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We report cross sections for electron-impact dissociative excitation of the B 1Σ+
u , C

1Πu, D
1Πu,

B′ 1Σ+
u and E,F 1Σ+

g singlet states of molecular hydrogen from all vi = 0–14 vibrational levels of
the ground X 1Σ+

g state. Calculations are performed using the adiabatic-nuclei convergent close-
coupling method formulated in prolate spheroidal coordinates from threshold to 500 eV. Agreement
with previous calculations varies with transition and impact energy, ranging from excellent to poor.
Agreement with available experiment is generally good.

I. INTRODUCTION

Electron-impact dissociative excitation (DE) of molec-
ular hydrogen (H2) is a dominant process in governing
the kinetics of fusion, atmospheric, and interstellar plas-
mas. It is a significant mechanism for molecular break-up
in the interstellar medium [1, 2], and a contributing fac-
tor to the hot atomic hydrogen plume observed in the
Saturnian atmosphere [3, 4]. Furthermore, DE is a fun-
damental process in collisional-radiative models [5], and
the production of energetic atomic hydrogen [6] in fusion
plasmas.
Electron-impact DE in H2 occurs via excitations to

both the singlet and triplet vibrational continua, and is
schematically represented as

H2(X
1Σ+

g , vi) + e− → H2(f, εf ) + e−

↓

[H(n, ℓ) + H(n′, ℓ′)] (εf ) + e−,
(1)

where vi denotes the initial vibrational level, and εf is the
final vibrational continuum state energy in the excited
electronic state f .
There have been only a few calculations of DE cross

sections, with the majority of studies focusing on scat-
tering from the ground vibrational level (for details see
Ref. [7]). Cross sections for the production of H(1s) and
H(2s) atoms via excitation of the B′ 1Σ+

u , E,F
1Σ+

g ,

and e 3Σ+
u states were calculated by Chung et al. [8] us-

ing the Born-Rudge and Born-Ochkur theories, Mu-Tao
et al. [9] using the distorted wave approximation, and by
Liu and Hagstrom [10] using the Bethe approximation.
The first Born approximation has been applied by Borges
et al. [11] at high impact energies (Ei = 100–1000 eV)
for DE of the B 1Σ+

u and C 1Πu states (leading to the
production of H(1s) and H(2p) atoms) and the B′ 1Σ+

u

state (producing H(1s) and H(2s)). Additionally, Celib-
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erto et al. [12] calculated cross sections describing DE
to several low lying singlet states and the b 3Σ+

u state
using the impact-parameter method for scattering on all
vibrational levels of the ground electronic state. It should
be noted that these theories are predominantly based on
generalized Born and Bethe approximations, or are semi-
classical in formulation, and hence are not expected to
produce accurate results at low to intermediate energies.
More recently, thermally averaged DE cross sections for
the singlet ungerade continua have been estimated by Liu
et al. [13] using a modified Born approximation with in-
put from experiment for excitation functions, for incident
electron energies from threshold to 1000 eV. Overall, the
previous calculations [8–13] are in broad agreement at
high incident energies, however they differ significantly
from threshold to intermediate energies with discrepan-
cies of up to a factor of three for some transitions.

Measured DE cross sections can be inferred from
H(n, ℓ) production via electron impact excitation, as has
been conducted in Refs. [14–16]. However, production
of such fragments is not limited to the DE process; pre-
dissociation, radiative cascades from higher states, and
autoionization all contribute to the yield of atomic hy-
drogen. These processes must be included in theoretical
calculations, making accurate comparison with measure-
ments of H(n, ℓ) production difficult [11]. However, low-
energy DE measurements have also been inferred from
time-of-flight and electron energy-loss measurements for
DE via the repulsive b 3Σ+

u state (producing two H(1s)
atoms) [17–19]. Recently, a joint theoretical and exper-
imental study [20] set a new benchmark for this cross
section which is a factor of two lower than the previously
recommended cross sections of Yoon et al. [7].

Scarlett et al. [21] presented cross sections for electron-
impact dissociation of the ground (electronic and vibra-
tional) state of molecular hydrogen into neutral atomic
hydrogen fragments. These results were obtained using
the existing convergent close-coupling (CCC) fixed-nuclei
(FN) calculations of Zammit et al. [22, 23] together with
dissociation fractions obtained using the adiabatic-nuclei
(AN) CCC method [24–29], accounting for DE, predisso-
ciation (PD), and excitation radiative decay dissociation

mailto:liam.scarlett@postgrad.curtin.edu.au


2

(ERDD). It was shown that excitation to the repulsive
b 3Σ+

u state and the remaining electronic triplet states
(either via DE or subsequent radiative cascades to the
b 3Σ+

u state) is the dominant dissociation channel at low
to intermediate energies (Ei < 30 eV), while the cor-
responding dissociative processes in the singlet system
become dominant at intermediate to high energies.
A detailed analysis of the DE processes via excitation

of the singlet vibrational continua in H2 is the focus of
this work. We apply the AN CCC method to model
electron-impact DE of H2 via excitation of the B 1Σ+

u ,
C 1Πu, B

′ 1Σ+
u , D

1Πu, and E,F 1Σ+
g states from all

bound vibrational levels of the X 1Σ+
g state.

We compare the CCC DE results with the previous DE
calculations from Refs. [8, 9, 11–13]. For the B′ 1Σ+

u state
we also compare with experimental estimates of the DE
cross section inferred by Borges et al. [11] from the mea-
surements of H(2s) production by Vroom and de Heer
[14], Möhlmann et al. [15], and Ajello et al. [16]. A de-
tailed comparison with measurements of the production
of specific neutral atomic fragments will be deferred to
future work in which other dissociation channels will be
considered. Unless specified otherwise, atomic units are
used throughout the paper.

II. THEORY

In this section we briefly discuss the molecular CCC
method and the relevant formulas for calculation of DE
cross sections. Refer to Refs. [26, 27] for more detailed
discussions.

A. Fixed-nuclei molecular CCC method

The theory is formulated in prolate spheroidal coordi-
nates for the body-frame of reference, with the two focal
points coincident with the positions of the nuclei. The
Born-Oppenheimer approximation is applied to the to-
tal scattering wave function, reducing the close-coupling
problem to one involving only electronic degrees of free-
dom at each internuclear distance R. The fixed-nuclei
approximation allows scattering calculations to be per-
formed at a single value of R, usually taken to be either
the equilibrium distance or the mean internuclear dis-
tance of the ground vibrational state. To account for
the vibrational motion we utilize the adiabatic-nuclei ap-
proximation, detailed in Sec. II B.
Diagonalization of the electronic H2 Hamiltonian HT

in a basis of anti-symmetrized two-electron configura-
tions [21, 22] results in a set of electronic target pseu-
dostates ΦN

n satisfying

〈ΦN
n′ |HT|Φ

N
n 〉 = ǫNn δn′n, (2)

where the superscript N denotes the number of target
pseudostates and ǫNn is the energy of state ΦN

n . Here

the index n stands for the quantum numbers of orbital
angular momentum projection m, parity π, and spin s
which characterize the target states. The underlying one-
electron basis used in the diagonalization procedure con-
sists of Sturmian (Laguerre) functions. This allows us to
represent a number of low-lying target states with suf-
ficient accuracy, and also model the target continuum
with a finite expansion. The calculated energies ǫNn (R)
are a rough measure of the accuracy of the target wave
functions. In Fig. 1 we compare the present potential-
energy curves (PEC) for the electronic states under con-
sideration with accurate calculations available from the
literature [30–33]. The optical oscillator strengths (OOS)
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FIG. 1: The present potential-energy curves for several singlet
states of H2 (solid lines), compared with accurate calculations
(dashed lines) obtained for the X 1Σ+

g state from Ref. [33],
the B 1Σ+

u and B′ 1Σ+
u states from Ref. [30], the C 1Πu and

D 1Πu states from Ref. [31] and the E,F 1Σ+
g state from

Ref. [32].

provide a more sensitive test of the target structure. The
length gauge OOS is defined for a given internuclear dis-
tance as

fn,i =
2g(ǫNn − ǫNi )

3

∣

∣

∣
〈ΦN

n |Ω̂|ΦN
i 〉

∣

∣

∣

2

, (3)

where g is the degeneracy factor of the state n. For
parallel transitions (mn = mi) we have Ω̂ = z, while
for perpendicular transitions (mn = mi ± 1) we have

Ω̂ = ∓ 1√
2
(x ± iy). In Fig. 2, the present oscillator

strengths are compared with accurate calculations from
Refs. [34, 35]. We find the present structure model
(OOSs and PECs) is in excellent agreement with previous
calculations (within 3%) for the internuclear distances
R = 0.0–8.0 which span all of the bound vibrational wave
functions of the ground electronic state (vi = 0–14).

The total electronic scattering wave function is ex-
panded in terms of its asymptotic channels, leading to
a set of momentum-space Lippmann-Schwinger close-
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FIG. 2: The present optical oscillator strengths (OOS) for
the X 1Σ+

g state to several singlet states of H2 (solid lines),
compared with accurate calculations (dashed lines) obtained
from Refs. [34, 35].

coupling equations for the T matrix

〈qfΦ
N
f |TN |ΦN

i qi〉 ≡ 〈qfΦ
N
f |V |ψ

N(+)
i 〉. (4)

The projectile plane waves |q〉 are expanded in spheroidal
partial waves (up to λmax), allowing the partial-wave T -
matrix Lippmann-Schwinger equations

TMΠS
fλfmf ,iλimi

(qf , qi;R) = VMΠS
fλfmf ,iλimi

(qf , qi;R)

+
N
∑

n=1

∑

λ,m

∑

∫

q

dq
VMΠS
fλfmf ,nλm

(qf , q;R)T
MΠS
nλm,iλimi

(q, qi;R)

E(+) − ǫk − ǫNn (R) + i0

(5)

to be solved separately for each total symmetry specified
by total spin S, parity Π and angular momentum projec-
tionM , using standard techniques [27]. The partial-wave
orientation-averaged FN integrated cross sections (ICS)
for the transition i→ f are obtained using

σMΠS
f,i (Ei;R) =

qf (R)

4πqi

∑

λf ,λi
mf ,mi

∣

∣

∣
FMΠS
fλfmf ,iλimi

(Ei;R)
∣

∣

∣

2

,

(6)
where qf and qi are the projectile’s linear momenta, and
the FN partial-wave scattering amplitude is given by

FMΠS
fλfmf ,iλimi

(Ei;R) = −(2π)2(qfqi)
−1iλi−λf

× TMΠS
fλfmf ,iλimi

(qf , qi;R). (7)

Note that in the FN formalism, the outgoing momentum
qf is related to the incident energy Ei and the electronic
excitation energy ǫf,i = ǫf − ǫi by

qf (R) =
√

2[Ei − ǫf,i], (8)

and so the partial-wave FN scattering amplitude (7) for
a given transition is dependent on only Ei and R.
The maximum projectile angular momentum λmax uti-

lized in the solution of Eq. (5) is chosen to yield conver-
gent cross sections with the use of an analytical Born
subtraction technique [27]:

σS
f,i =

∑

MΠ

(σMΠS
f,i − σ̃MΠ

f,i ) + σ
(AB)
f,i , (9)

where σ̃MΠ
f,i is the partial-wave Born ICS and σ

(AB)
f,i is the

analytic Born ICS. Details of the number of partial waves
included in the solution of Eq. (5) are given in Sec. III.
The spin averaged cross section is given by

σf,i =
∑

S

2S + 1

2(si + 1)
σS
f,i. (10)

For scattering from the ground X 1Σ+
g state of H2

(si = 0) considered in this paper, only one total spin
channel (S = 1/2) is possible.

B. Adiabatic-nuclei method

Following the AN approximation [25, 26, 36], we define
the vibrationally resolved electronic excitation (VREE)
cross section for the transition ivi → fvf

σPW
fvf ,ivi

=
qfvf
4πqi

×
∑

MΠS

2S + 1

2(si + 1)

∑

λf ,λi
mf ,mi

∣

∣

∣
〈χfvf |F

MΠS
fλfmf ,iλimi

(Ei;R)|χivi〉
∣

∣

∣

2

,

(11)

where the integration is over R, and the outgoing mo-
mentum qfvf is chosen to satisfy energy conservation for
the vibrational excitation:

q2fvf
2

+ εfvf =
q2i
2

+ εivi . (12)

The superscript PW in Eq. (11) indicates that the cross
section is a product of the partial-wave calculation only
(without the ABS technique which will be introduced for
the VREE cross sections below). Note that Eq. (11) dif-
fers from the standard AN approximation [36] through
the substitution qf (R) → qfvf . This substitution par-
tially corrects the violation of energy conservation in the
AN approximation at low energies by restoring the cor-
rect excitation thresholds. A similar method has been
investigated by Mazevet et al. [37] for vibrational ex-
citation vi = 0 → 1, 2 in low energy e−–H2 collisions,
for which results are in reasonable agreement with vi-
brational close-coupling calculations, and in our previous
calculations of positron scattering on H2 [29].
The vibrational wave functions χnvn in Eq. (11) satisfy
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the radial Schrödinger equation for nuclear motion

(

−
1

2µ

d2

dR2
+ ǫn(R)− εnvn

)

χnvn(R) = 0, (13)

where µ is the reduced mass of the molecule, ǫn(R) is
the PEC of the electronic state n and εnvn is the energy
of the vibrational state nvn. For low rotational quan-
tum numbers, the centrifugal contribution to the nuclear
Schrödinger equation is negligible compared to ǫn(R),
and hence it has been omitted in Eq. (13). The vibra-
tional wave functions are obtained via a diagonalization
procedure using Laguerre basis functions [27]. The basis
size is chosen to yield convergent bound states and an
adequate discretization of the vibrational continuum.
Obtaining VREE cross sections requires FN collision

data calculated at many R points for accurate integration
in Eq. (11). To limit the computational resources used for
calculations we have utilized a scaling procedure involv-
ing two scattering models. The smaller CC(27) model
couples only 27 bound states while the larger CCC(210)
model couples 210 states, including ionization channels.
The number of coupled states included in both models
for each target symmetry, as well as the number of nega-
tive and positive energy states (relative to the H+

2 ground
state) are summarized in Table I.

TABLE I: Total number of target states in the CC(27) and
CCC(210) models for each target symmetry (m, π, s). The
number of negative- and positive-energy states relative to the
H+

2 ground state are also shown for R = 1.448.

Symmetry CC(27) CCC(210)
1Σg 4 17
1Σu 2 15
3Σg 3 15
3Σu 2 15
1Πg 2 16
1Πu 4 28
3Πg 2 16
3Πu 4 30
1∆g 2 16
1∆u 0 14
3∆g 2 14
3∆u 0 14

ǫ < 0 27 56

ǫ > 0 0 154

In our previous calculations of AN cross sections
summed over final vibrational levels, we found that scal-
ing the CC(27) R-dependent ICS, calculated on a fine
R grid, to fit CCC(210) calculations performed at only
a few R points provided a reliable estimate of the true
R-dependent cross sections [26]. Applying a similar pro-

cedure to the VREE cross sections (11) utilized in the
DE calculation would require the R-dependent scattering
amplitudes FMΠS

fλfmf ,iλimi
to be scaled per partial-wave.

Given that the DE cross sections are up to 100 times
smaller than their respective total excitation cross sec-
tions, we find that the numerical instabilities introduced
by scaling each partial-wave amplitude (7), and the sub-
sequent interpolation for integration, can on occasion sig-
nificantly affect the results. Therefore, we have adopted
an alternative approach, expressing the VREE cross sec-
tion (11) in the following equivalent form:

σPW
fvf ,ivi

=
qfvf
4πqi

∫ ∞

0

∫ ∞

0

χfvf (R)χivi(R)χfvf (R
′)χivi (R

′)

×Ff,i(Ei, R,R
′) dR′dR, (14)

where

Ff,i(Ei, R,R
′) =

∑

MΠS

∑

λf ,λi
mf ,mi

2S + 1

2(si + 1)

× FMΠS ∗
fλfmf ,iλimi

(Ei, R)F
MΠS
fλfmf ,iλimi

(Ei, R
′)

(15)

defines a two-dimensional surface with diagonal (R = R′)
elements proportional to the FN ICS σf,i(R). This
surface is scaled from the CC(27) model to fit the
CCC(210) model as follows. The ratio F210

f,i /F
27
f,i of the

CCC(210) surface to the CC(27) surface is calculated at
all CCC(210) R points (R=1.448, 2.022, 3.2, 6.0, and
8.0), and then interpolated onto the grid of CC(27) R
points (R = 0.4–8.0). The ratio is held constant for
R < 1.448 to avoid instabilities caused by extrapolation.
The scaled CCC-S(210) surface is then obtained by mul-
tiplying the CC(27) surface by this ratio function.

To test the accuracy of the scaling procedure, we have
conducted CCC(210) calculations over a finer R grid
at 40 eV for comparison with the CCC-S(210) results.
In Fig. 3, we present the surface Ff,i(Ei, R,R

′) for the
X 1Σ+

g → B 1Σ+
u transition at 40 eV, calculated using the

CC(27), CCC(210) and CCC-S(210) models. The quali-
tative similarities between the CC(27) and CCC(210) re-
sults justify the use of the scaling procedure, and we find
excellent agreement between the CCC(210) and CCC-
S(210) surfaces. Similar agreement was found for all sin-
glet states considered in this paper.

To obtain convergent VREE cross sections with respect
to the partial-wave expansion, we implement the ABS
procedure (9) within the AN method. This requires the
evaluation of the AN analytical and partial-wave Born
cross sections.

Performing a partial-wave expansion of the analytical
Born transition matrix element

〈qfΦf |V |Φiqi〉 =
∑

λµ

iλV
(AB)
f,i
λµ

(Q,R)Y ∗
λµ(Q̂), (16)

where Q is the momentum transfer vector and Yλµ is a
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FIG. 3: Comparison of the CC(27), CCC(210) and CCC-
S(210) surfaces Ff,i(Ei, R,R′) (15) described in the text for
the X 1Σ+

g → B 1Σ+
u transition at Ei = 40 eV. The upper

CC(27) surface is only partially presented for clarity. The
open red circles indicate the points at which CCC(210) data
was used to produce the scaled CCC-S(210) surface.

spherical harmonic, leads to the analytical Born VREE
cross section

σ
(AB)
fvf ,ivi

=
qfvf
4πqi

∫

∑

λµ

∣

∣

∣

∣

∣

〈χfvf |(2π)
2V

(AB)
f,i
λµ

(Q,R)|χivi〉

∣

∣

∣

∣

∣

2

dΩ.

(17)
Here, Ω is the scattering solid angle. The scattering angle
θ is related to the momentum transfer vector by

θQ = arccos ([qi − qf cos(θ)] /Q) , (18)

where θQ is the angle between Q and qi.

The partial-wave Born VREE cross section is obtained
by replacing the T -matrix elements in Eq. (7) with the

corresponding direct V -matrix elements ṼMΠ
f,i , and sub-

stituting the resulting partial-wave scattering amplitudes
into Eq. (11), giving

σ̃PW
fvf ,ivi

=
qfvf
4πqi

×
∑

MΠ

∑

λf ,λi
mf ,mi

∣

∣

∣

∣

〈χfvf |
(2π)2

qfqi
ṼMΠ
fλfmf ,iλimi

(Ei;R)|χivi 〉

∣

∣

∣

∣

2

.

(19)

Using the above definitions the ABS procedure (9) for
the VREE cross section is expressed as

σfvf ,ivi = σPW
fvf ,ivi

− σ̃PW
fvf ,ivi

+ σ
(AB)
fvf ,ivi

. (20)

The DE cross section is then found by summing the
VREE cross sections for transitions to vibrational con-
tinuum states:

σDE
f,ivi

=
∑

εfvf
>Df

σfvf ,ivi , (21)

where Df is the Born-Oppenheimer dissociation limit of
the electronic state f .

III. RESULTS

We present DE cross sections from threshold to 500 eV
for e−–H2(X

1Σ+
g , vi = 0–14) scattering calculated using

both the CC(27) and CCC-S(210) models. The two mod-
els both use the same description of the target wave func-
tions. The one-electron functions used to construct the
two-electron configurations (see Eqs. (3)–(5) in Ref. [26])
were generated using a basis of Nℓ = 12 − ℓ Laguerre
functions, up to ℓmax = 3. The 1sσg one-electron orbital
was generated using a basis of Nℓ = 60 − ℓ functions
up to ℓmax = 8. The scattering calculations in both
models were performed using a projectile partial-wave
expansion up to λmax = 6 at low energies (up to 20 eV)
and λmax = 10 at higher energies, including all chan-
nels of positive and negative parity Π, spin S = 1/2 and
angular momentum projection M up to Mmax = λmax.
The contribution from higher partial waves was taken
into account using the ABS technique (20). For the op-
tically allowed transitions, the partial-wave contribution
to the VREE cross sections decreases with increasing in-
cident energy, while the analytical Born contribution in-
creases. For example, below 40 eV the close-coupling
term in Eq. (20) makes up approximately 100% of the
cross sections for the ungerade states we have consid-
ered, but this contribution decreases to about 50% by
120 eV on average, and above 300 eV the cross section
is dominated by the analytical Born component. For the
X 1Σ+

g → E,F 1Σ+
g transition the Born contribution is

negligible even at high incident energies.

A. Dissociative excitation from X 1Σ+
g (vi = 0)

In this section we present the DE cross sections for
transitions from the X 1Σ+

g (vi = 0) state to several sin-
glet states, calculated using the CC(27) and CCC-S(210)
models, and compare with the available previous cal-
culations. For all states we find qualitative similarities
between the CC(27) and CCC-S(210) models, with the
smaller model yielding a significantly larger cross sec-
tion at intermediate energies. This is expected, as the
lack of ionization channels in the CC(27) model leads to
an overestimation of the discrete electronic excitations.
The two models are in better agreement near threshold,
where the effect of inter-channel coupling is reduced, and
at high energies, where all models converge to the first
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Born approximation cross sections.
In Figs. 4–7 results for the B 1Σ+

u , C
1Πu, D

1Πu, and
B′ 1Σ+

u states are compared with previous calculations
[11–13]. The calculations of Celiberto et al. [12] have pre-
dicted a peak in the cross sections for each state at ener-
gies close to threshold. However, this is not supported by
the present CCC calculations or the results of Liu et al.
[13]. The DE cross sections of Liu et al. [13] were ob-
tained by experimentally determining a shape function
which characterizes the energy dependence of the cross
section, and normalizing it to the Born DE cross section
at high energies. The error estimates include contribu-
tions from the measurement of the shape function as well
as the calculation of the Born cross sections. Liu et al.
[13] reported that the shape functions for the B 1Σ+

u and
C 1Πu states were identical within experimental uncer-
tainties, and utilized this same shape function for the
D 1Πu and B′ 1Σ+

u states as well. Hence, the resulting
DE cross sections for each state have the maximum at the
same energy (between 50 and 60 eV). The present results
for the B 1Σ+

u state are in excellent agreement with Liu
et al. [13] across all energies and converge with Celiberto
et al. [12] and Borges et al. [11] at high energies (Ei > 100
eV) where the first Born approximation is valid. For the
C 1Πu state the CCC results are in good agreement with
Liu et al. [13], with small qualitative differences. In fact,
for each of the C 1Πu, D

1Πu, and B′ 1Σ+
u states we

predict a maximum in the DE cross section at somewhat
higher energies than reported by Liu et al. [13].
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FIG. 4: DE cross sections of the B 1Σ+
u state for scattering

from theX 1Σ+
g (vi = 0) state. The CCC models are discussed

in the text and compared with calculations of Borges et al.
[11], Celiberto et al. [12] and Liu et al. [13].

The present cross sections for DE of the D 1Πu state
(Fig. 6) are in good agreement with Liu et al. [13] up to
Ei = 100 eV, above which the present results are just un-
derneath the upper limit of the error bars. The B′ 1Σ+

u

DE cross section is a factor of five larger than the next
largest DE cross section (the C 1Πu state). The CCC-
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FIG. 5: Same as in Fig. 4 but for the C 1Πu state.

0.0

0.1

0.2

0.3

0.4

0.5

 10  100

D 1Πu

In
te

gr
at

ed
 c

ro
ss

 s
ec

tio
n 

(u
ni

ts
 o

f 1
0−

2  a
02 )

Incident energy (eV)

CCC−S(210)
CC(27)

Liu et al.
Celiberto et al.

FIG. 6: Same as in Fig. 4 but for the D 1Πu state.

S(210) cross sections for this state are in good agreement
with Liu et al. [13] for Ei < 35 eV, but for intermediate
energies they are about 15% above the quoted error bars.
From threshold to 100 eV the CCC results are in signifi-
cant disagreement with the other theoretical calculations
[8, 9, 11, 12], however the CCC results and most of the
other theoretical models converge at higher energies. Un-
like the other states, the present results for the B′ 1Σ+

u

state are not within the error bars of Liu et al. [13] at
500 eV. Since channel-coupling effects are negligible in
this energy region, the accuracy of the cross section here
is determined primarily by the accuracy of the target
structure. As demonstrated in Figs. 1 and 2, the present
target structure is in excellent agreement with accurate
calculations for the range of R points spanned by the
ground vibrational wave function, and hence we are con-
fident that the high-energy limit of the present results is
correct. Note that the high-energy DE cross sections of
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Liu et al. [13] were not obtained by a direct Born calcu-
lation, but were instead inferred from photodissociation
cross sections calculated using the electric dipole transi-
tion moments presented in Refs. [34, 35], and hence it
is possible that Liu et al. [13] have somewhat underes-
timated the B′ 1Σ+

u DE cross section at high energies.
The discrepancy between the CCC and Liu et al. [13] re-
sults for this state at intermediate energies might arise
because Liu et al. [13] assume the energy dependence of
each cross section to be the same.
Ajello et al. [16] have experimentally estimated the DE

contribution via the B′ 1Σ+
u state towards H(2s) produc-

tion. These data have been used by Borges et al. [11] to
partition the H(2s) production cross sections measured
by Möhlmann et al. [15] and Vroom and de Heer [14]
in order to determine the contribution from the B′ 1Σ+

u

state DE, which we have also presented in Fig. 7. We find
that the present results are somewhat larger than these
estimates. The experiments cited here use Stark quench-
ing for the measurement of H(2s) production. This pro-
cess is susceptible to underestimation of the H(2s) signal
resulting from non-radiative processes such as H+

3 pro-
duction (H2 +H(2s) → H+

3 + e−), therefore lowering the
estimated DE cross section for the B′ 1Σ+

u state [11].
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FIG. 7: Same as in Fig. 4 but for the B′ 1Σ+
u state. Addi-

tional calculations from Chung et al. [8] and Mu-Tao et al. [9]
are presented, along with estimates of the B′ 1Σ+

u DE cross
section obtained by Borges et al. [11] from measurements of
H(2s) production by Vroom and de Heer [14] and Möhlmann
et al. [15].

DE cross sections for the optically forbidden E,F 1Σ+
g

state transition are presented in Fig. 8 and compared
with the previous calculations of Chung et al. [8] and
Mu-Tao et al. [9]. At intermediate energies both previ-
ous calculations are a factor of 3 and 4 larger than the
CCC-S(210) results and remain in disagreement with the
CCC results even at high incident energies, Ei > 100 eV.
The calculations of Chung et al. [8] utilized a single-
configuration representation of the target wave functions,

which does not provide sufficient accuracy. This intro-
duces substantial errors to the scattering calculations
which are present even at high energies. It is also worth
mentioning that large inter-channel coupling effects for
this transition lead to significant change in shape and
absolute values of the total excitation integrated cross
section, as observed in the convergence studies of Zam-
mit et al. [22]
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FIG. 8: Same as in Fig. 4 but for the E,F 1Σ+
g state. Com-

parison with additional calculations by Chung et al. [8] and
Mu-Tao et al. [9] is made.

An approximate method for calculating the VREE
cross section (11) is to weight the cross section σf,ivi for
total excitation of the electronic state f from the initial
state ivi with the respective Franck-Condon (FC) factor,
giving

σfvf ,ivi ≈ σf,ivi
∣

∣〈χfvf |χivi〉
∣

∣

2
, (22)

from which the DE cross section can be obtained using

σDE
f,ivi

≈ σf,ivi



1−
∑

vf

∣

∣〈χfvf |χivi〉
∣

∣

2



 , (23)

where the summation is over the bound vibrational lev-
els of the final electronic state. To test the validity of
this approximation, we compare it with the present AN
calculations for DE of the B′ 1Σ+

u and C 1Πu states from
the vi = 0 level of the X 1Σ+

g state in Fig. 9. The FC
principle yields a larger DE cross section than the AN
calculations (by 20% and 75% at the maximum for the
B′ 1Σ+

u and C 1Πu states, respectively), although it gen-
erally displays the correct qualitative behaviour. The
major cause of the discrepancy is that the FC factors
in Eq. (22) do not account for the change in the i → f
transition probability as R varies. This issue is magnified
for scattering on excited vibrational states, which span
larger regions of the internuclear separation over which
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Franck-Condon principle (23) with the present calculations
for DE of the B′ 1Σ+
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of the X 1Σ+

g state.

the excitation probabilities can vary significantly. Hence,
for such transitions the full adiabatic-nuclei treatment is
required.

B. Dissociative excitation from vibrationally

excited levels

In Fig. 10, DE cross sections are presented for scat-
tering on all X 1Σ+

g (vi = 0–14) vibrational levels. As
found in previous studies [12, 13, 26] cross sections for
scattering on excited vibrational levels are significantly
higher than from the ground state. With increasing vi the
cross sections increase and then decrease nonmonotoni-
cally. We represent this behaviour with solid and dashed
lines for increasing and decreasing cross sections, respec-
tively. The initial vibrational levels with the largest DE
cross sections for excitation of the B 1Σ+

u , and C 1Πu,
B′ 1Σ+

u , D
1Πu, and E,F

1Σ+
g states are vi = 7, 9, 10, 10,

and 10, respectively. In most cases the largest DE cross
section is approximately an order of magnitude larger
than the cross section for DE from the vi = 0 level. The
notable exception is the B′ 1Σ+

u state, where the largest
DE cross section (for scattering on the vi = 10 level) is
only a factor of 2 larger than the vi = 0 cross section.
In Fig. 11, a selection of the CCC DE cross sections

are compared with Celiberto et al. [12] for the B 1Σ+
u ,

C 1Πu, B
′ 1Σ+

u , and D
1Πu states. Although the impact-

parameter (IP) results [12] are in significant quantitative
disagreement with the present calculation, we note that
the qualitative behaviors of the cross sections with re-
spect to both energy and vi are similar. At high ener-
gies, although the present results generally converge to
the IP results for low vi, they are in disagreement for
scattering on higher vi. Note that the accuracy of the

target structure utilized by Celiberto et al. [12] was not
demonstrated for all internuclear distances spanning the
vi = 0–14 vibrational levels. Given the previous suc-
cess of the molecular CCC method at describing electron
collisions with H2 [22], and the demonstrated accuracy
of the present target structure (see Figs. 1 and 2), we
believe the CCC-S(210) cross section to be a significant
improvement over the previous calculations.

IV. CONCLUSION

We have presented electron-impact DE cross sections
for transitions from all vi = 0–14 vibrational levels of the
X 1Σ+

g state to the B 1Σ+
u , C

1Πu, B
′ 1Σ+

u , D
1Πu,

and E,F 1Σ+
g singlet states. For scattering on the

X 1Σ+
g (vi = 0) ground electronic and vibrational state we

find good agreement with the previous calculations of Liu
et al. [13] for DE through optically allowed transitions.
Significant disagreement was found with the previous cal-
culations of Chung et al. [8], Mu-Tao et al. [9], Borges
et al. [11], and Celiberto et al. [12] at low and interme-
diate incident electron energies for all DE cross sections.
In the high-energy limit where the first Born approxi-
mation is valid we found good agreement with previous
calculations for optically allowed transitions but not for
the optically forbidden E,F 1Σ+

g state. For scattering
on excited vibrational levels, previous studies are limited
to the IP results of Celiberto et al. [12]. The present re-
sults are in qualitative agreement with the IP results in
the intermediate and high-energy regions, but significant
quantitative disagreement has been found for all tran-
sitions. Due to the previous success and demonstrated
convergence of the molecular CCC method [20, 22, 25]
we expect the present results to be a significant improve-
ment over the previously recommended data. The the-
oretical techniques utilized in the present work can be
extended to produce cross sections for dissociation into
specific atomic fragments. Accounting for predissociation
and radiative-decay dissociation would allow for compar-
ison with currently available measurements.
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FIG. 10: DE cross sections for the B 1Σ+
u , C
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g states for scattering on the X 1Σ+
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corresponding to the maximum DE cross section for a given state.
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FIG. 11: Comparison of the present DE cross sections (solid lines) with Celiberto et al. [12] (dashed lines) for excitation of
the B 1Σ+

u , C
1Πu, B

′ 1Σ+
u , and D 1Πu states of H2. The left panel compares the energy dependence of DE cross sections

for scattering on various initial vibrational levels vi, and the right panel displays the dependence of the cross section on vi for
60 eV incident electrons.
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