol.
Sec. V concludes.

II. SPIN-ANISOTROPIC HUBBARD MODEL

We study a Fermi-Hubbard model with spin-dependent
tunnelings on a one-dimensional lattice of L sites,

HA = −
∑
〈i,j〉,σ

Jσ

(
c†jσciσ + h.c.

)
+ U

∑
i

ni↑ni↓ (2)

Here Jσ is a spin-dependent tunneling energy. We con-
sider positive Jσ and U . Throughout, we will focus on
the model at half-filling, i.e. with one atom per site,
although many of the ideas and results are more gen-
eral. The usual Fermi-Hubbard model is recovered when
J↑ = J↓.

When J↑ 6= J↓, HA lacks the SU(2) rotation sym-
metry that impeded adiabatic demagnetization for the

usual Fermi-Hubbard model. One can imagine a two-step
protocol to reach low temperatures of the usual Fermi-
Hubbard model: (1) First adiabatic demagnetization is
used to produce a low-temperature ground state of HA.
(2) Then the tunneling rates are adiabatically changed
to J↑ = J↓.

In this paper we restrict ourselves to studying the first
step of this procedure. Besides its interest as a step in
producing low-temperature ground states of the usual
Hubbard model, the low-temperature states of the spin-
anisotropic HA may be of interest in their own right.
The model is challenging to solve and strongly correlated,
similar to the usual Hubbard model, and we find that its
ground states have similar antiferromagnetic magnetic
properties to the usual Hubbard model but with stronger
long-range order, as we demonstrate below.

To characterize the magnetic order, we consider spin-
spin correlations

〈
Sαi S

α
j

〉
between sites i, j where α ∈

{x, y, z} and

Sxi =
1

2

(
c†i,↓ci,↑ + c†i,↑ci,↓

)
, (3)

Syi = i
1

2

(
c†i,↓ci,↑ − c

†
i,↑ci,↓

)
, (4)

Szi =
1

2
(ni,↑ − ni,↓) . (5)

Although for the ordinary Hubbard model
〈
Sαi S

α
j

〉
is in-

dependent of α due to the SU(2) symmetry, this is not
true for HA. However,

〈
Sxi S

x
j

〉
=
〈
Syi S

y
j

〉
due to the

remaining U(1) symmetry of HA. We also consider the
on-site number fluctuations,

σ2
n = 〈n2〉 − 〈n〉2, (6)

and the energy.
As Jσ become large, we approach the limit of nonin-

teracting particles, and long-range correlations should go
to zero. In the limit Jσ � U , the model HA approaches
an XXZ model,

HI =
∑
〈i,j〉

KzS
z
i S

z
j +K⊥

(
Sxi S

x
j + Syi S

y
j

)
, (7)

where Kz =
(
J2
↑ + J2

↓

)
/2U and K⊥ = J↑J↓/U [44].

When one of the Jσ goes to zero, we recover an Ising
model. Thus in this J↑/J↓ → 0 (or J↓/J↑ → 0) limit,
we expect 〈Szi Szj 〉 correlations to dominate over x and y
spin-correlations.

Figure 1 shows expectation values computed in the
first excited state of HA for an L = 10 chain at half-
filling as the dimensionless parameters J↑/U and J↓/U
are varied1. We plot the first excited state because this

1 The DMRG calculations were performed with three sweeps; the
energy variance (defined as 〈H2−〈H〉2〉) did not exceed 10−7U2

which resulted in a maximum bond dimension of 460. By cal-
culating observables for chains with L = 6 and L = 16, we find
that finite size effects cause variations in the observables studied
by as much as 15%.
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FIG. 1: Short and long range spin correlations and on-site number fluctuations in the effective ground state for Eq.
(2) with L = 10 at half-filling.

is the state which is adiabatically connected to the fer-
romagnetic initial state of a strong external magnetic
field by ramps we study in Sec. III. In the thermody-
namic limit, the first excited state is a microcanonical
zero-temperature state. The left panels show nearest-
neighbor spin correlations, 〈Sx5Sx6 〉 on the top and 〈Sz5Sz6 〉
on the bottom. Both are negative, indicating that the
system exhibits antiferromagnetism. Along the diagonal
J↑ = J↓, the spin-isotropic model is recovered and the
correlators are equal, 〈Sx5Sx6 〉 = 〈Sz5Sz6 〉. In the Ising
limit when either Jσ → 0, 〈Sz5Sz6 〉 reach their maximum
values.

The bottom right shows longer range correlations along
the z axis. These correlations are on the same order as
the nearest neighbor correlations, which is indicative of
long range magnetic order of the model in the regimes
studied. Finally, the top right shows σ2

n which increases
monotonically with Jσ/U .

III. ADIABATIC RAMPS

To prepare low-temperature states of HA, we apply a
large transverse magnetic field h(t) and initialize the sys-
tem in the fully polarized band insulating state that is
the ground state of this Hamiltonian. We then adiabati-
cally ramp the field to zero. The Hamiltonian describing
this setup is

H(t) = HA − h(t)
∑
i

Sxi . (8)

To keep the dynamics as adiabatic as possible, the mag-
netic field should be ramped slowly when the energy gap
is small. However, it is not feasible to compute or mea-
sure the energy level diagram before each ramp in an
experiment, so we consider an exponential ramp,

h(t) = h0 exp(−t/τ)− h0 exp(−tf/τ), (9)

where tf is the final time and h0 characterizes the initial
field strength. We shift the exponential ramp shape so

that h(tf ) = 0. In the limit τ → ∞, the ramp is fully
adiabatic. We choose an exponential ramp shape be-
cause it is a convenient choice that reflects the fact that
the energy gap tends to be smallest at low h. More opti-
mal ramps could be engineered though techniques from
quantum control. Even though our exponential ramps
are not optimized, we show that they can still be effec-
tive at reaching low-temperature states.

In an experiment, one would take h0 � {U, J} so
that the initial Hamiltonian is dominated by the mag-
netic field, and the initial state is fully polarized along
the x-axis, aligned with the transverse field. Such a state
can be easily prepared in the lab by rotating the spins
into the desired direction with a π/2 Rabi pulse. In our
simulations we assume that the initial state has exactly
zero entropy. In experiment, the initial band insulator
will have nonzero entropy, as we discuss in Sec. IV. The
transverse field can be applied via an oscillating electro-
magnetic field on resonant with the transition between
the states used for the |↑〉 and |↓〉 states of the model.
If these are hyperfine states, a radio-frequency or mi-
crowave field can be used; if these are different electronic
states, a laser can be used. This process introduces only
a negligible amount of entropy into the system. Since
the frequency of the electromagnetic field oscillation is
orders of magnitude larger than the frequency associated
with the transverse field and other terms in the Hamil-
tonian, the rotating wave approximation is accurate and
the coupling appears as a transverse field in the rotating
frame.

To reduce computational times, our ramps take h0 =
0.3U , much weaker than is needed for h to dominate HA,
and we ramp according to Eq. (9) with tf = 2τ . That is,
we start our calculations after much of the ramp start-
ing from h � {U, J} has occurred. As such, our initial
condition already differs somewhat from the h→∞ fer-
romagnetic state |→→→ · · · 〉 that is easy to prepare ex-
perimentally. An experiment would start from a much
larger h where |→→→ · · · 〉 is very close to the ground
state and ramp down from there. Our procedure is sim-
ply for numerical convenience: although it’s computa-
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FIG. 2: Various observables after a ramp of H(t) with J↑ = 0.6U , J↓ = 0.05U , L = 10 at half-filling. In the top
panels, τ = 1000/U , In the bottom panels τ = 500/U . Thin horizontal lines indicate effective ground state
observables and thick lines indicate observable dynamics during the ramp. In the top ramp, nearest-neighbor
correlations oscillate about a mean value that converges to within 25% of the effective GS value. In the bottom
ramp the mean value of all nearest-neighbor correlations converges within 50% of the effective GS value In all cases,
significant nonzero correlations occur between well-separated sites.

tionally expensive to simulate the dynamics for the very
large h, experiments can ramp down quite quickly over
this regime since the energy gap between the ground state
and any excited state remains large when h > 0.3U .
Consequently, the adiabatic approximation is maintained
even for fast ramps in this regime.

Since H(t) lacks the SU(2) symmetry of the original
Fermi-Hubbard model due to the spin-dependent tunnel-
ing, the ferromagnetic ground state of H(0) is adiabati-
cally connected to a low-energy antiferromagnetic eigen-
state of H(tf ) = HA. However, this eigenstate is not the
ground state of HA: one energy level crossing still occurs
during the h rampdown in our model, so that the fer-
romagnetic initial state is adiabatically connected to the
first excited state of HA rather than the ground state.

This level crossing originates from an additional sym-
metry of H(t). The Hamiltonian is invariant under a
combined lattice reflection and magnetic reflection about
the xy-plane,

ci,σ 7→ cn−i+1,−σ. (10)

This discrete symmetry persists even when J↑ 6= J↓, and
it prevents the t = 0 ground state from connecting to the
ground state of HA.

This is not a problem for reaching zero-temperature
states, for two reasons. First, this symmetry is easily
broken by a small perturbation on a single site in the lat-
tice. After applying such a perturbation, the initial state
is adiabatically connected to the true ground state of the
model. Second, in the thermodynamic limit (L → ∞),
the difference between any observables evaluated in the
ground state and observables evaluated in the first ex-
cited state (which we call the “effective ground state”)
becomes negligible. This intuitive fact follows, for exam-
ple, from the eigenstate thermalization hypothesis [45],
which states that local observables in an eigenstate are
the same as in the canonical ensemble with the same en-
ergy density.

The top panels of Figure 2 show the dynamics during
a ramp with J↑ = 0.6U , J↓ = 0.05U , and τ = 1000/U
in an an L = 10 chain, obtained through DMRG simula-
tions, and demonstrate that observables and correlations
out to substantial distances reach values close to the ef-
fective ground state2. In Sec. IV, we show that the

2 The DMRG calculations for all ramps studied were performed
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parameters used are reasonable for a cold atoms experi-
ment. The left panel shows that energy and σ2

n converge
closely to the effective ground state values after about
3τ . Nearest neighbor correlations 〈Sz5Sz6 〉 and 〈Sx5Sx6 〉
exhibit substantial oscillations about a mean value that
converges near the effective ground state value. How-
ever, oscillations remain at all times studied. The right
panel shows longer range correlations 〈Sz3Sz8 〉, 〈Sx3Sx8 〉,
and 〈Sz2Sz8 〉. The mean value of correlations for both of
these z correlations converges to a value which is similar
to, but about 20% smaller in absolute value than the ef-
fective ground state value. 〈Sx3Sx8 〉 converges closely to
its effective ground state value, which is very nearly zero.
The agreement of short range and long range spin cor-
relations, energy, and σ2

n exhibited after the ramp with
their effective ground state values each indicate that the
ramp is successful in preparing a low-temperature state
of the model.

0.05 0.10 0.15 0.20
h/U

0.05

0.10

0.15

(Ei-E0)/U

FIG. 3: Energy gap between excited states and effective
ground state of HA on an L = 10 chain at half-filling
with J↑ = 0.6U , J↓ = 0.5U as a function of h. Dark line
shows energy gap between the effective GS and lowest
excited state.

The oscillations exhibited in all observables except the
energy can be understood as an indication that the sys-
tem is driven into a superposition of different eigenstates
as the ramp progresses, i.e. the ramp is not completely
adiabatic. The system is excited when the energy gap
between the effective ground state and excited states is
small. The energy level diagram in Figure 3 shows that
for J↑ = 0.6U , J↓ = 0.05U in an L = 10 lattice at half-
filling, the energy gap is smallest near h = 0.15U . This
agrees with Figure 2, which shows that the system de-
velops oscillations in its observables when h is lowered
through this value (which happens in our ramps around
t = 0.5τ).

with a timestep dt = 0.5/U , a maximum of 20 sweeps per
timestep; the discarded weight did not exceed 10−10 at each
timestep, resulting in a maximum bond dimension of 240.

The bottom panels of Figure 2 show that even in a
shorter ramp, with τ = 500/U , all observables except
the longest range Sz correlations shown here are close to
their effective ground state values. Although all observ-
ables deviate more from their effective ground state val-
ues than for the τ = 1000/U ramp, the nearest neighbor
correlations are within 5% of their ground state values
and even the Sz correlations with separations of 5-sites
and 6-sites grow to substantial values, about half of what
they achieve in the effective ground state.
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●

●

2 4 6 8
j

-0.15

-0.10

-0.05

0.05

0.10

S1
z S j

z

● Effective GS
τ=10000/U
τ=1000/U
τ=500/U
τ=100/U

FIG. 4: Spin correlations along z-axis as a function of
distance. Plot shows 〈Sz1Szj 〉 vs. j, where j indexes the
lattice site for ramps with different time constants τ on
an L = 10 lattice at half-filling with J↑ = 0.6U ,
J↓ = 0.05U .

The observation that when starting from an uncorre-
lated state, correlations take more time to develop for
sites that are farther apart is a natural consequence of
the finite propagation velocity of information, i.e. the
“light-cone” [46]. The rate of this growth can be formally
captured by Lieb-Robinson bounds for information prop-
agation. Hence, we expect that the time τ of the ramp
will limit the range of correlations; larger τ will allow
longer-range correlations to develop. This is borne out by
the findings shown in Figure 4. The effective ground state
value and the final mean values of 〈Sz1Szj 〉 for j = 2, . . . , 9
are plotted for ramps of various time constants in a sys-
tem with J↑ = 0.6U and J↓ = 0.05U . The mean values
of observables are calculated by averaging over an in-
terval of 200/U after tf . This interval comparable to the
timescale of the shortest ramps we study. For the longest
ramp, with a time constant of τ = 10, 000/U , all correla-
tions differ from the effective ground state values by less
than 1%. As the ramp time τ is reduced, correlations de-
viate more from their effective ground state values, with
longer range correlations deviating most strongly.

We note that significant correlations across several lat-
tice sites are observed both in the center of the chain, as
shown in Figure 2, and between cites on the edge of the
chain, as shown in Figure 4. This confirms that our adia-
batic protocol leads the entire chain to a low-temperature
state. This is in contrast to other protocols, such as in
Ref. [36]. In this protocol, a large magnetic field gradi-
ent is applied and the initial state is a domain wall. The
g‘radient is then adiabatically ramped to zero in order
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to produce the system’s ground state. While a magnetic
gradient also breaks the SU(2) symmetry, this procedure
only builds correlations near the region of the chain where
the external field pass through zero. Our protocol has the
advantage that correlations develop (roughly) uniformly
through the entire chain.

The convergence of observables to their effective
ground state values and the development of long range
correlations are not particular to the parameters chosen
for the ramps in Figure 2. In Table 1, observables are
computed after the ramping procedure is completed in
an L = 10 lattice at half-filling for numerous choices of
the dimensionless parameters J↑/U and J↓/U , demon-
strating that the effective ground state with correlations
between well-separated sites can be prepared in a robust
region of parameter space. The parameters are all chosen
in the regime U/J ∼ 10, as many experiments operate
in this regime where antiferromagnetic correlations are
strongest [19].

IV. EXPERIMENTAL REALIZABILITY

Several experimental methods have been developed to
implement state-dependent lattices needed for our de-
magnetization protocol. One straightforward procedure
is to employ a dual species experiment. Each atomic
species experiences a different trap depth and hence dif-
ferent tunneling rates [47–49]. However, we note that this
is insufficient for our demagnetization scheme, because
the different species will experience different effects from
the transverse field.

To the spin-dependent lattice, there are at least three
possible techniques. One can use alkaline earth atoms,
using the long-lived 3P0 clock state and ground electronic
state as the two levels [50]. These states typically experi-
ence different optical lattice depths as they have different
AC polarizabilities at most wavelengths. Alternatively,
a rapidly oscillating transverse field gradient can be ap-
plied and used to tune the respective tunneling energies
of different hyperfine states [51]. If the frequency of the
oscillating field gradient is chosen carefully, the associ-
ated heating processes can be suppressed [52] Finally, a
spin-dependent lattice can be implemented by detuning
near the hyperfine splitting [53, 54]. In all cases, when
these lattices are applied to ultracold fermionic atoms,
a Hubbard model with spin-dependent tunneling rates is
realized.

An assumption of our calculations is that the initial
state is in the ground state of the Hamiltonian with
h0 = 0.3U . This is an idealization: in experiment it is
not possible to ramp from a zero entropy spin-polarized
band insulator to the h0 = 0.3U ground state perfectly
adiabatically, though since the energy gap is large, the
entropy introduced by this process will not be significant
compared to the heating caused during the ramp from h0
to zero.

More importantly, it is also not possible to prepare a

spin-polarized band insulator at zero entropy. Since adi-
abatic demagnetization cannot remove entropy from a
system, any initial entropy will remain in the final state.
For example, Ref. [55] produces band insulators with
entropies on the order of 0.25kB per particle. In princi-
ple, this is low enough to prepare states below the Néel
temperature if the ramp was perfectly adiabatic. Fur-
thermore, the current state of the art, as presented in
Ref. [56], achieves a doublon band insulator with less
than 0.02kB per particle, a negligible amount.

The parameters chosen in the simulations are exper-
imentally realizable with ultracold atoms. The lattice
depth and atomic species can be chosen so that the di-
mensionless parameters J↑/U , J↓/U are on the order of
the ratios shown in Table 1, while the timescales of the
ramps remain manageable. For example, with an up-
spin lattice depth V↑ ∼ 5ER, a down-spin lattice depth
V↓ ∼ 15ER, and an s-wave scattering length as ∼ 0.02a,
where ER = ~2π2/2ma is the recoil energy, a is the lattice
spacing, and m is the mass of the atoms, we obtain the
dimensionless parameters J↑/U ∼ 0.3, J↓/U ∼ 0.05 [57].
At these lattice depths and lattice width, the system is
well described by a Hubbard model.

Since our ramps are not optimized, the timescales we
currently require are only just within experimental life-
times of ultracold matter. For lithium in a lattice of
wavelength 532 nm, for example, the recoil energy is on
the order of 30 kHz. In this case, the onsite interaction
is U ∼ 6 kHz, leading to a time constant for the expo-
nential ramps τ = 1000/U on the order of 200 ms. For
our exponential ramps which run for 2τ , this is less than
typical lifetimes of ultracold matter [24].

The ratios for Jσ/U studied here have not been op-
timized for experimental implementation, and the ramp
times can likely be substantially decreased by fine tun-
ing these parameters. There is also significant room for
optimization beyond the exponential ramps considered
here that could bring down the timescales of the ramps.
We optimized such a ramp for an L = 4 lattice, where
the methods of Ref. [58] could be easily implemented.
With these methods, we designed highly adiabatic ramps
which produced low-temperature states in a total time of
100/U .

V. CONCLUSIONS

We propose a protocol to use adiabatic demagnetiza-
tion from a readily-prepared spin-polarized band insu-
lator to low-temperature states of the Fermi-Hubbard
model with spin-dependent tunnelings in Eq. (2). The
spin-dependent tunnelings overcome the impediment to
adiabatic demagnetization in the usual Fermi-Hubbard
model. This procedure could be the first step of prepar-
ing ground states of the usual Fermi-Hubbard model,
by following it by adiabatically bringing the parameters
to J↑ = J↓. Moreover, similar techniques could be de-
veloped to access other low temperature states of spin
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TABLE I: Final state expectation values for adiabatic ramps at various J↑/U, J↓/U, and τ . For all ramps,
h0 = 0.3U , tf = 2τ . Observables are calculated by averaging over an interval of 200/U after tf . For τ ∼ 10, 000, all
observables converge within two significant digits. For shorter ramps, short-range correlation converge better than
long-range correlations. Convergence is best for highly anisotropic J↑ vs. J↓.

J↑/U J↓/U 〈E〉/U 〈Sz
5S

z
6 〉 × 10 〈Sz

3S
z
8 〉 × 10 〈Sx

5S
x
6 〉 × 100 Nvar × 10

0.6 0.05

τ = 100/U -1.9209 -1.047 -0.148 -1.16 2.232
τ = 500/U -2.0643 -1.313 -0.617 -2.59 2.192
τ = 1000/U -2.1050 -1.408 -0.915 -3.40 2.172
τ = 10000/U -2.1346 -1.526 -1.235 -4.49 2.162
GS -2.1349 -1.531 -1.242 -4.49 2.149

0.5 0.05
τ = 1000/U -1.6034 -1.490 -0.936 -3.82 1.864
GS -1.6370 -1.608 -1.329 -4.70 1.860

0.3 0.05

τ = 100/U -0.5133 -0.085 -0.087 2.38 0.875
τ = 500/U -0.6508 -1.385 -0.064 -4.82 1.029
τ = 1000/U -0.6884 -1.514 -0.584 -2.56 1.064
τ = 10000/U -0.7462 -1.746 1.469 -5.48 1.117
GS -0.7467 -1.758 -1.495 -5.48 1.115

0.6 0.07
τ = 1000/U -2.1211 -1.128 -0.528 -2.09 2.230
GS -2.2013 -1.391 -1.086 -4.66 2.249

0.5 0.07
τ = 1000/U -1.6209 -1.357 -0.582 -3.22 1.974
GS -1.7002 -1.458 -1.165 -4.85 1.957

0.3 0.07
τ = 1000/U -0.6915 -1.004 -0.062 -2.94 1.091
GS -0.8013 -1.553 -1.297 -5.49 1.203

models, such as the high temperature superconducting
phases, and our scheme also works in principle at den-
sities besides half-filling. Thus it could give a route to
accessing other behaviors in the Hubbard model, e.g.
bad metal and pseudogap behaviors, and superconduct-
ing phases.

To quantitatively assess how efficient this protocol is,
we numerically calculated the dynamics of observables
including spin correlations under ramps that can realis-
tically be implemented in cold atoms experiments. Our
calculations were for one-dimensional systems, where we
can employ DMRG. The model’s low-energy states ex-
hibit long range antiferromagnetic order, and our adia-
batic protocol successfully develops these long range cor-
relations in a robust region of the phase diagram.

Finally, we note that our procedure for generating
ground states of the spin-anisotropic model could be
adapted to generate ground states of the spin-isotropic
Fermi-Hubbard model. In principle, the ground state
of the spin-isotropic model is adiabatically connected to

the effective ground state of HA by tuning the tunnel-
ing strengths. Once the ground state of the anisotropic
Hamiltonian is prepared, the tunneling strengths can be
ramped to obtain a ground state of the original Hub-
bard Model. We expect that the timescales required
to maintain adiabaticity may be similar to those of the
ramps described above and therefore compatible with the
timescales available in experiment.
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