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We present an in-depth theoretical study of N2 photoionization in the region between the second
(2Πu) and third (2Σ+

u ) ionization thresholds. In this region, the electronic continuum includes
the Hopfield series of autoionizing states, corresponding to excitations to nsσd, ndσd and ndπg
molecular orbitals. Calculations have been performed by using the XCHEM code, which makes use
of a Gaussian/B-spline hybrid basis in the framework of a close-coupling approach. We provide total
and partial photoionization cross sections for all open channels, energy positions and widths for the
five lowest resonances of each series and, when resonances are well isolated from each other, Fano
and Starace parameters. We also discuss how the coupling between the two series of overlapping
resonances, nsσd and ndσd, affects their energies and autoionization widths. These results show the
potential of the XCHEM method to describe resonant photoionization in molecules.

I. INTRODUCTION

Advances in attosecond pulse generation have made
possible the study of electron dynamics in molecules on
extremely short time scales, yielding direct insight into
how electronic rearrangement may affect chemical prop-
erties [1–5]. Inherent to these pulses are their high energy
photons, as well as their broad spectra, allowing for ion-
ization via absorption of a single photon and via multiple
ionization channels, which when coupled lead to a very
rich set of ultrafast processes, such as autoionization or
Auger decay.

A necessary condition for any computational model
aiming at studying these processes is the capability to
describe, with high accuracy, the electronic continuum
of the systems under investigation. This becomes ex-
tremely challenging with increasing size of the system, as
the model must be able to represent both the intricate
short range structure of complex molecular systems, as
well as the long range nature of the continuum electron.

Existing methods, broadly speaking, deal with this dif-
ficulty in one of two ways. Either by employing methods
specifically designed to provide a high level description of
the long-range part of the electronic continuum, includ-
ing autoionizing states, with the help of grid or pseudo-
grid methods, or by partially disregarding, in one way
or another, electron correlation [5]. For computational
reasons, the former methods are difficult to generalize to
systems beyond atomic or the simplest diatomic cases.
Methods belonging to the second category allow one to
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describe ionization of relatively large molecules, but at
a price: they are inherently incapable of describing au-
toionization and Auger decay.

Underpinning these limitations are the difficulties to
merge existing computational methods that are able to
provide an accurate description of electron correlation
in molecular bound states (but cannot model contin-
uum electrons) with those designed to represent scatter-
ing states in few-electron systems, which would be pro-
hibitively expensive for normal molecules. The former,
being the techniques of quantum chemistry, generally rely
on an expansion of the wave function in terms of Gaussian
basis functions, while the latter frequently rely on the use
of compact-support functions such as B-splines [6–9] or
discrete variable representations in combination with fi-
nite elements methods (FE-DVR) [10, 11]. More recently
it has been shown that B-Splines can be used in combi-
nation with algebraic diagramatic construction (ADC)
to obtain photoionization cross sections in atomic sys-
tems [12] and to study the effect of electron correlation
in high harmonic generation [13]. Both, B-spline and
FE-DVR based methods, have proven highly successful
in their respective domains of application, due to the
analytical simplicity of Gaussian functions and the flexi-
bility of B-splines and FE-DVR at long range, but prove
ill suited beyond it.

The XCHEM method has recently been proposed as
an efficient way to merge the two approaches. It relies
on a hybrid description of the wave function in terms
of Gaussian functions and B-splines, allowing to over-
come the problems associated with either type of func-
tion. The applicability of the XCHEM method in atomic
and small diatomic benchmark systems has been well es-
tablished [14, 15]. The next step is to apply the method
to a poly-electronic molecular system. An excellent can-
didate is molecular Nitrogen, as it includes all the diffi-
culties entailed by molecular scattering problems, while
still being within the limits of what can be computed
with existing methods, thus allowing us to make a com-
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parison. In a recent work by the authors [16] this was
demonstrated for the total photoionization cross sections.

The complex continuum structure of Nitrogen has been
experimentally studied for almost a century, yielding in-
creasingly more accurate results with the availability of
new light sources. Of particular interest has been the
study of the ionization continuum between the second
and third ionization thresholds, which was found to be
strongly impacted by the presence of three series of au-
toionizing states, whose decay leaves the ionized molecule
in either a 2Πu or 2Σ+

g state. Two of these series be-

long to the Σ+
u symmetry of the neutral state (which

comprises both the ion and the ejected electron) and ac-
count for most of the structure seen in the photoion-
ization spectrum. Experimentally these structures were
first observed by Hopfield [17]. Ogawa and Tanaka [18]
subsequently confirmed the existence of a third series.
Since then a multitude of works have provided better res-
olution [19, 20], and investigated the relevance of vibra-
tion and rotation [21–23] and isotopic effects [24]. More
recently time dependent measurements of the autoion-
ization process have been carried out using an ionizing
attosecond XUV pump pulse, alongside a delayed, IR
femtosecond probe pulse [25]. In contrast with the abun-
dance and history of experimental data available for the
Hopfield series, their theoretical description has proven
to be considerably more elusive due to the central role
of correlation in the continuum states of this system. A
few theoretical investigations of the autoionizing states
in question, based on Multi Channel Quantum Defect
Theory [26] and multichannel frozen-core Hartree-Fock
approximation [27] do exist. However, they account for
electron correlation only to a limited degree and rely on
methods that do not easily scale to larger systems.

In this work we present the results obtained by using
the XCHEM code and perform an in-depth analysis of
the partial and total photoionization cross sections for
molecular Nitrogen between the second and third ion-
ization thresholds. As mentioned above, reference [16]
has confirmed the accuracy of the total cross section
by comparison with experiment and furthermore investi-
gated the claims [28] of relevance of nuclear motion and
non-adiabatic behavior. In the present work, we have ex-
tended these calculations to partial photoionization cross
sections. We have extracted energy positions and widths
for the five lowest resonances of each series and, when
resonances are well isolated from each other, Fano and
Starace parameters. We have also investigated the inter-
action between the two series of interfering resonances of
Σ+
u symmetry. As suggested in [16], the strength of this

interaction is mostly determined by electron correlation.

II. THEORY

The theoretical model used in this work is the XCHEM
approach, introduced in references [14, 29]. The core
idea of the XCHEM code is the combined use of: a) a

close coupling expansion (CCE) of the molecular wave-
function Ψ(x1, · · · ,xNe), b) quantum chemistry (QC)
methods exploiting the capabilities of commercial quan-
tum chemistry packages (QCP) to describe the molecular
short range structure, and c) a carefully designed set of
basis functions comprised of Gaussians centered at the
atomic sites, Gaussians centered at the molecular centre
of mass (CoM) and B-Splines also centered at the CoM.
The union of the latter two sets of basis functions is called
a GABS basis and was introduced in reference [29]. Here
we summarize how QCPs, CCE and GABS combine to
achieve an accurate description of photoionization pro-
cesses in molecular systems. For more information on the
theoretical details of this method, as well as on its appli-
cation to the photoionization of He, H2 and Ne, which
confirmed the viability of the XCHEM approach and mo-
tivated this work, we refer the reader to the past publi-
cations [14, 15].

A. XCHEM Approach

The construction of a molecular singly-ionized scatter-
ing function Ψ must account for the interaction of the
short range structure of the molecular system, with the
N th
e electron liberated to the continuum. We begin by

expanding Ψ in terms of a CCE

ΨαE({x}N ) =
∑
i

ci,αEℵi({x}N ) +

∑
βi

[
NβiÂΥβ({x}I ; r̂Ne , ζNe)φi(rNe)] cβi,αE , (1)

where ℵi denotes short range states with all electrons oc-
cupying the bound orbitals ϕQC obtained directly from
QCPs, φi(rNe) denotes the radial component of the elec-
tron ejected to the continuum, and Υβ denotes the so
called channel functions. The notation {x}N/I refers to
the set of all, or all but the last (the photoelectron’s) elec-
tronic coordinates, respectively. Each term that appears
in the sum over channel functions represents a single ionic
molecular state Φb (with spin Sb and spin projection Σb)
coupled to an electron with definite azimuthal and mag-
netic quantum numbers (l and m) to give rise to a state
with total spin S and spin projection Σ,

Υβ({x}I) = 2S+1 [Φb({x}I)⊗ χ(ζNe)]ΣXlm(r̂Ne)

=
∑
Σbσ

CSΣ
SbΣb,

1
2σ

2Sb+1 Φb,Σb
2χσXlm , (2)

where CSΣ
SbΣb,

1
2σ

are Clebsch-Gordon coefficients, Xlm are

symmetry-adapted spherical harmonics, and χ is the spin
component of the N th

e electron. Of all the terms appear-
ing in the resulting expression for the molecular scatter-
ing state ΨαE , only φi(rNe) does not vanish at long ra-
dial range, whereas all the other terms, which account for
complex many-body structures, are confined to a short
distance from the CoM and are therefore susceptible to be
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computed with QC methods, based on polycentric Gaus-
sian (PCG) basis functions, centered at the atomic sites
of the molecule. A similar treatment is not suitable for
the radial component of the ejected electron, due to its
non-decaying oscillatory character. To remedy this, the
ejected electron is expanded in a GABS basis, which is
characterized by two key parameters: a) the radius R0

such that all B-Splines B(r < R0) = 0, and b) the radius
R1 such that R1 > R0 and |GM (r > R1)| << 1, where
GM is any one of the monocentric Gaussian (MCG) ba-
sis functions contained in the GABS basis. It is assumed
that all relevant QC orbitals (QCO) are negligible be-
yond R0, |ϕQC(r > R0, r̂)| << 1. The following two
paragraphs summarize how these assumptions facilitate
the calculation of matrix elements between close-coupling
states, as well as how multichannel scattering states ful-
filling prescribed boundary conditions are obtained.

a. Matrix Elements: The antisymmetrized product
on the second line of equation 1, referred to as extended-
channel functions Ῡαi({xN}), may be created by aug-
menting the ionic states Φb, with an electron in one of
three types of orbitals: a) Those created by the QCP,
ϕQC, which are expressed exclusively in terms of PCGs,
b) monocentric orbitals (MCO), which are subsequently
orthonormalized to the QCOs, and c) B-Spline orbitals.
The strength of the XCHEM method becomes appar-
ent in the computation of Hamiltonian matrix elements
between augmented states. In the spatial region where
short range interactions must be accounted for (r < R0),
the full wave function is expressed in terms of PCGs and
MCGs, which allows us to compute matrix elements using
standard tools already implemented in QCPs. Further-
more, by construction, an electron created in a B-spline
orbital φj is guaranteed not to overlap with the short-
range part of the wave function. As a consequence, when
computing the matrix elements of any local operator Ô
between channel functions, with at least one resulting
from augmentation with B-splines, the exchange term
involving the last electron can be neglected [29]

Oαi,βj = 〈Ῡαi|Ô|Ῡβj〉 = 〈Υαφi|Ô|Υβφj〉 , (3)

where Â has disappeared in the last term.
b. Scattering States: From the matrix elements of

the Hamiltonian in the close-coupling basis, it is possible
to determine its stationary states. Bound states, with
energy below the ionization thresholds, can be expressed
in terms of a restricted close-coupling basis, in which the
basis functions are required to vanish at the boundary
of the quantization box. In this restricted basis, the
Hamiltonian is Hermitian and can be directly diagonal-
ized. Above the ionization thresholds, on the other hand,
all energies are allowed, each energy is generally degen-
erate (there are as many states as the number of open
channels) and the corresponding wave functions do not
vanish at the box boundary. Still, these functions are
essential to describe the physically relevant stationary
collision regime in which an electron either approaches
a parent ion or departs from it, having well described

asymptotic quantum numbers, prior (outgoing boundary
condition) and after (incoming boundary condition) the
collision, respectively. Such scattering states are easily
computed from the full set of eigenstates of the Hamilto-
nian confined to the box, together with their matrix ele-
ments with those close-coupling states that do not vanish
at the box boundary. The procedure is described in detail
in reference [14]. In a photoionzation process, the sys-
tem is measured in terms of the quantum numbers of its
fragments, after the interaction is over. Therefore such
asymptotic states naturally fulfil the incoming boundary
conditions. The corresponding scattering state has the
following expression,

ΨαE =
1

Ne

∑
NβEΥβ

u−β,αE(rNe)

rNe
, (4)

where,

u−β,αE = δαβ

√
2

πkα
eiΘα(rNe )−

√
2

πkβ
e−iΘβ(rNe )S?βα, (5)

where S denotes the scattering matrix and Θα(r) = kαr+
Z
kα

ln2kαr − lαπ/2 + σlα(kα), where kα, Z and σlα are
the magnitude of the momentum of the ejected electron,
the charge of the parent ion and the Coulomb phase,
respectively [30]. Once the scattering states are found,
it is possible to determine the asymptotic distribution
of the photofragments of any wave packet. For example
the photoionization cross section from the ground state
of the system, Ψg, can be expressed as (we assume fixed
orientation)

σαE =
4π2

cω

∣∣∣〈Ψ−αE |ε̂ · ~P |Ψg〉
∣∣∣2 (6)

in velocity gauge, and

σαE =
4π2ω

c

∣∣∣〈Ψ−αE |ε̂ · ~R|Ψg〉
∣∣∣2 , (7)

in length gauge, where ε̂ is the polarization of the ionizing

light, and ~P/~R are the total canonical momentum and
total electric dipole moment, respectively.

B. Quantum Chemistry

This section summarizes how QCPs may be extended
to allow for the non-standard calculation of ionic states
augmented with an electron expressed in an auxiliary
set of MCGs. This is a crucial component of the
XCHEM method, as it allows us to delegate all calcu-
lations involving intricate short-range structures to well-
established QCPs (allowing treatment of systems of con-
siderable complexity, subject only to the condition that
the short range structure is confined within a radius R0),
while screening scattering calculations from this complex-
ity. In this, and all previous works using the XCHEM
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approach, the restricted-active-space self-consistent-field
(RASSCF) method was used to express ℵ and 2Sb+1ΦbΣb
as linear combinations of configuration-state functions
(CSF), which are spin eigenfunctions, and may be re-
lated to linear combinations of slater determinants via
the graphical unitary-group approach (GUGA). Creation
of neutral states via augmentation of 2Sb+1ΦbΣb with a
further electron, translates to the application of the cre-

ation operator â†i , where i denotes MCG orbitals and the
PCG orbitals ϕQC contained in the active space. We de-
liberately exclude virtual orbitals, as they generally do
not comply with the condition |ϕQC(r > R0, r̂)| << 1,
unless an impractically large R0 is chosen. Application

of â†i is easily done in the determinantal expansion of
2Sb+1ΦbΣb .

It is important to note that â†i
2Sb+1ΦbΣb may not have

definite spin, in which case the components of the aug-
mented states with the desired spin are recovered by re-
verting to a description in terms of CSFs, via use of the
appropriate GUGA table for the augmented system.

From a computational perspective, two points are
worth making. The combination of PCGs and MCGs
in QCPs leads to large basis sets. On the other hand,
to describe singly-ionized states, only bielectronic inte-
grals with at most two MCG indeces are needed. Thanks
to this latter circumstance, it is possible to drastically
reduce the computational effort of the SEWARD inte-
gral module of the MOLCAS package. The computa-
tional cost of computing matrix elements between single-
ionization augmented states is also similarly reduced,
since for all CSFs contributing to these states at most
one MCG orbital is occupied by at most one electron.

III. RESULTS

We investigate the three Hopfield series of autoionizing
states lying between the second (2Πu) and third (2Σ+

u )
ionization thresholds. Of these series, one is of 1Πu sym-
metry while the other two are of 1Σ+

u symmetry. The for-
mer series corresponds to a non-valence excitation from
the 2σu orbital to an ndπg orbital, whereas the latter
two correspond to non-valence excitations from the same
orbital to nsσg and ndσg orbitals, respectively. Upon ex-
citation, the states in the series of 1Πu symmetry couple
to the continuum via five open channels; three of which
(ejecting εsσg, εdσg and εdδg electrons) leave the ionic
system in the 2Πu state and two of which (ejecting εpπu
and εfπu electrons) leave the ionic system in the 2Σ+

g

state. Conversely, the states in the two series of 1Σ+
u

symmetry may autoionize by coupling to the following
three continuum channels: ejecting a εdπg electron leav-
ing the ionic system in the 2Πu state, or ejecting a εpσu or
εfσu electron leaving the ionic system in the 2Σ+

g state.
In the CCE (equation 1), a total of eleven channels have
to be included, eight of which are open, in the energy
region of interest. Figure 1 illustrates the relevant chan-
nels, the three series of autoionizing states, and how they
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FIG. 1. Open and closed channels between the second and
third ionization thresholds, included in the present calcula-
tion. The white columns indicate the closed channels, with
the autoionizing states of Πu symmetry (magenta) and Σ+

u

(blue). The grey columns correspond to open channels, with
the symmetries of the ejected electrons indicated in each, and
whose superscripts denote the associated ionized molecule,
i.e. 2Σ+

g (I), 2Πu (II) or 2Σ+
u (III). The coloured bars within

the open channels indicate the effect of coupling the available
(open and closed) channels on the autoionizing states: they
acquire width, and in the case of the two series of Σ+

u , ex-
perience a change in position (schematically indicated for the
lowest pair of autoionizing states) due to a coupling of the
two series to each other.

couple to the continuum.

In order to represent the aforementioned channels ac-
curately, the QC calculations were carried out using the
cc-pVQZ [31] basis set (acting as the PCG basis) in
a State Averaged Restricted Active Space Self Consis-
tent Field Theory (SA-RASSCF) calculation. The ac-
tive space used has the following specifications: doubly
occupied (closed) 1σg/u orbitals, all possible excitation
(complete active space) in 2σg/u, 3σg/u and 1πg/u or-
bitals, and single and double excitations (restricted ac-
tive space) in 4σg/u, 5σg/u, 6σg/u, 2πg/u, 3πg/u and 1δg/u
orbitals (where in this notation the number indicates the
energetic ordering of the orbitals within a given symme-
try). The orbitals were optimized over a State Average
that comprises the X1Σ+

g , A1Πu, B1Πu, and C1Σ+
u neu-

tral states. This choice yielded the best simultaneous
description of the relevant neutral (i.e. the ground state)
and ionic states. To allow a State Average calculation
over states of different symmetry, the QCP Molpro [32]
was used. The remaining steps of the XCHEM method,
namely the augmentation of the ionic states in the MCG
basis, and the subsequent evaluation of matrix elements,
were carried with the QCP MOLCAS [33]. Apart from
augmentation in the active QCOs directly obtained from
QCPs, neutral states were calculated by augmenting in
MCOs obtained from an even tempered MCG basis con-



5

2 4 6 8
r (a.u.)

10 4

10 3

10 2

10 1

100

1
r

(r)
R0

QC

N2
N +

2

FIG. 2. Radial behavior of the integrated electron density
of all quantities expressed in PCGs: the short range states
ℵ (blue lines), the ionic states Φ (green lines) and the active
QCOs ϕQC (cyan lines), in which the ionic states are aug-
mented. The red line marks the chosen R0. It is evident, that
all PCG-depended quantities are confined well within this ra-
dius, and thus the assumption of zero overlap between the
B-splines and the PCGs is justified.

taining radial functions of the type Gikl ∝ rl+2ke−αir
2

,
with i = 0 · · · 21 defining the exponents as αi = α0β

i

where α0 = 0.001 and β = 1.46, k ≤ 2 and l ≤ 3. With
these parameters it is possible to set R0 well beyond the
active QC/PCG range without compromising the match-
ing between B-splines and MCG orbitals. To justify the
choice of R0 in the present case, figure 2 shows the de-
pendence on the radius r of the angularly integrated elec-
tron density of all quantities whose description in terms
of PCGs we rely on. From the figure it is obvious that
R0 = 7.0 a.u. is sufficiently large to avoid significant pro-
trusion of PCGs beyond R0. The remaining parameter
defining the B-spline basis are Rmax = 200 a.u., number
of B-spline: 390, order of B-spline: 7.

Figure 3 shows the total photoinoization cross section,
as well as the individual contributions arising from the
Πu channels and the Σ+

u channels, in length and veloc-
ity gauge. The gauge agreement (especially for Σ+

u ) is
very good. Reference [16] confirmed the high level of ac-
curacy of these results when compared to experimental
data, with the exception of the lowest resonance feature
(n = 3) in the Σ+

u channel (the resonance labels in fig-
ure 3 follow the notation of reference [26]). Let us now
examine the series of autoionizing states in each symme-
try separately. The main qualitative difference between
them is that, whereas in Πu symmetry all visible features
are attributable to a single series (ndπg) of well separated
resonances, in Σ+

u symmetry, both the nsσg and ndσg
series, which overlap, contribute to the spectrum. The
letter case therefore requires a more elaborate analysis.
For this reason we shall begin the investigation with the
more straightforward case of the ndπg series.
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FIG. 3. Photoionization cross sections (CS) between the sec-
ond and third ionization threshold of N2. Continuous lines
correspond to length gauge and dashed lines to velocity gauge.
The total CS is shown in black, while the contributions leaving
the system in a Σ+

u or Πu state are shown in blue and ma-
genta, respectively. The former exhibits resonance features
corresponding to the series of nsσg and ndσg autoionizing
states, while the latter exhibits the (much less pronounced)
resonance features of the npπu series of autoionizing states.
Symbols show the experimental results of Dehmer [22] and
Huber [23].

A. Πu Autoionizing States

Figure 4b shows the breakdown of the photoionization
cross section into its partial components, corresponding
to decay to any one of the five open channels for this sym-
metry. The shape of the resonances aside, the branching
ratios to the different channels are approximately con-
stant with energy, with the dδg channel being dominant
(and responsible for the bulk of the resonance features),
and the probability of leaving a 2Πu ion behind being
roughly twice that of the ionic ground state (2Σ+

g ). Fur-
thermore, for all channels, the presence of autoionizing
states only weakly attenuates the background. Figure 4a
shows the phase shift of the final scattering state, which
exhibits characteristic π jumps in the vicinity of autoion-
izing states.

These resonances have been analized following the
parametrization proposed by Fano [34, 35], as well as in-
vestigating the eigenphase sum near resonances [36]. The
positions (Er) and widths (Γ) of the autoionizing states
may be obtained in a straightforward manner by using
the following expression, which relates Er and Γ to the
resonant part of the scattering phase shift φr:

tan(φr) =
Γ/2

Er − E
. (8)

Once the energy and width have been fixed, we may
extract the Fano parameter q and correlation parame-
ter ρ2 by fitting the total cross section to the analytical
expression describing the, characteristically asymmetric,
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resonance shape in the presence of several open channels:

σ(E) = σb(E)

[
ρ2(q + ε)2

ε2 + 1
+ 1− ρ2

]
, (9)

where ε is the reduced energy given by
ε = 2(E − Er)Γ−1. The results are summarized in
the upper part of table I, with values obtained in length
and velocity gauge for q and ρ2. While there is a

notable quantitative difference for q in the two gauges,
the agreement is very good for ρ2. Having fixed the
parameters characterizing the total cross section, the
corresponding parameters for the resonance features
appearing in the partial cross sections (of figure 4), for
a specific channel α with an electron of given angular
momentum being ejected, can be extracted by fitting to
the slightly more involved expression [37], valid for the
partial photoionization cross sections:

σα(E) =
σb,α(E)

ε2 + 1

(
ε2 + 2ε [qRe(ρα)− Im(ρα)] + 1− 2 [qIm(ρα) + Re(ρα)] + |ρα|2 (q2 + 1)

)
, (10)

where ρα is the so called Starace parameter, which may
be understood as a complex extension of the correlation
parameter ρ2 of equation 9, and whose real and imagi-
nary part enter as parameters in the fitting procedure.
Apart from the large number of parameters, the fitting
is now further complicated by the fact that the Starace
parameters for the different channels fulfil∑

α

σb,α|ρα|2 = σb|ρ|2. (11)

An alternative parametrization for the partial pho-
toionization cross sections can be obtained by using the
expression [38]:

σα =
σb,α(E)

ε2 + 1
(ε2 + C1,αε+ C2,α). (12)

The parameters C1,α and C2,α may be used to evaluate
the Starace parameter via a different route, and thus,
give credence to the extracted values, by verifying the
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expressions:

Re(ρα) =
qC1,α + 2±

√
4C2,α − C2

1,α

2(1 + q2)

Im(ρα) =
q
(

2±
√

4C2,α − C2
1,α

)
− C1,α

2(1 + q2)

4C2
2,α ≥ C2

1,α, (13)

relating the two parametrizations of the partial cross sec-
tions (the last expression ensures that Re(ρα) and Im(ρα)
are themselves real).

We obtained the values for either parametrization by
fitting the relevant formulas to the calculated cross sec-
tions. The values are presented in the lower part of ta-
ble I. For the pπu channel results for both, length and
velocity gauge are included, and are seen to be in good
agreement.

B. Σ+
u Autoionizing States

Figure 5b shows the total and partial photoionization
cross sections of the relevant channels in Σ+

u symmetry.
Here, the impact of the autoionizing states on the back-
ground cross sections, as well as the qualitative differ-
ence between the different channels, are more pronounced
than in Πu symmetry, as the dramatic dependence of the
branching ratios on the photon energy shows. Most no-
tably, for every n we observe an energy at which only one
channel (ejected electron: pσu, ionic molecule: 2Σ+

g ), has
a non-zero cross section, accompanied furthermore by a
significant reduction in the total cross section.

We shall begin the quantitative analysis in much the
same way as for the previous section; by obtaining the po-
sitions and widths of the autoionizing states, by looking
at the jumps undergone by the scattering phase (shown
in figure 5a). While this was essentially trivial in the
previous case, the situation here is somewhat more in-
volved, as one must now account for the fact that the
resonances appearing for each n in both series are ener-
getically very close. Thus, we have performed a very fine
scan in photon energies and fitted every couple of s and
d resonances to the sum of two terms as given in equa-
tion 8. The resulting energy positions and widths (now
denoted E± and Γ± for the reasons explained below) are
given in the first two rows of table II. For the higher
members of the series (n > 3), these values are slightly
different from those reported in [16] due to the finer scan
of photon energies used in the present work.

As the members of the two series of autoionizing states
are energetically closer than their combined widths, the
individual states couple not only to the continuum states,
but may also couple to each other, either directly or
via the available continua. The effect of this has been
the subject of several works [39–44], and results in the
resonance positions and width being modified compared
to what would be observed in the absence of coupling

α n = 3 4 5 6 7

Total Photoionization Cross Section

Er (eV) 17.318 17.943 18.230 18.387 18.481

Γ (meV) 19.3 8.2 4.0 2.3 1.4

qL −0.57 −0.86 −0.97 −1.02 −1.04

qV −0.79 −1.11 −1.09 −1.12 −1.15

ρ2L 0.105 0.141 0.213 0.234 0.242

ρ2V 0.099 0.136 0.206 0.228 0.236

Partial Photoionization Cross Section

pπu Re(ρα)L −0.182 −0.215 −0.161 −0.150 −0.150

Re(ρα)V −0.171 −0.208 −0.156 −0.146 −0.146

Im(ρα)L −0.017 −0.047 −0.067 −0.069 −0.072

Im(ρα)V −0.016 −0.046 −0.065 −0.067 −0.070

C1,α,L 0.243 0.464 0.445 0.443 0.458

C1,α,V 0.301 0.552 0.469 0.461 0.476

C2,α,L 1.388 1.435 1.251 1.215 1.207

C2,α,V 1.366 1.415 1.234 1.200 1.192

fπu Re(ρα) 0.577 0.845 0.893 0.949 0.970

Im(ρα) 0.241 0.418 0.768 0.832 0.849

C1,α −1.143 −2.290 −3.265 −3.592 −3.719

C2,α 0.642 1.576 3.389 4.027 4.294

sσg Re(ρα) −0.100 −0.105 −0.080 −0.071 −0.069

Im(ρα) −0.021 −0.048 −0.067 −0.072 −0.075

C1,α 0.156 0.276 0.288 0.288 0.292

C2,α 1.190 1.150 1.052 1.016 1.003

dσg Re(ρα) −0.016 −0.008 0.006 0.010 0.012

Im(ρα) 0.190 0.241 0.272 0.280 0.287

C1,α −0.363 −0.468 −0.556 −0.581 −0.599

C2,α 1.298 1.531 1.660 1.708 1.748

dδg Re(ρα) 0.228 0.247 0.305 0.319 0.325

Im(ρα) 0.004 0.010 0.015 0.015 0.016

C1,α −0.270 −0.446 −0.621 −0.679 −0.709

C2,α 0.618 0.630 0.599 0.600 0.605

TABLE I. The parameters characterizing the total and partial
photoionization cross sections of the ndπu Hopfield series. For
the partial cross sections the results for both paramterizations
(equations 10 and 12) are given, where it is trivial to ascertain
that, upon insertion in equation 13, the two are consistent.
The subscrips indicate (L)ength and (V)elocity gauge. If no
subscript is present, length gauge is implied.

between them. These modified positions correspond to
the energies E± presented in table II (schematically also
shown for n = 3 in figure 1), and are the ones observable
in experiment.

While interesting in their own right, E± and Γ± once
obtained do not yet allow us to make any statement
about the possible impact of the coupling of the two se-
ries of autoionizing states to each other. In order to do
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FIG. 5. (a) Phase (green curve) of scattering states of Σu symmetry. Clearly observable are the pronounced pairs of π - phase
jumps as the photon energy scans across pairs of autoionizing states of the nsσd and ndσg series. Also shown is the tangents
of the scattering phase (in the inlets) for the first three resonance features. (b) The total (full black curve) and partial (dashed
and dotted curves) photoionization cross sections of channels with photo electrons pσu, fσu, and dπg (shown here only in
length gauge). In sharp contrast to figure 4, the two features appearing for every n are not well separated, and the possibility
of coupling between them must be accounted for. Furthermore it is noteworthy that, in the valley after the more pronounced
peak visible in the resonance feature for each n, we observe the presence of a photon energy at which the electron is exclusively
emitted as a pσu electron. This also implies that, at these energies, the ionized molecule is found exclusively in a 2Σ+

g state, as
indicated by the dashed or dotted pattern, analogous to figure 4.

n = 3 4 5 6 7

E−, E+ (eV) 17.171 17.388 17.866 17.966 18.187 18.240 18.360 18.392 18.465 18.485

Ed, Es (eV) 17.265 17.345 17.933 17.943 18.210 18.222 18.370 18.380 18.470 18.477

Γ+, Γ− (meV) 62.8 98.2 23.0 34.1 10.1 16.8 5.5 9.5 3.3 5.9

Γd, Γs (meV) 43.6 165.6 9.5 72.2 6.8 30.8 4.2 15.4 2.7 8.8

TABLE II. The energies and widths of the nsσg and ndσg series. E± are the true resonance position, whereas Es,d are the
energies disregarding the interference between the two series (analogous for the widths Γ). The difference between the two sets
of results is attributable to the strength of the coupling between the two series, resulting in the resonances being pushed apart,
and the widths Γ+ increasing at the expense of Γ−.

so, knowledge of the resonance positions Es/d, neglect-
ing the coupling between the corresponding autoionizing
states, is necessary (the corresponding widths are anal-
ogously denoted by Γs/d). If there is a significant dis-
crepancy between Es/d and E± (as well as Γs/d and Γ±)
we can conclude that interference between autoionzing
states plays an important role in this system. We may
obtain values for Es/d and Γs/d by carrying out a sep-
arate calculation that disregards the coupling between
the channels containing the nsσg and ndσg states (i.e.
the two rightmost channels in figure 1). In terms of the
XCHEM approach this translates to two separate calcu-
lations, excluding from the MCOs and B-splines either

sσg orbitals or dσg orbitals, respectively. The bottom
two rows of table II show the values obtained from these
calculations

Comparing the results for the coupled and decoupled
case in table II, we observe that the coupling between
the two series causes the resonances to be pushed apart
as well as the widths Γs and Γd decreasing and increas-
ing, respectively. Thus we may unambiguously conclude,
that a correct description of the Hopfield sσg and dσg
series of autoionizing states necessarily requires that the
coupling of its members to each other be included in the
calculation.
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IV. CONCLUSIONS AND OUTLOOK

We have shown that the XCHEM method, relying on
a hybrid basis of Gaussian and B-spline functions is able
to provide an accurate description of the electronic con-
tinuum of Nitrogen between the second and the third
ionization thresholds, where electron correlation plays a
very important role and a multitude of resonances associ-
ated with the presence of autonization states is observed.
This work represents the first application of the XCHEM
code to a molecular system, for which scattering states
are not easily accessible by comparable alternative meth-
ods. This is an important step forward, as most of the
challenges the XCHEM sets out to overcome do not man-
ifest themselves in simple systems containing very few
electrons. Specifically the multi-centered nature of the
basis functions inherent in this approach, with Gaussian
functions at the atomic sites and Gaussian and B-spline
functions at the centre of mass, has now conclusively been
shown to allow for a seamless and scalable merging of the
tools of scattering theory and quantum chemistry. Fur-
thermore the unprecedented number of CSFs used here
to optimize the molecular orbitals, of the order of mag-
nitude of 106, demonstrates the possibility to harnessing
the power of quantum chemistry in molecular photoion-
ization problems.

Taking advantage of the new possibilities offered by the
XCHEM code, we have performed a detailed analysis of
the Hopfield series of autoionizing states. This includes
obtaining the energies and widths of the three series of
autoionizing states lying in this region of the electronic
continuum. We have also extracted the Fano parameters
q and ρ2 characterizing resonant peaks in the total pho-

toionization cross section and the Starace parameters for
the corresponding peaks in the partial photoionization
cross sections of the five channels associated with the
ndπg series. To the best of our knowledge, only the en-
ergy positions and widths have previously been reported
in literature. Furthermore we have shown, by using a
secondary set of XCHEM calculations, the importance
of the coupling between the overlapping members of the
nsσd and ndσg series.

All the above establishes the XCHEM method as an
excellent candidate for the study of even larger molecular
systems to a similar level of theory, thereby going firmly
beyond what is possible with current methods. Systems
readily accessible with the current XCHEM methodol-
ogy are, e.g., water and pyrazine. A further avenue of
investigation, especially given the interest in the pro-
cesses mentioned in the introduction, is to use the re-
sults of the XCHEM code to solve the time dependent
Schrödinger Equation. This is currently being under-
taken in our group.
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