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Two-way Gaussian protocols have the potential to increase quantum key distribution (QKD)
protocols’ secret-key rates by orders of magnitudes [Phys. Rev. A 94, 012322 (2016)]. Security
proofs for two-way protocols, however, are underdeveloped at present. In this paper, we establish
a security proof framework for the general coherent attack on two-way Gaussian protocols in the
asymptotic regime. We first prove that coherent-attack security can be reduced to collective-attack
security for all two-way QKD protocols. Next, we identify two different constraints that each provide
intrusion parameters which bound an eavesdropper’s coherent-attack information gain for any two-
way Gaussian QKD protocol. Finally, we apply our results to two such protocols.

I. INTRODUCTION

The continuing improvement of classical compu-
tational power [1] and the emergence of quantum
computers [2–4], are increasing the likelihood that
complexity-based classical cryptographic algorithms—
such as Rivest-Shamir-Adleman encryption [5] and
elliptic-curve cryptography [6, 7]—will be broken. Two
distinct approaches have emerged for countering this vul-
nerability: post-quantum cryptography [8], which seeks
new public-key cryptography algorithms that are im-
mune to the threat posed by a quantum computer run-
ning Shor’s algorithm [9]; and quantum key distribu-
tion [10] (QKD), which provides protocol security based
on physical laws rather than computational complexity.

In QKD, Alice and Bob establish a raw key by
quantum-channel transmission and detection of photons.
They use security testing and classical communication
to quantify Eve’s intrusion on the quantum channel.
With these intrusion parameters they can place an upper
bound on Eve’s information gain. Then, they complete
the QKD protocol by reconciling their raw keys, to elim-
inate errors, and distilling a final key via privacy ampli-
fication, to ensure its unconditional protocol security.

QKD’s principal advantage is its provable protocol se-
curity. Its ultimate benefit would be enabling Alice and
Bob to transmit messages using one-time-pad encryp-
tion, which would afford them information-theoretic se-
curity for their communications. QKD systems using
the decoy-state BB84 or conventional continuous-variable
(CV) protocols, however, have state-of-the-art secret key
rates (SKRs) [11–13] of ∼1 Mbit/s at metropolitan-area
distances, which is far below the Gbit/s rates needed for
Internet-speed secure communications. These systems’
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SKRs could be pushed to Gbit/s with massive combi-
nations of space-division and wavelength-division multi-
plexing, but that approach comes with a major equip-
ment burden in cost and complexity. Recently, floodlight
QKD (FL-QKD) [14–17] has been proposed as a means
to realize Gbit/s SKRs at metropolitan-area distances
over single-mode fiber (no space-division multiplexing),
in a single-wavelength channel (no wavelength-division
multiplexing), and without the need to develop any new
technology. It does so by encoding each transmitted sym-
bol over multiple temporal modes, whereas decoy-state
BB84 makes no use of multimode encoding and conven-
tional CV-QKD requires single-mode encoding. As a re-
sult, FL-QKD’s SKR is less constrained by the PLOB
bound [18, 19], which sets the ultimate limit on secret bits
per mode, than those protocols. That said, decoy-state
BB84 and conventional CV-QKD have the advantage of
being one-way (OW) protocols, whereas FL-QKD is a
two-way (TW) protocol, so that the former have much
stronger security guarantees—e.g., decoy-state BB84 has
coherent-attack security with finite-key analysis—while
the latter’s security to date is only against the frequency-
domain collective attack in the asymptotic regime [14].
On the other hand, unlike other TW-QKD protocols [21–
29], FL-QKD uses an optical amplifier in Bob’s terminal
to overcome the Bob-to-Alice channel’s loss, making FL-
QKD’s channel loss equivalent to that of OW-QKD pro-
tocols.

The limited nature of FL-QKD’s security proof is char-
acteristic of the situation for other TW-QKD proto-
col’s [14–17, 21–29]. In part, this is because proof tech-
niques for OW-QKD [30–34] do not readily cope with si-
multaneous attacks on both the Alice-to-Bob and Bob-to-
Alice channels of a TW-QKD protocol. Thus, for a long
time only special attacks [21, 24–26, 28, 29, 35], or general
attacks in the absence of loss and/or noise [22, 23, 27],
have been considered for TW-QKD.

At this point it should be clear that a coherent-
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attack security proof, with finite-key analysis [36], for FL-
QKD would be an enormous step toward its widespread
employment, given that protocol’s potential for Gbit/s
SKRs. More generally, such security proofs for other
TW-QKD protocols could also be valuable. In this pa-
per, we take a first step in that direction by establishing
TW-QKD’s coherent-attack security in the asymptotic
regime wherein there are an infinite number of channel
uses. Because we want to include protocols like FL-
QKD that encode over multiple modes, we cannot en-
tirely rely on raw-key post-processing by Alice and Bob
that permutes or otherwise independently manipulates
measurements made on individual optical modes. More-
over, at high modulation rates, manipulation of each en-
coded symbol is difficult, even if single-mode encoding is
employed. Hence, de Finetti theorem arguments [32, 33]
are not directly applicable for the reduction from coher-
ent attack to collective attack on a mode-by-mode basis;
Instead, it reduces the general coherent attack to a block-
wise coherent attack, in which Eve performs the same but
arbitrary operations on blocks of modes that may com-
prise one or more symbols, i.e., one or more of Alice and
Bob’s channel uses.

The asymptotic SKR for the block-wise coherent at-
tack is given by the block-wise Devetak-Winter for-
mula [37, 38], which reduces the problem to bounding
the information leaked to Eve during the raw-key gen-
eration process, as constrained by intrusion-parameter
estimates made by Alice and Bob using local operations
and classical communication (LOCC) [39]. Note that in a
block-wise coherent attack [36], Eve can entangle signals
sent in different channel uses within a block, which makes
bounding Eve’s information gain a difficult multi-letter
maximization involving Eve’s operations over multiple
channel uses. A crucial task for us is therefore reducing
the maximization to a single-letter (single channel-use)
form from which computing an upper bound on Eve’s
information gain is tractable.

We will use the recently developed noisy-entanglement-
assisted classical capacity formula [14, 40] to resolve the
preceding single-letterization dilemma for Gaussian TW-
QKD protocols, i.e., protocols that employ Gaussian-
state sources and Gaussian operations [41]. We con-
sider two different constraints—the pair-wise sum con-
straints and the permutation-invariant sum constraints—
that provide intrusion parameters which suffice to es-
tablish tractable (single-letter) upper bounds on Eve’s
coherent-attack information gain.

The remainder of the paper is organized as follows. In
Sec. II, we introduce Gaussian TW-QKD protocols. In
Sec. III, we prove that the capacity formula in Ref. [40]
provides an upper bound on Eve’s information gain from
her most general coherent attack. There, we also describe
the pair-wise sum constraints and permutation-invariant
sum constraints that lead to efficiently calculable bounds
on Eve’s coherent-attack information gain, and we show
that the resulting upper bound can be achieved by a col-
lective attack. In Sec. IV, we evaluate the secret-key
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FIG. 1. General schematic for a Gaussian TW-QKD protocol.

efficiencies (in bits/symbol) of two Gaussian TW-QKD
protocols: the two-mode squeezed-vacuum (TMSV) pro-
tocol from Refs. [21, 26, 28, 29] and FL-QKD. We con-
clude, in Sec. V, with a summary and some discussion.

II. GAUSSIAN TWO-WAY PROTOCOLS

Figure 1 shows a general schematic for how a Gaus-
sian TW-QKD protocol generates raw key [42]. First,
Alice prepares a signal-reference mode pair (Y,W ) in a
maximally entangled bipartite Gaussian pure state, i.e.,
the two-mode squeezed vacuum (TMSV), with average
photon number NS and Wigner covariance matrix

ΛYW =
1

4

[
AY CYW

CYW AW

]
, (1)

where AY = AW = (2NS + 1)I2, and CYW = 2CS Z2,
with I2 = Diag[1, 1], Z2 = Diag[1,−1], and CS =√
NS(NS + 1). As explained below, Alice will use part

of W for security testing [43], but Eve is unable to access
any of W . Next, Alice sends Y to Bob through a quan-
tum channel that Eve controls. In general, Eve performs
a unitary operation on Y and some pure-state modes V
of her own, producing her ancilla E, which can be multi-
mode, and the single-mode signal S that she transmits to
Bob. Because Eve can mount a coherent attack, her uni-
tary operation can act on the entire sequence of signals
that Alice transmits during a QKD session.

Bob takes a small portion of the S mode he receives
from Eve and uses it for security testing. After that,
he encodes a random symbol X on the remainder of the
S mode to produce his encoded mode S′. He does so,
when X = x, by means of a unitary Ux that imparts
a deterministic, complex-valued displacement dx, and a
deterministic phase shift θx. The S′ mode’s photon anni-
hilation operator is therefore â′S = eiθX âS+dX , where âS
is the S mode’s annihilation operator, and we have not
accounted for the small portion of S that is consumed by
Bob’s security testing.

We will assume that dX is a zero-mean, circulo-
complex, Gaussian random variable. Thus, if no phase
encoding is applied, then S′ will be in a thermal state
with average photon number

〈â′†S â′S〉 =

∫
dx pX(x) 〈â′†S â′S〉x = 〈â†S âS〉+ EX , (2)
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where 〈·〉x denotes averaging conditioned on X = x, and
EX ≡

∫
dx pX(x)|dx|2 with pX(x) being X’s probability

density function. Our security analysis will presume en-
coding symmetry, i.e., that the S′ mode’s unconditional
state has zero mean, which is guaranteed by assuming
that

∫
dx pX(x)eiθx = 0. Note that the S′ mode’s aver-

age photon number is unaffected by the phase shift θX ,
making Eq. (2) applicable when Bob encodes in both dis-
placement and phase.

The preceding encoding scheme, while not the most
general, includes the random-displacement encoding em-
ployed in Ref. [21], and the phase encoding used in FL-
QKD [14–17]. Here we note that the average state of
(S′,W ) is, in general, non-Gaussian owing to the action
of Eve’s unitary operation and/or Bob’s phase modula-
tion.

After completing his encoding, Bob sends S’ through a
quantum channel, Ψ, within his terminal that models the
characterizable part of the Bob-to-Alice return path that
is not controlled by Eve. This channel produces an out-
put mode B that Bob sends to Alice through a quantum
channel that is under Eve’s control. Alice makes a joint
measurement of the mode she receives and W to obtain
her raw-key symbol x̃ that results from Bob’s having sent
x, with the nature of Alice’s measurement depending on
Bob’s choice of his encoding operation UX . Alice and
Bob also perform security testing, which is an LOCC
parameter-estimation scheme based on Alice’s measur-
ing part of W and Bob’s measuring part of S. That
scheme allows them to evaluate some bipartite functions
of the joint state ρSW that constitute intrusion parame-
ters which they use to compute an upper bound on Eve’s
information gain.

Alice and Bob distill their secret key by the follow-
ing two-step procedure. Starting from his transmitted-
symbol sequence and Alice’s raw-key sequence, Bob per-
forms the key-map operation [36, 44] and sends error-
correction information to Alice on an authenticated clas-
sical channel. At that point, Alice and Bob share a com-
mon key, but its security is not assured because of the
information Eve has gained. Thus they use their up-
per bound on Eve’s information gain to determine and
perform a sufficient amount of privacy amplification to
ensure their final key’s security.

To complete our explanation of Fig. 1, we conclude this
section with some remarks about Ψ, the quantum chan-
nel within Bob’s terminal. For single-mode encoding, we
take Ψ to be a single-mode Gaussian channel with no
excess noise, which can be represented as a unitary oper-
ation on the encoded signal mode S′ and a vacuum-state
environment mode N that produces the return mode
B and a transformed environment mode N ′. If multi-
mode encoding over ME > 1 modes is employed, the
channel internal to Bob’s terminal is Ψ⊗ME , which ap-
plies, e.g., to FL-QKD with Ψ being a quantum-limited
amplifier channel, A0

GB
, whose output modes B and

N ′ are characterized by âB =
√
GB â

′
S +
√
GB − 1 â†N ,

and â′N =
√
GB − 1 â′†S +

√
GB âN , where GB ≥ 1.

The Ψ channel can also model loss in Bob’s terminal
by means of a pure-loss channel, L0

ηB , whose output

modes satisfy âB =
√
ηB â

′
S +
√

1− ηB âN , and â′N =√
1− ηB â′S −

√
ηB âN , where 0 ≤ ηB ≤ 1. For complete-

ness, we will also consider the complement of A0
GB

—the

contravariant quantum-limited amplifier channel Ã0
GB

—

whose outputs obey âB =
√
GB − 1 â′†S +

√
GB âN and

â′N =
√
GB â

′
S +
√
GB − 1 â†N . From these input-output

relations the B mode’s average photon number, 〈â†B âB〉,
can be found to be

NB =


GB(〈â′†S â′S〉+ EX) +GB − 1, for A0

GB
,

ηB(〈â′†S â′S〉+ EX), for L0
ηB ,

(GB − 1)(〈â′†S â′S〉+ EX + 1), for Ã0
GB
.

(3)

In deriving an upper bound on Eve’s information gain we
can (and will) assume that Eve collects all the B modes,
because Bob performs the key-map operation.

As a final note on Ψ, we point out that no loss of
generality is entailed by our assumption that âN is in its
vacuum state. This is because Eve gains less information
when âN is in a thermal state than when that mode is in
its vacuum state, as is easily demonstrated by a channel
decomposition [45, 46] argument. In particular, let an
N0 superscript on our channel models’ symbols denote
the average photon number of that channel’s thermal-
state environment. The thermal-environment amplifier
channel can be expressed as

AN0

GB
= LN

′
0

1/G′ ◦ A0
G′ ◦ A0

GB
, (4)

where G′ =
√

1 +N ′0/
√

1 +N ′0 −N0(G2
B − 1) > 1 with

N ′0 > N0(G2
B − 1). Likewise, the thermal-environment

loss channel can be written as

LN0
ηB = A0

1/η′ ◦ L0
η′ ◦ L0

ηB , (5)

where η′ = 1/
√

1 +N0(1− η2
B) < 1. (A similar relation

holds for the complementary channel, but we shall omit
it). The data-processing inequality [47] now guarantees
that the upper bound on Eve’s information gain for the
N0 = 0 version of each of our Gaussian Ψ channels is also
an upper bound on the information Eve gains from the
N0 > 0 version of that Gaussian channel.

III. BOUNDING EVE’S INFORMATION GAIN

For protocols that encode multiple modes per symbol,
post-processing cannot independently manipulate each
mode within a raw-key symbol. In particular, permuta-
tion of the raw keys only permutes multiple-mode blocks.
Hence, the de Finetti theorem [32, 33] can be used to re-
duce the coherent attack to a block-wise coherent attack,
but not to reduce it further to a single-mode attack. In a
block-wise coherent attack, Eve performs the same arbi-
trary attack on each size MB � 1 symbol block of Alice
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and Bob’s transmissions. To accomplish the reduction,
we will make use of the tools from Ref. [40].

Consider a multiple-block QKD session in which Al-
ice and Bob spend some small amount of pre-shared key
to randomly discard some of the size-MB blocks, during
post-processing of their raw keys. By de Finetti theorem,
we only need to bound Eve’s information gain by analyz-
ing, see Sec. III A, the block-wise coherent attack. Note
that because MB � 1, the amount of key consumption
for determining the blocks being discarded is very small
compared to the keys being generated. It is worth em-
phasizing that there is hope that the reduction from the
general coherent attack to the block-wise coherent attack
may be accomplished without relying on de Finetti argu-
ment, see Sec. III B.

Alice and Bob’s secret-key efficiency (SKE), in
bits/symbol, for an asymptotic-regime block-coherent at-
tack is given by the Devetak-Winter formula [37, 38, 48]

SKE = max(βIAB −MEχE , 0). (6)

Here: IAB is the Shannon information (in bits/symbol)
between Bob’s key map {X} and Alice’s measurement

data {X̃}; β is Alice and Bob’s reconciliation efficiency;
χE is Eve’s bits/mode Holevo-information gain; and ME

is the number of modes per encoded symbol. Alice
and Bob can calculate IAB from error-probability mea-
surements, and they know the efficiency of their error-
correction procedure, but they need to maximize χE
over all block-wise coherent attacks that are consistent
with their security-testing results. That maximization—
obtaining an upper bound on χE—is therefore the heart
of the asymptotic-regime security proof for TW-QKD
protocols. In what follows, we show that the structure
of TW-QKD protocols leads to an additive upper bound
on χE that, in turn, results in an SKE lower bound.

A. Bounding the block-wise coherent attack

Reference [40] developed a way to bound Eve’s infor-
mation gain for a TW-QKD protocol, but that reference
focused on a rigorous formulation for noisy entanglement-
assisted classical capacity, and did not present in full de-
tail a security proof for TW-QKD protocols. Here we
present a detailed proof that Ref. [40]’s capacity formula
provides an upper bound on the the most general block-
wise coherent attack’s information gain. Our proof ap-
plies to all TW-QKD protocols in which Bob performs
the key map, not just to the Gaussian special case. As
shown in Fig. 2, Alice transmits the MB-symbol block
Y ≡ Y1 · · ·YMB

, where the {Ym} each have ME modes
and we are using the Fig. 1 notation with a subscript to
identify the symbol’s place within the MB-symbol block.
Alice has access to the purifications W ≡ W1 · · ·WMB

,
i.e., each (YmWm) pair is in the tensor product of ME

TMSV states.
We shall allow Eve to perform the most general at-

tack on this block—shown schematically in Fig. 2—by
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B<latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit>

B<latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit>

B<latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit>

B<latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit> B<latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit>

UX
<latexit sha1_base64="+77BlB8NPTamvGzGCWnA1JWOeFI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivd+712r1pz6+4MZJl4BalBgWav+tXtJyyLURomqNYdz01NkFNlOBM4qXQzjSllIzrAjqWSxqiDfHbqhJxYpU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTITXQY5l2lmULL5oigTxCRk+jfpc4XMiLEllClubyVsSBVlxqZTsSF4iy8vE/+sflV3785rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AH7pjXc=</latexit><latexit sha1_base64="+77BlB8NPTamvGzGCWnA1JWOeFI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivd+712r1pz6+4MZJl4BalBgWav+tXtJyyLURomqNYdz01NkFNlOBM4qXQzjSllIzrAjqWSxqiDfHbqhJxYpU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTITXQY5l2lmULL5oigTxCRk+jfpc4XMiLEllClubyVsSBVlxqZTsSF4iy8vE/+sflV3785rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AH7pjXc=</latexit><latexit sha1_base64="+77BlB8NPTamvGzGCWnA1JWOeFI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivd+712r1pz6+4MZJl4BalBgWav+tXtJyyLURomqNYdz01NkFNlOBM4qXQzjSllIzrAjqWSxqiDfHbqhJxYpU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTITXQY5l2lmULL5oigTxCRk+jfpc4XMiLEllClubyVsSBVlxqZTsSF4iy8vE/+sflV3785rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AH7pjXc=</latexit> M

B<latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit> B<latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit><latexit sha1_base64="mGrc731QsPIFLZUntZfENvog0/A=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6U3Wbl5VaPU+jCCdwCufgwRXU4A4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx8Cq4yZ</latexit>
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FIG. 2. Schematic of the most general coherent attack on an
MB-symbol block. Dotted circles enclose the modes present
after the mth attack round.

supposing that Alice sends all of Y simultaneously on
the forward channel, and that Eve performs the follow-
ing MB-round interactive process with Bob. In the mth
round, Eve sends an ME-mode signal Sm [49] to Bob who
responds by transmitting his ME-mode encoded symbol
Bm [50]. We assume that Eve captures Bm in its en-
tirety, because doing so will aid our security analysis and
full capture affords Eve more information than she would
get from partial capture. In addition, we will give Eve
an ideal quantum memory, so that she can postpone her
quantum measurement until after the MBth interaction
round. Furthermore, we grant Eve the power to create
an arbitrarily entangled multi-mode ancilla E0 for use
in her first round, and the ability to perform an arbi-
trary multi-mode unitary, Um, in the mth round. Her
first round’s unitary acts on Y and produces the out-
puts S1, which Eve sends to Bob, and E1, which is an
ancilla that Eve retains for use in the second round. In
the next MB − 2 rounds, Eve’s unitary acts on (EmBm)
and produces the output Em+1. Eve makes her quan-
tum measurement on (EMB

BMB
), the outputs from her

MBth interaction round.

Bob’s operations in Fig. 2 are the following. Upon
receipt of Sm from Eve, he encodes a randomly-chosen
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classical symbol Xm by means of the unitary UXm

which he then passes through the channel Ψ⊗ME , whose
Stinespring-dilation unitary U⊗ME

Ψ has ancilla input Nm
and produces the return Bm and the ancilla output N ′m.
(Note that Fig. 2 has omitted Bob’s use of a small portion
of each Sm for security testing.)

We assume that Eve can neither access the W that
are in Alice’s lab nor the N ≡ N1 · · ·NMB

and the
N ′ ≡ N ′1 · · ·N ′MB

that are in Bob’s lab. Thus her Holevo-
information gain satisfies

χ
(M)
E ≡ I(EMB

BMB
: XMB

· · ·X1) (7)

=

MB∑
m=1

I(EMB
BMB

: Xm | Xm−1 · · ·X1) (8)

≤
MB∑
m=1

I(EmBm : Xm | Xm−1 · · ·X1), (9)

where the superscript M = MBME denotes the total
number of modes from which Eve has gained informa-
tion. The first equality is because the Holevo informa-
tion obtainable from a quantum system A, in state ρxA
with probability density function pX(x), about a classi-
cal register X can be written as the Shannon information
I(A : X) between A and X for the classical-quantum
state ρAX ≡

∫
dx pX(x)ρxA ⊗ |x〉X 〈x| [47]. The second

equality is due to the chain rule for Shannon informa-
tion, with I(A : C | B) being the conditional Shannon
information between A and C given B [51]. The inequal-
ity follows from the data processing inequality [47], be-
cause key distribution after the mth round is a quantum
operation that generates EMB

BMB
from EmBm with as-

sistance from ancilla that are independent of Xm, and
hence do not increase the Shannon information.

Now let us focus on the system after mth round, which
consists of EmBmW1 · · ·WMB

N ′1 · · ·N ′m. These modes,
which are contained in Fig. 2’s dotted circles, are in a
joint pure state with Eve only having access to EmBm.
Nevertheless, it is convenient to increase Eve’s informa-
tion gain by pretending that she can access Bm and
Ẽm ≡ EmW1 · · ·Wm−1Wm+1WMB

N ′1 · · ·N ′m−1, i.e., we
have that

I(EmBm : Xm | Xm−1 · · ·X1)

≤ I(ẼmBm : Xm | Xm−1 · · ·X1). (10)

The term on the right in (10) is bounded above by
the noisy entanglement-assisted capacity formula from
Ref. [40], with Ẽm as the ancilla generated by Eve and

WmẼmSm in a pure state. Thus we have χ
(M)
E from (9)

has an upper bound given by MB times a multi-letter ca-
pacity formula over ME modes, where we emphasize that
this result applies to all TW-QKD protocols in which
Bob performs the key map.

B. Optimality of the block-wise coherent attack

Despite the de Finetti theorem sufficing to reduce the
coherent attack to the block-wise coherent attack, here
we provide an analysis that the block-wise coherent at-
tack is the optimum coherent attack in the asymptotic
regime. Note that the analysis is not entirely rigorous
yet, however, there is good hope that with some fu-
ture generalization of quantum asymptotic-equipartition
property (QAEP) [52], the analysis will be fully rigorous.
This approach is desirable, not only because it is more
elegant, but also since we expect it will lead to tighter
finite-key bounds. Consider K blocks of MB symbols
that are indexed by 1 ≤ k ≤ K. The schematic for
Eve’s coherent attack on these K blocks is similar to the
single-block attack from Fig. 2, except that now all of
Alice’s signal modes, Y ≡ Y (1) · · ·Y (K), are supplied to
Eve simultaneously. To proceed expeditiously, we intro-
duce some new notation. In the kth block, we let Ek ≡
E

(k)
MB

B
(k)
MB

, Nk ≡ N
(k)
1 · · ·N (k)

MB
, N ′k ≡ N

′(k)
1 · · ·N ′(k)

MB
,

and Wk ≡ W
(k)
1 · · ·W (k)

MB
, where, except for the super-

script denoting the block index, the right-hand sides of
each definition have the same meanings as in Fig. 2. In

a similar manner, we use Xk ≡ X
(k)
1 · · ·X(k)

MB
to denote

Bob’s random classical messages for the kth block.
With the preceding notation, Fig. 3 shows the

schematic for Eve’s K-block coherent attack, in which
the kth block can be considered a unitary from input
Ek−1Nk to output EkN

′
k, conditioned on the classi-

cal messages Xk. For a K-block QKD session, the
εEC +εPA +ε-secure SKE, in bits/symbol, is given by [36]

SKE(K,MB)

=
[
Hε

min (X1 · · ·XK | EK)− leakIR + log
(
ε2PA

)]
/KMB ,

(11)

where leakIR is the information leaked to Eve in the
information reconciliation protocol with εEC-secure er-
ror correction and εPA-secure privacy amplification, and
Hε

min(A | B) is the smooth min-entropy of A conditioned
on B. Note that leakIR can be determined by Alice and
Bob. In the asymptotic (K → ∞) regime the last term
in brackets vanishes, so we only need to lower bound
Hε

min(X1 · · ·XK | EK) for Alice and Bob to have a lower

FIG. 3. Schematic of the most general coherent attack on K
blocks of MB symbols. The dotted circles enclose the modes
present after kth block. Note that all the {Wk} have been
present from the start, despite their being assigned to different
k values in this figure.



6

bound on their SKE. The arguments that follow parallel
the single-block case.

First, we use the chain rule for smooth min-entropy [53]
repeatedly to obtain

Hε
min(X1 · · ·XK | EK) ≥ Hz

min(XK | EK)+

K−1∑
k=1

Hz
min(Xk | EKXk+1 · · ·XK)− (K − 1)f(z), (12)

where f(z) ∼ log(1/z) and z = ε/(3K − 2). Because
EKXk+1 · · ·XK can be obtained from Ek by a quan-
tum operation, the data-processing inequality for smooth
min-entropy [36] gives us

Hz
min(Xk | EKXk+1 · · ·XK) ≥ Hz

min(Xk | Ek). (13)

Next, after the kth block, we decrease Eve’s smooth min-
entropy by granting her access to everything other than
Wk and N ′k, i.e., Eve’s system is enlarged to Ẽk ≡
EkW1 · · ·Wk−1Wk+1 · · ·WKN ′1 · · ·N ′k−1. Another use
of the data-processing inequality then leads to

Hz
min(Xk | Ek) ≥ Hz

min(Xk | Ẽk), (14)

where the right-hand side corresponds to the case in
which Eve has a pure state kth block’s outset. Com-
bining Eqs. (11)–(14), we get

SKE(K,MB) ≥
[
K∑
k=1

Hz
min(Xk | Ẽk)

−(K − 1)f(z)− leakIR + log(ε2PA)]/KMB . (15)

Because f(z) ∼ log(3K/ε), we can letK andMB increase
while maintaining K � MB � log(K)� 1, and obtain,
asymptotically,

SKE(K,MB) ≥

1

KMB

[
K∑
k=1

H
ε/3K
min (Xk | Ẽk)− leakIR

]
. (16)

The preceding lower bound is achieved when Eve per-
forms independent operations on each MB-symbol block.
If Alice and Bob’s security testing leads to identical con-
straints on each block, then the asymptotic-regime lower
bound is achieved by Eve’s performing a block-wise co-
herent attack. In Eve’s absence, QKD protocols operat-
ing with MB � 1 give security-testing results that are
nearly identical for all sufficiently-large blocks. When
Eve’s activities create substantial block-to-block varia-
tions in Alice and Bob’s security-testing results, they
abort the protocol.

However, in order to be fully rigorous, one still need
to show that (16) is lower bounded by the bound in (6).
However, the QAEP in ref. [52] does not apply directly,
since there is no independent and identically distributed
structure in (16). To close the last step, one would re-
quire generalization of QAEP, which is a future direction

to pursue. Conditioned on the QAEP generalization, as
was the case for the bound in (10), the bound in (16) and
its implications apply to all TW-QKD protocols. Part of
our analysis is similar to the idea of entropy accumula-
tion [54], which has been successfully applied in device-
independent QKD protocols [55, 56]. However, owing
to the structure of TW-QKD, in which Eve can interac-
tively alter the quantum states being sent between Alice
and Bob, the framework of entropy accumulation does
not apply directly to our problem.

C. Constraints and single-letterization

Here we assume a Gaussian TW-QKD protocol and

return to (9) and (10), in which χ
(M)
E in (9) is bounded

above by MB times the multi-letter capacity formula
from Ref. [40] across ME modes. For simplicity, how-
ever, we will use the multi-letter capacity formula from
Ref. [40] across M = MBME modes, which still es-

tablishes an upper bound on χ
(M)
E . Going forward,

we will use S ≡ S1S2 · · ·SM , B ≡ B1B2 · · ·BM , and
W ≡ W1W2 · · ·WM to denote the modes involved.
For Gaussian protocols, UX is covariant with Ψ, thus
Eve’s information gain obeys the following multi-letter
bound [37, 40],

χ
(M)
E ≤ max

ρSW

F (ρSW ), (17)

F (ρSW ) ≡ S(ρB)− E(Ψ⊗M )c⊗I(ρSW ). (18)

In this bound: S(·) is the von Neumann entropy; φc

denotes the complementary channel to the φ channel;
I is the identity channel on W ; and Eφ(·), the en-
tropy gain of the completely-positive trace-preserving
map φ applied to a system in state ρ, is defined to be
Eφ(ρ) ≡ S[φ(ρ)] − S(ρ). The maximization in (17) is
over attacks that are constrained by the intrusion param-
eters that Alice and Bob derive from their security testing
on the state ρSW . We shall assume, in proceeding, that
Bob independently encodes each mode (ME = 1), so that
ρBm

=
∫

dx pX(x)Ψ(UxρSm
U†x); when Bob uses ME > 1

encoding, (17) is still an upper bound on χ
(M)
E .

To facilitate evaluating (17), and thus the asymptotic-
regime SKE from (6), the constraints that Alice and Bob
derive from their security testing should satisfy two re-
quirements.

(R1) The constraints lead to a single-letter upper bounds
on Eve’s information gain.

(R2) The constraints can be measured precisely in the
asymptotic regime from Alice and Bob’s performing an
LOCC procedure.

Requirement (R1) ensures that evaluating the upper
bound on Eve’s information gain from the constraints
is tractable, and requirement (R2) ensures that the con-
straints can be obtained with arbitrarily high precision
from security testing over a sufficiently long QKD session.
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Because ρSW is infinite dimensional, we use Gaussian
extremality [57, 58]—which states that when the covari-
ance matrix of the input state is fixed, continuous sub-
additive (super-additive) function, which is invariant un-
der local passive symplectic transforms, has its maximum
(minimum) achieved by Gaussian states—to satisfy re-
quirement (R1) and restrict the maximization in (17) to
Gaussian states. Toward this end, Ref. [40] established
the following two sub-additivity inequalities (Theorems 2
and 3 in Ref. [40]’s supplemental material),

F (ρSW ) ≤∑M
m=1 F (ρSmWm), (19)

F (ρSW ) ≤∑M
m=1 F (ρSmW ). (20)

Here F (ρSmWm
) ≡ S(ρBm

) − EΨc⊗I(ρSmWm
) and

F (ρSmW ) ≡ S(ρBm
)−EΨc⊗I(ρSmW ) are generalizations

of Eq. (18). Because Eφ is convex [59], we have that
F (ρSW ) is concave in quantum states. The subadditivity
inequalities (19) and (20) then ensure that the maximum
in (17) is achieved by Gaussian inputs, ρSW [40], that
satisfy covariance-matrix constraints. Thus we will only
consider constraints from security testing that restrict
covariance matrices.

In Sec. III C 1, we revisit the covariance-matrix con-
straints considered in Ref. [40], and give its explicit form
for Gaussian protocols. Although these constraints meet
requirement (R1), they fail to satisfy requirement (R2),
making them unsuitable for our goal of establishing a
TW-QKD security framework. In Sec. III C 2, we in-
troduce constraints—in the form of sums of pair-wise
terms—and show that they meet requirements (R1)
and (R2). Similarly, in Sec. III C 3, we generalize to sum
constraints that are invariant under signal-mode permu-
tations, and show that they too obey requirements (R1)
and (R2). Under a collective attack, the precision
with which the intrusion parameters from Secs. III C 2
and III C 3 can be estimated improves as the QKD ses-
sion’s duration increases, becoming perfect in the asymp-
totic limit. Moreover, standard CV-QKD covariance-
estimation techniques can be applied for that purpose.
It is an important and open problem, however, to find
means for reliable estimation of these intrusion parame-
ters when Eve performs a coherent attack. A procedure
that would suffice in that regard is one that affords a

robust measurement of Λ ≡ ∑M
m=1 ΛSmWm

/M , where
ΛSmWm

is the Wigner covariance matrix of (SmWm).
There are two reasons why the single-letter bounds on

Eve’s coherent-attack information gain that result from
using (19) or (20) in (17) may not be tight: (1) they as-
sume that Eve collects all the light that Bob sends to Al-
ice; and (2) they assume single-mode encoding. The first
reason does not apply to long-distance QKD, because se-
curity analysis presumes Eve collects all the light lost
in propagation from Bob to Alice, and that loss is 90%
for a 50-km-long low-loss (0.2 dB/km) fiber and 99% for
a 100-km-long fiber. Even for short-haul links the first
reason does not apply to FL-QKD, because that protocol
employs a high-gain optical amplifier in Bob’s terminal.

In contrast, FL-QKD employs multi-mode encoding with
ME � 1 [14–17], whereas the protocol from Ref. [21] uses
single-mode encoding, so the latter is immune to the sec-
ond reason although it is prone to the first.

1. Separate pair-wise constraints

Reference [40] imposed pair-wise constraints on the re-
duced density operators, {ρSmWm : 1 ≤ n ≤ M}, to
reduce (17) to a single-letter formula via (19). To be
specific, suppose that, when Eve mounts her attack, Al-
ice and Bob’s security-testing measurements allows them
to determine the average photon numbers of all the {Sm}
modes,

〈â†Sm
âSm
〉 = κ

(m)
S NS , for 1 ≤ m ≤M, (21)

and the total cross-correlation strengths for all (SmWm)
pairs,

| 〈âSm âWm〉 |2+| 〈â†Sm
âWm〉 |2 = κ

(m)
f C2

S , for 1 ≤ m ≤M.

(22)

The intrusion parameters {κ(m)
S } quantify the aver-

age photon numbers of Bob’s {Sm} modes relative to
NS , the average photon number of the {Ym} modes
that Alice transmitted, while the intrusion parameters

{κ(m)
f } quantify the total cross-correlation strengths of

the {(SmWm)} pairs relative to those of the {(YmWm)}.
In order for these parameters to be physically valid, we

require that κ
(m)
S ≥ 0 and 0 ≤ κ

(m)
f ≤ min[κ

(m)
S , (1 +

2κ
(m)
S NS)/(1 + 2NS)], as shown in Appendix A.
Using (19), the information-gain bound in (17) reduces

to a single-letter form [40]

χ
(M)
E ≤

M∑
m=1

χE

(
κ

(m)
S , κ

(m)
f

)
, (23)

where

χE

(
κ

(m)
S , κ

(m)
f

)
≡ max
ρSmWm

F (ρSmWm), (24)

with the maximization being constrained by the intru-
sion parameters from Eqs. (21) and (22). The following
theorem guarantees that Eq. (24) is easily evaluated.

Theorem 1 For Gaussian TW-QKD protocols, with in-
trusion parameters given by Eqs. (21) and (22), the max-
imization in Eq. (24) results in

χE

(
κ

(m)
S , κ

(m)
f

)
= g(NBm)− E?Ψc⊗I

(
κ

(m)
S , κ

(m)
f

)
, (25)

where g(NT ) = (NT + 1) log2(nT + 1) − NT log2(NT ) is
the von Neumann entropy of a thermal state with average

photon number NT , NBm
= 〈â†Bm

âBm
〉 from Eq. (3) for

the mth mode, and E?Ψc⊗I(κS , κf ) is a minimized entropy
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gain that can be evaluated as a three-parameter minimiza-
tion of a closed-form analytic function.

When the intrusion parameters satisfy κ
(m)
f ' κ

(m)
S ≤

1, the maximum is achieved by the beam-splitter light in-
jection attack that was shown in Ref. [14] to realize Eve’s
optimum frequency-domain collective attack.

The proof of Theorem 1 is similar to the frequency-
domain collective attack proof from Ref. [14]; see Ap-
pendix A for the details. We emphasize that strong
numerical evidence (see Appendix A) suggests that the
beam-splitter light injection attack is the optimum attack

when κ
(m)
f ≤ (1+κSNS)/(1+NS) for both the quantum-

limited amplifier channel, A0
GB

, and its complementary

channel, Ã0
GB

, and when κS ≤ 1 for the pure-loss chan-

nel, L0
ηB .

Unfortunately, when Eve mounts a coherent attack
each ρSmWm may be different, which implies that Al-
ice and Bob only get a single instance of that state from

which it is impossible to get reliable estimates of κ
(m)
S

and κ
(m)
f . Thus the separate pair-wise constraints fail to

satisfy requirement (R2).

2. Pair-wise sum constraint

As a first approach to remedying the separate pair-
wise constraint’s robustness deficiency, let us consider the
pair-wise sum constraints,

M∑
m=1

〈â†Sm
âSm
〉 = MκSNS , (26)

and

M∑
m=1

[
| 〈âSm

âWm
〉 |2 + | 〈â†Sm

âWm
〉 |2
]

= MκfC
2
S , (27)

which are so named because they are the sums of quan-
tities involving only a single mode pair.

In turns out, as we now show, that the pair-wise sum
constraints’ intrusion parameters κS and κf allow the
information-gain bound in (17) to be reduced to the
single-letter formula

χ
(M)
E ≤MχE(κS , κf ), (28)

where χE(κS , κf ) is obtained from Eq. (24) with κ
(m)
S =

κS and κ
(m)
f = κf . To demonstrate that this

is so, let us first suppose χE

(
κ

(m)
S , κ

(m)
f

)
is a con-

cave function, in which case we have that χ
(M)
E ≤∑M

n=1 χE

(
κ

(n)
S , κ

(n)
f

)
≤ MχE(κS , κf ). The second in-

equality becomes an equality when the mode pairs are
independent and identically distributed. Moreover, given

the average Wigner covariance matrix, Λ, we can ob-

tain κS because
∑M
m=1〈â

†
Sm
âSm
〉/M = κSNS is one

of Λ’s diagonal elements. We can also get a lower
bound on κf from Λ, because Λ’s off-diagonal elements

obey |∑M
m=1〈âSm

âWm
〉|2/M + |∑M

m=1〈â
†
Sm
âWm
〉|2/M ≤

κfC
2
S . Then, because χE(κS , κf ) increases with decreas-

ing κf for fixed κS , we can use the intrusion parameters

derived from Λ in (28) to bound Eve’s information gain.

To complete our demonstration that the pair-wise sum
constraints provide an upper bound on Eve’s information

gain, we must verify that χE

(
κ

(m)
S , κ

(m)
f

)
from Eq. (25)

is concave. The von Neumann entropy is concave, so

all that needs to be shown is that E?Ψc⊗I

(
κ

(m)
S , κ

(m)
f

)
is

convex. That term is the constrained minimum of an en-
tropy gain whose lengthy closed-form expression makes is
difficult to prove the desired convexity analytically. Our
numerical work in Appendix A, however, indicates that

Eq. (25) is indeed a concave function of (κ
(m)
S , κ

(m)
f ) for

A0
GB

, L0
ηB , and Ã0

GB
(see Fig. 8). In practice, Alice and

Bob’s protocol will operate in the vicinity of some nomi-
nal set of intrusion parameters, so our numerical evidence
should suffice for justifying the use of pair-wise sum con-
straints.

3. Permutation-invariant sum constraints

The pair-wise sum constraints’ cross-correlation intru-
sion parameter, κf from Eq. (27), may be difficult to
measure when, as in FL-QKD, Bob uses multi-mode en-
coding with ME � 1. In this section, therefore, we will
replace Eq. (27)’s cross-correlation constraint with the
permutation-invariant constraint,

M∑
m,n=1

[
| 〈âSm âWn〉 |2 + | 〈â†Sm

âWn〉 |2
]

= KfMC2
S , (29)

which constrains the total cross correlation between the
{âSm} modes and all permutations of the {âWm} modes.
Its measurement may be easier than that for the pair-
wise sum constraint when ME 6= 1. Because Kf ≥ κf , a

lower bound forKf can also be obtained from the average

covariance matrix Λ.

We now show that with κS and Kf from Eqs. (26)
and (29) we get the information-gain upper bound

χ
(M)
E ≤MχE(κS ,Kf ). (30)

To do so, we reduce the permutation-invariant sum con-
straints to the separate mode-pair constraints, Eqs. (21)
and (22), as follows. We start by using (20) in (17) so

that the maximization to be done is of
∑M
m=1 F (ρSmW ).

Next, we introduce an intermediate intrusion parameter,
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K
(m)
f , defined by

M∑
n=1

[
| 〈âSm

âWn
〉 |2 + | 〈â†Sm

âWn
〉 |2
]

= K
(m)
f C2

S , (31)

so that Eq. (29) can be rewritten as
∑M
m=1K

(m)
f /M =

Kf . An upper bound on the maximum of∑M
m=1 F (ρSmW ) can thus be obtained in two steps.

First, for fixed κ
(m)
S ,K

(m)
f , obtain the maximum of

F (ρSmW ) over ρSmW . Then maximize over the set

{κ(m)
S ,K

(m)
f : 1 ≤ m ≤ M}. The first maximization is

accomplished by the following theorem.

Theorem 2 For a Gaussian TW-QKD protocol with ref-
erences modes W and a signal mode Sm, we have that

χ′E
(
κ

(m)
S ,K

(m)
f

)
≡ max
ρSmW1W2

F (ρSmW ) (32)

= max
ρSmW1W2

[S(ρB)− EΨc⊗I(ρSmW1W2)]. (33)

under the Eq. (21) constraint and

| 〈âSm
âW1
〉 |2 + | 〈â†Sm

âW1
〉 |2 + | 〈âSm

âW2
〉 |2 = K

(m)
f C2

S ,

(34)
where the maximization in Eq. (33) can be accomplished
by a four-parameter maximization of a closed-form ana-
lytic function.

The proof’s basic idea is to manipulate the W modes
with properly chosen beam splitters; see Appendix B
for the details. Unfortunately, the four-parameter max-
imization is analytically cumbersome, because of the
lengthy nature of the closed-form expression involved.
Consequently we again resort to numerics. As shown
in Appendix B, we find that for the A0

GB
and Ã0

GB
chan-

nels with various GB values, as well as for the L0
ηB chan-

nel with various ηB values, the maximum is achieved,

for various NS values, when | 〈â†Sm
âW1
〉 |2 = 0. At

this point, suitable beam splitting of the W modes can
make 〈âSm

âW2
〉 = 0. This collapses the Eq. (34) con-

straint to the single-mode pair constraint in Eq. (22), giv-

ing us χ′E

(
κ

(m)
S ,K

(m)
f

)
= χE

(
κ

(m)
S ,K

(m)
f

)
. Combined

with concavity arguments, we obtain the information-
gain bound in (30).

IV. SECRET-KEY EFFICIENCIES

In this section, we evaluate the asymptotic SKEs,
given by Eq. (6) under Eve’s coherent attack, for two
Gaussian TW-QKD protocols: the TMSV protocol from
Refs. [21, 26, 28, 29], and FL-QKD [14–17]. These
protocols’ SKRs can be obtained, if desired, by multi-
plying their SKEs by Bob’s encoding rate, e.g., R =
10 Gbaud for state-of-the art equipment. We assume
that asymptotic-regime operation permits the intrusion
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FIG. 4. Secret-key efficiencies in bits/symbol versus one-way
path length (channel transmissivity κS = 10−0.02L) for at-
tacks that give κS = κS and κf = κS and post-processing
that gives perfect reconciliation efficiency. The solid curves
are coherent-attack SKE lower bounds obtained from this pa-
per’s framework. (a) Results for the TMSV protocol with
NS � 1 and EX � 1; the dashed curve is the SKE lower
bound from Refs. [21, 28, 29]. (b) Results for the FL-QKD
protocol with GB = 106, NS chosen at each L to maximize
the SKE, and various ME values.

parameters κS , κf or κS ,Kf to be measured perfectly,
and using those parameters we can bound Eve’s infor-
mation gain per mode using χE(κS , κf ) or χE(κS ,Kf )
in Eq. (25). With that result in hand we can get a lower
bound on Alice and Bob’s SKE once we have evaluated
their Shannon information in bits/symbol. For that eval-
uation we need to specify Bob’s encoding operation and
Alice’s measurement on the light each receives in the pro-
tocol under consideration. In what follows we will do so
assuming that the Alice-to-Bob and Bob-to-Alice chan-
nels, in the absence of Eve, are optical-fiber links with
0.2 dB/km loss, so that κS = 10−0.02L, where L is the
one-way distance in km between Alice and Bob. We shall
neglect the additional losses associated with Alice and
Bob’s security testing.

A. TMSV protocol with random displacement

In the TMSV protocol with random displacement [21,
28, 29], Alice has access to the full TMSV state and Bob
performs single-mode encoding using zero-mean, circulo-
complex, Gaussian-distributed displacements that add
average photon number EX to each mode he receives.
Bob does not employ an additional operation after his
encoding, thus Ψ is the noiseless identity channel that
is equivalent to A0

1, and hence NB = κSNS + EX from
Eq. (3) in the absence of Eve, or when her attack does not
alter Bob’s average received photon number. Alice uses a
dual-homodyne receiver to measure both quadratures of
the light she receives. Given the intrusion parameters κS
and κf from Eqs. (26) and (27), our framework provides
asymptotic security for this protocol against coherent at-
tacks.

To illustrate the SKEs predicted by our framework for
the TMSV protocol, we consider an attack—like Eve’s
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passive attack in which she only interacts with the light
lost in propagation between Alice and Bob and between
Bob and Alice—that preserves Alice and Bob’s covari-
ance matrix, so that κS = κS and κf = κS . Under
this attack, Alice and Bob’s Shannon information is [28]
IAB = log2(κSEX + κ2

SNS + 1), and their resulting SKE
is

SKE = max[IAB − χE(κS , κS), 0], (35)

where we have assumed perfect reconciliation efficiency,
β = 1.

Figure 4(a) plots our coherent-attack SKE and the
special-attack SKE from Refs. [21, 28, 29] versus the one-
way path length, L, where we have taken NS � 1 and
EX � 1, which makes this results independent of the
exact values of those system parameters. This figure
shows our SKE prediction to be much lower than the
previous result. This gap is primarily due to our giving
Eve access to all the light on the Bob-to-Alice channel
which, for the short distances over which the TMSV pro-
tocol operates, is overly conservative, viz., κS = 0.63 at
L = 10 km. Indeed, for Eve’s passive attack the SKE
from Refs. [21, 28, 29] is the TMSV protocol’s true per-
formance. But our framework provides an SKE lower
bound for an arbitrary coherent attack—which can re-
sult in κS 6= κS and κf 6= κS—whereas the SKE result
from Refs. [21, 28, 29] does not.

We expect our SKE lower bound to be much tighter for
more robust protocols’ long-distance operation, wherein
κS � 1. Moreover, we might tighten our SKE bound
for short-distance protocols by adding security testing
on the Bob-to-Alice channel. For example, Bob might
merge signal light from his own TMSV source with his
B mode in his transmission to Alice while retaining that
source’s idler light for them to use in an LOCC procedure
that will provide intrusion parameters quantifying Eve’s
intrusion on the Bob-to-Alice channel.

B. FL-QKD protocol

FL-QKD [14, 16, 17] is a two-way continuous-variable
QKD protocol. Alice transmits unmodulated light to
Bob. Bob binary-phase-shift encodes (θX = 0 or π rad,
dX = 0) that light with random bits [60], and sends
the encoded light back to Alice, who homodyne detects
what she receives. FL-QKD introduces two major inno-
vations: (1) Alice transmits broadband amplified sponta-
neous emission (ASE) light to Bob at low brightness (< 1
photon/mode) while retaining a high-brightness (� 1
photon/mode) version for use as her homodyne receiver’s
local oscillator. (2) Bob sends his encoded version of the
light he received from Alice through a high-gain optical
amplifier (Ψ = A0

GB
with GB � 1) before transmission

back to Alice.
The preceding innovations completely defeat passive

eavesdropping and enable FL-QKD to achieve Gbit/s
SKRs against such an attack for the following reasons:

(1) Alice’s low-brightness transmission, after Bob’s en-
coding operation, gets buried in the ASE noise of his
high-gain amplifier. This noise makes it impossible to re-
trieve Bob’s bit string without a high-brightness replica
of the light Alice sent to Bob. Alice has such a refer-
ence, but the no-cloning theorem precludes Eve’s gener-
ating one from Alice’s low-brightness transmission. (2)
Bob’s encoding rate (R ∼ 10 Gbit/s) is much lower than
the bandwidth (WB ∼ 2 THz) of Alice’s ASE transmis-
sion. The resulting high value of the bit-time × optical-
bandwidth product (WB/R ∼ 200) enables Alice to send
many photons per bit time to Bob, thus mitigating the
Alice-to-Bob channel’s loss in the same manner as in clas-
sical optical communication. (3) Bob’s high-gain ampli-
fier can completely overcome the Bob-to-Alice channel’s
loss. Consequently, FL-QKD is a two-way protocol whose
effective propagation loss is that of one-way transmission.

Were passive eavesdropping the only threat faced by
FL-QKD, its protocol security would be completely as-
sured. Like other two-way protocols, however, FL-QKD
is vulnerable to an active eavesdropping attack, in which
Eve shines her own light into Bob’s terminal—while sav-
ing her own reference beam—and then determines his
bit string by using her reference to detect his encoding
of her illumination from light she culls from the Bob-to-
Alice channel. FL-QKD has been shown—both theoret-
ically [14] and experimentally [16, 17] to defeat active
eavesdropping by channel monitoring that uses a very
low brightness photon-pair source at Alice’s terminal, to-
gether with photon-counting measurements at both Al-
ice and Bob’s terminals, to bound the amount light Eve
has injected into Bob. In fact, this monitoring, whose
photon-pair source is a spontaneous parametric downcon-
verter that produces multi-mode TMSV states, provides
security against the optimum frequency-domain collec-
tive attack [14]. A great virtue of the present paper is
that its framework can be applied to ensure FL-QKD’s
security against a coherent attack, as we now show.

Because Y , Alice’s transmission to Bob, merges her
low-brightness ASE light with the signal beam from her
SPDC source, Alice only has access to part of W , the
purification of that transmission. That part, W ′, is
her SPDC source’s idler beam that she retains for use
in security testing. Nevertheless, that retained light
suffices for our asymptotic-regime security framework,

because 〈âSm âW ′n〉 =
√
τ 〈âSm âWn〉 and 〈â†Sm

âW ′n〉 =√
τ 〈â†Sm

âWn
〉 for all m,n, where τ is the fraction of Al-

ice’s transmission to Bob that is due to her SPDC source.
Thus, with Alice and Bob determining their Shannon in-
formation from error-probability measurements, and as-
suming that they can obtain the intrusion parameters κS
and Kf , they have what they need to set a lower bound
on the asymptotic-regime, coherent-attack SKE.

Our final task will be to illustrate the behavior of
that bound when Eve’s attack does not impact Alice and
Bob’s covariance matrix, so that κS = κS and Kf = κS ,
and their reconciliation efficiency is perfect, β = 1 [61].
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In this case they have an assured SKE that satisfies

SKE = max[IAB −ME χE(κS , κS), 0]. (36)

This SKE is plotted versus one-way path length in
Fig. 4(b) for various ME values with IAB obtained
from Alice and Bob’s theoretical error probability [14],
GB = 106, and source brightness, NS , chosen at each L
to maximize SKE. For ME = 200 and R = 10 Gbit/s,
Fig. 4(b) predicts an SKR = R SKE in excess of 2 Gbit/s
at L = 50 km, as found for those parameter values
in our previous frequency-domain collective attack se-
curity analysis [14] with the equivalent of κS = κS ,
Kf = 0.99κS , and β = 0.94.

Figure 4(b) also underscores the value of multi-mode
encoding in achieving high SKEs, and hence high bits/s
SKRs for a given symbol rate R. All QKD protocols
have bits/mode SKRs bounded above by the PLOB
bound [18], − log2(1 − κS) bits/mode. Figure 4(b)’s
single-mode encoding (ME = 1) curve is well below that
bound, but its ME � 1 curves report bits/symbol rates
that are well above − log2(1 − κS). This is why, for
the same symbol rate R, FL-QKD can realize much
higher bits/s SKRs than the predominant decoy-state
BB84 protocol, because the latter employs single-mode
encoding and its state-of-the-art implementation [12] has
bits/mode performance on par with Fig. 4(b)’s ME = 1
curve at 50 km one-way path length.

V. SUMMARY AND DISCUSSION

In this paper we have taken significant steps toward
an asymptotic-regime, coherent-attack security proof for
TW-QKD protocols. First, we showed that the noisy
entanglement-assisted channel capacity formula [40] pro-
vides an upper bound on Eve’s information gain from
her most general coherent attack. Then, we exhibited
covariance-matrix constraints that can provide efficiently
calculable bounds on her information gain for Gaussian
TW-QKD protocols, and showed that the resulting up-
per bound can be achieved by a collective attack. Finally,
we applied our results to two such protocols, the TMSV
protocol [21, 26, 28, 29] and FL-QKD [14–17]. The latter
example is especially important, because FL-QKD offers
the potential for Gbit/s SKRs over metropolitan-area dis-
tances without the need for any new technology but its
current security analysis only assures protection against
a frequency-domain collective attack [14]. As a result, de-
veloping LOCC security tests that will permit Alice and
Bob to obtain the intrusion parameters employed in our
framework is open problem of great significance. These
parameters can, in principle, be obtained from standard
homodyne measurements when Eve’s attack is collective,
rather than coherent, and Alice and Bob’s QKD protocol
uses single-mode encoding, but a measurement approach
that works for coherent attacks on multi-mode encoding
is needed. One possibility may be to use the reliable state
tomography technique [62]. Note that the pairwise-sum

constraint in Eq. (27) is not invariant to the basis cho-
sen by Alice and Bob for their modes [63]. But Alice
and Bob only need to measure this constraint in a par-
ticular basis, to bound Eve’s information gain, as long as
the mode transformations within Alice and Bob’s equip-
ment are described by the channels from Sec. II. The
permutation-invariant sum constraint in Eq. (29), on the
other hand, is invariant to the choice of basis, because
it can be written in terms correlations of the continuous-
time field operators, ÊS(t) and ÊW (t), for Bob’s received
signal and Alice’s purification [63]. Even if one or both of
the preceding constraints can be measured, the general
composite-security, finite-key analysis for Eve’s coherent
attack will still need to be worked out for FL-QKD and
other Gaussian TW-QKD protocols.

Finally, we must emphasize that our security-proof
framework’s goal is to establish the protocol security of
TW-QKD. It does not address such protocols’ imple-
mentation security, i.e., side-channel attacks that exploit
device characteristics—including deviations from their
normal operating regimes—to compromise key exchange.
That said, QKD still offers implementation security that
is independent of future technological advances: any at-
tack must be executed with the technology that is avail-
able at the time of the key exchange.
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Appendix A: Proof of Theorem 1

Because Theorem 1 deals with a single mode-pair, we
shall omit mode-index superscripts and subscripts and
employ the notation from Fig. 1 throughout what fol-
lows. Thus our objective is to show that F (ρSW ) ≡
S(ρB)−EΨc⊗I(ρSW ), when maximized over states ρSW
satisfying

〈â†S âS〉 = κSNS , (A1)

| 〈âS âW 〉 |2 + | 〈â†S âW 〉 |2 = κfC
2
S , (A2)

obeys

χE(κS , κf ) = g(NB)− E?Ψc⊗I(κS , κf ). (A3)
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Here, g(NB) is the von Neumann entropy of a thermal
state with average photon number NB where NB is given
by Eq.(3), and E?Ψc⊗I(κS , κf ) is the entropy gain mini-
mized over the preceding constraints.

Before proceeding with the details, let us outline
the structure of the proof. Equations (A1) and (A2)
are functions of ρSW ’s covariance matrix ΛSW . The
subadditivity of F (ρSW ) therefore implies that the
constrained maximum is achieved by a Gaussian-state
ρSW [40]. Thus we need only consider an eavesdropper’s
using a Gaussian unitary, namely a (K + 1)-mode
Bogoliubov transformation [41] parameterized by a set
of variables. Owing to Eq. (3), S(ρB) is bounded above
by g(NB). To complete the proof we need a non-trivial
lower bound on EΨc⊗I(ρSW ) = S(ρN ′W ) − S(ρSW ),
where N ′ is the environment mode after Bob’s Gaussian
channel Ψ. Moreover, to obtain that bound we only need
the covariance matrices ΛSW and ΛN ′W of ρSW and
ρN ′W , which can be found from Alice’s ΛYW and the
parameters of Eve’s Bogoliubov transformation. Then
EΨc⊗I(ρSW ) is obtained by a symplectic diagonalization
that turns out to depend on only three parameters of
the Bogoliubov transformation, given the constraints
Eqs. (A1) and (A2). Minimizing over these three pa-
rameters yields E?Ψc⊗I(κS , κf ). However, EΨc⊗I(ρSW )’s
closed-form expression is rather complicated, which
prevents analytical minimization, hence we will rely on
numerical minimization. That said, we will use series
expansion in the vicinity of κf = κS to show that the
beam-splitter light injection attack [14] is always a
local minimum in that region, wherein Alice and Bob’s
security testing has severely limited Eve’s intrusion.

Proof. Let Eve’s Gaussian unitary—her K + 1-mode
Bogoliubov transformation [41]—be,

âS = u0âY + v∗0 â
†
Y +

K∑
k=1

(ukê
(k)
V + v∗k ê

(k)†
V ) + α. (A4)

where âY is the photon annihilation operator of Alice’s
Y mode, and { ê(k) : 1 ≤ k ≤ K } are the photon an-
nihilation operators of Eve’s ancilla modes, all of which
are in their vacuum states. We require Eq. (A4) to yield
a proper free-field commutator bracket for âS , thus the
complex-valued coefficients {uk, vk : 0 ≤ k ≤ K } must
satisfy

|u0|2 + u†u− |v0|2 − v†v = 1, (A5)

where u† =
[
u∗1 u∗2 · · · u∗K

]
, with † denoting conjugate

transpose, and a similar definition for v†. Equations (A1)
and (A2) impose their own restrictions on {uk, vk, α}:

|α|2 + |v0|2 + v†v = (κS − κf )NS . (A6)

|u0|2 + |v0|2 = κf , (A7)

We will maximize S(ρB) and minimize EΨc⊗I(ρSW )
separately, and show that they can be achieved simulta-
neously.

1. Maximizing S(ρB)

Here we show that Eve’s Gaussian unitary with α = 0
achieves the constrained maximization of S(ρB). Because
ρB is a displaced thermal state, we know that

max
ρSW

S(ρB) = g(NB − |α|2), (A8)

where NB is given by Eq. (3) and the {uk, vk, α} satisfy
Eqs. (A5)–(A7), which implies that α = 0 maximizes
S(ρB) under the given constraints. Furthermore, because
the entropy-gain term is independent of the displacement
α, we have that χE(κS , κf ) is achieved by α = 0.

2. Minimizing EΨc⊗I(ρSW )

Here we perform the constrained minimization,

min
ρSW

EΨc⊗I(ρSW ) ≡ min
ρSW

S(ρN ′W )− S(ρSW ), (A9)

where ρN ′W = Ψc ⊗ I(ρSW ) is the joint state of the
environment and the purification after Bob’s channel Ψ.
Because ρN ′W and ρSW are Gaussian, their entropies are
given, in terms of their covariance matrices’ symplectic
eigenvalues—{ν±} for ΛN ′W and {µ±} for ΛSW )—which
leads to

EΨc⊗I(ρN ′W ) = g[(4ν+ − 1)/2] + g[(4ν− − 1)/2]

− g[(4µ+ − 1)/2]− g[(4µ− − 1)/2].
(A10)

where the symplectic eigenvalues must satisfy Eqs. (A5)–
(A7) with α = 0.

Maximizing Eq. (A10) over the {uk, vk} is more readily
accomplished by rewriting Eqs. (A5)–(A7) in terms of
{γ, δ, θv, θuv} chosen such that

u0 =
√
κf sin(γ), (A11a)

v0 =
√
κf cos(γ)eiθv , (A11b)

u†u = (κS − κf )NS + 1− κf + κf cos2(γ), (A11c)

v†v = (κS − κf )NS − κf cos2(γ), (A11d)

v†u =
√

(v†v)(u†u) cos(δ)eiθuv . (A11e)

In these expressions: γ ∈ [0, π/2] satisfies

1− 1

κf
−
(
κS
κf
− 1

)
NS ≤ cos2(γ) ≤

(
κS
κf
− 1

)
NS ;

(A12)
δ ∈ [0, π/2]; and u0 has been taken to be non-negative,
without loss of generality, because global phase is irrele-
vant.

The foregoing reformulation makes it easy to show that
all states ρSW must have κS and κf , defined by Eqs. (21)
and (22), that satisfy

0 ≤ κf ≤ min[κS , (1 + 2κSNS)/(1 + 2NS)]. (A13)
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Specifically: κf ≥ 0 follows from its definition in Eq. (22);
κf ≤ κS follows from (κS − κf )NS = |v0|2 + v†v ≥ 0;
κf ≤ (1+2κSNS)/(1+2NS) follows from 2(κS−κf )NS+
1− κf = u†u + v†v ≥ 0; and the generality of the result
is because the κf limits apply to the covariance matrix
of an arbitrary, not just a Gaussian, ρSW .

a. Covariance matrix of âS and âW

Equations (1) and (A4) enable us to show that the
covariance of âS and âW is given by

ΛSW =
1

4

[
AS CSW

CSW AW

]
, (A14)

where:

AS = 2

[
AS + Re(w) Im(w)

Im(w) AS − Re(w)

]
, (A15)

with AS = 1/2 + κSNS and w = v†u + (2NS + 1)v∗0u0;

CSW = 2CS

[
u0 + Re(v0) Im(v0)

−Im(v0) −u0 + Re(v0)

]
, (A16)

with CS =
√
NS(NS + 1); and AW = (2NS + 1)I2.

b. Covariance matrix of â′N and âW

Because Bob’s encoding, UX , is covariant with his
channel, Ψ, we can omit UX in calculating ΛN ′W for
Bob’s three channels, i.e., his quantum-limited amplifier
channel (Ψ = A0

GB
), his pure-loss channel (Ψ = L0

ηB ),
and his contravariant quantum-limited amplifier channel
(Ψ = Ã0

GB
).

1. Quantum-limited amplifier channel, with â′N =√
GB − 1 â†S +

√
GB âN and GB ≥ 1. Here we have

that

ΛN ′W =
1

4

[
AN ′ CN ′W

CN ′W AW

]
, (A17)

where:

AN ′ = 2

[
A′ + Re(x) −Im(x)

−Im(x) A′ − Re(x)

]
, (A18)

with A′ = 1/2 +GBNB + (GB − 1)(κSNS + 1) and
x = (GB − 1)w; and

CN ′W = 2
√
GB − 1CS

×
[
u0 + Re(v0) Im(v0)

Im(v0) u0 − Re(v0)

]
. (A19)

2. Pure-loss channel with â′N =
√

1− ηB âS−√ηB âN
and 0 ≤ ηB ≤ 1. Here we find that

ΛN ′W =
1

4

[
A′N CN ′W

CN ′W AW

]
, (A20)

where:

AN ′ = 2

[
A′ + Re(x) Im(x)

Im(x) A′ − Re(x)

]
, (A21)

with A′ = 1/2 + (1 − ηB)NS + ηBNB and x =
(1− ηB)w; and

CN ′W =
√

1− ηBCSW . (A22)

3. Contravariant quantum-limited amplifier channel

with â′N =
√
GB âS +

√
GB − 1 â†N and GB ≥ 1.

Now we get

ΛN ′W =
1

4

[
AN ′ CN ′W

CN ′W AW

]
, (A23)

where:

AN ′ = 2

[
A′ + Re(x) Im(x)

Im(x) A′ − Re(x)

]
, (A24)

with A′ = 1/2 +GBκSNS + (GB − 1)(NB + 1) and
x = GBw; and

CN ′W =
√
GB CSW . (A25)

c. Minimization over γ, δ, θv, θuv

With ΛSW and ΛN ′W in hand, it is straightforward to
obtain the symplectic eigenvalues ν± and µ±, from which
we get EΨc⊗I(ρSW ) using Eq. (A10). The only parame-
ters to be optimized over in minimizing EΨc⊗I(ρSW ) are
then γ, δ, θv, θuv, because the κS and κf constraints and
are implicit in Eqs. (A11). At this point it is convenient
to make two further parameter changes. First, we in-
troduce ζ such that cos(γ) =

√
(κS − κf )NS/κf cos(ζ)

with cos2(ζ) ≤ κf/(κS − κf )NS , and second, we define
ξ = θv + θuv. Then, because the {ν±, µ±} only depend
on γ, δ, and θv + θuv, we have reduced our task to min-
imizing a closed-form EΨc⊗I(ρSW ) expression over the
choice of three parameters: ζ ∈ [0, π/2], δ ∈ [0, π/2], and
ξ ∈ [−π, π].

For A0
GB

, L0
ηB , and Ã0

GB
we find that the only

solution to ∂ζEΨc⊗I(ρSW ) = ∂δEΨc⊗I(ρSW ) =
∂ξEΨc⊗I(ρSW ) = 0 is ζ = δ = π/2 (corresponding to
γ = δ = π/2), at which point ξ = θv + θuv can be ar-
bitrary. For κf ≤ (1 + κSNS)/(1 + NS), one can ver-
ify numerically that γ = δ = π/2 is indeed the global
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FIG. 5. Numerically-obtained entropy-gain minimization results for the quantum-limited amplifier channel with NS = 0.1 and
GB = 1.5. (a) Minimum entropy gain, E?Ψc⊗I(κS , κf ). (b) Optimum δ value. (c) Optimum γ value. In (b) and (c) the green
line, κf = (1 + 2κSNS)/(1 + 2NS), and the gray line, κf = κS , mark the (A13) upper limit on possible κf values, and the red
line, κf = (1 + κSNS)/(1 +NS), is the κf value below which the local minimum at γ = δ = π/2 is also the global minimum.

FIG. 6. Numerically-obtained entropy-gain minimization results for the pure-loss channel with NS = 0.1 and ηB = 0.2.
(a) Minimum entropy gain, E?Ψc⊗I(κS , κf ). (b) Optimum δ value. (c) Optimum γ value. In (b) and (c) the green line,
κf = (1 + 2κSNS)/(1 + 2NS), and the gray line, κf = κS , mark the (A13) upper limit on possible κf values, and the red line,
κf = (1 + κSNS)/(1 + NS), is the κf value below which the local minimum at γ = δ = π/2 is also the global minimum for
sufficiently small κS .

minimum of EΨc⊗I(ρSW ) for the A0
GB

and Ã0
GB

chan-

nels. The situation is more complicated for the L0
ηB

channel, because for this channel there is a parameter
region in which the global minimum is not achieved at
the stationary point (local minimum). However, the con-
vexity of EΨc⊗I(ρSW ) with respect to κS and κf—see
Fig. 8, below—combined with Alice and Bob’s choosing
κS ≤ 1 for QKD, leads to the pure-loss channel’s mini-
mum EΨc⊗I(ρSW ) being at its stationary point.

Figures 5–7 present numerically-obtained EΨc⊗I(ρSW )
minimization results for the A0

GB
channel (with NS =

0.1 and GB = 1.5), the L0
ηB channel (with NS = 0.1

and ηB = 0.2), and Ã0
GB

channel (with NS = 0.1 and
GB = 1.5), respectively. Plotted versus κS and κf in each
figure are: (a) E?Ψc⊗I(κS , κf ) = minρSW

EΨc⊗I(ρSW ),
(b) the optimum δ value, and (c) the optimum γ value.
The green line, κf = (1 + 2κSNS)/(1 + 2NS), and the

gray line, κf = κS , in (b) and (c) mark the (A13) upper
limit on possible κf values. The red line, κf = (1 +
κSNS)/(1 + NS), in (b) and (c) is the κf value below
which the local minimum at γ = δ = π/2 is also the
global minimum for the amplifier channels, and for the
pure-loss channel when κS is sufficiently small (a region
that includes κS ≤ 1, as noted earlier).

Although Figs. 5–7 only provide information about one
set of NS , GB and ηB values, the behaviors shown in
these figures are generic. Indeed, we have verified that
this is for GB = 10, 100, and, by asymptotic expansions,
for GB � 1 and NS � 1. Furthermore, the asymptotic
results allow us to show that the beam-splitter active
injection attack achieves E?Ψc⊗I(κS , κf ) when GB � 1
and NS � 1.
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FIG. 7. Numerically-obtained entropy-gain minimization results for the complementary quantum-limited amplifier channel
with NS = 0.1 and GB = 1.5. (a) Minimum entropy gain, E?Ψc⊗I(κS , κf ). (b) Optimum δ value. (c) Optimum γ value. In (b)
and (c) the green line, κf = (1 + 2κSNS)/(1 + 2NS), and the gray line, κf = κS , mark the (A13) upper limit on possible κf
values, and the red line, κf = (1 + κSNS)/(1 +NS), is the κf value below which the local minimum at γ = δ = π/2 is also the
global minimum.

d. Asymptotic results

The closed-form expression for EΨc⊗I(ρSW ) as a func-
tion of ζ, δ and ξ is complicated, preventing us from min-
imizing it analytically. That is not the case, however,
when κf ' κS . Physically, this corresponds to Alice and
Bob’s security testing confining Eve’s attack to the low-
intrusion regime, e.g., when Eve limits herself to a passive
attack in which she only interacts with light that is lost
in propagation between Alice and Bob and between Bob
and Alice. For this low-intrusion regime let us write κf
as

κf = (1− fE)κS , (A26)

where 0 ≤ fE � 1 is a function of the attack parameters
ζ, δ and ξ, and then evaluate EΨc⊗I(ρSW ) to first order
in fE , viz.,

EΨc⊗I(ρSW ) = EΨc⊗I(ρSW )|fE=0

+(∂fEEΨc⊗I(ρSW )|fE=0)fE +O(f2
E). (A27)

It turns out that the zeroth-order term is independent of
ζ, δ, and ξ. Thus, Eve’s optimum ζ, δ and ξ values when
0 ≤ fE � 1 are given by

arg minζ,δ,ξ∂fEEΨc⊗I(ρSW )|fE=0, (A28)

and using those values in Eq. (A27) will then yield
E?Ψc⊗I(κS , κf ) to first order in fE .

Note that from (A13) and (A26), we have that κS ≤
1/[1− (1 + 2NS)fE ], whence

µ−|fE=0 = 1, (A29)

µ+|fE=0 = 1 + 2(1− κS)NS > 1. (A30)

So, to complete our asymptotic analysis, we need only
find the symplectic eigenvalues, ν±|fE=0, for Bob’s three
possible channels.

1. For pure-loss channel, L0
ηB , we find that

ν−|fE=0 = 1, (A31)

ν+|fE=0 = 1 + 2[1− κS(1− ηB)]NS > 1. (A32)

Applying limx→0 ∂xg(x) =∞ to Eq. (A10), we see
that it suffices to consider

minζ,δ,ξ∂fE (ν− − µ−)|fE=0, (A33)

to obtain E?Ψc⊗I(κS , κf ), The minimization
in (A33) can be done analytically, giving the result
ζ = δ = π/2.

2. For GB > 1, both quantum-limited amplifier,
A0
GB

, and its complementary channel, Ã0
GB

, have
ν+|fE=0 > ν−|fE=0 > 1. Thus to obtain
E?Ψc⊗I(κS , κf ), it suffices to consider

minζ,δ,ξ∂fE (−µ−)|fE=0. (A34)

The minimization in (A34) can be done analyti-
cally, giving the result ζ = δ = π/2.

e. Optimum attack

At ζ = δ = π/2, we have

u0 =
√
κf , (A35a)

v0 = 0, (A35b)

u†u = (κS − κf )NS + 1− κf , (A35c)

v†v = (κS − κf )NS , (A35d)

v†u = 0, (A35e)
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(a) (b) (c)

FIG. 8. Plots of E −Emax versus κS and κf for NS = 0.1, with E ≡ E?Ψc⊗I(κS , κf ) and Emax ≡ maxκS ,κf E
?
Ψc⊗I(κS , κf ). (a)

Quantum-limited amplifier channel with, from bottom to top, log10(GB − 1) increasing from −1 to 0.5 in 0.1 increments. (b)
Pure-loss channel with, from top to bottom, ηB increasing from 0.2 to 1 in 0.1 increments. (c) Contravariant quantum-limited
amplifier channel with, from bottom to top, log10(GB − 1) increasing from −1 to 0.5 in 0.1 increments. In (a)–(c), the gray
line, κf = κS , marks part of the (A13) upper limit on possible κf values, and the red line, κf = (1 + κSNS)/(1 +NS), is the
κf value below which the entropy-gain’s local minimum at γ = δ = π/2 is also its global minimum.

which are the parameter values of the beam-splitter in-
jection attack considered in the Ref. [14]. With the op-
timum parameters given by Eqs. (A35), we can evaluate
E?Ψc⊗I(κS , κf ) via Eq. (A10). Combined with maxρSW

=
S(ρB), we obtain χE(κS , κf ) in Eq. (25).

In particular, the covariance matrix, Λ?
SW , of the op-

timum input state, ρ?SW , is

Λ?
SW =

1

4

[
(1 + 2κSNS)I2

√
kf CYW√

kfCYW AW

]
, (A36)

with symplectic eigenvalues µ?±. The optimum output
state, ρ?N ′W and its covariance matrix, Λ?

N ′W depend on
which channel Bob employs.

1. For the A0
GB

channel, we get

Λ?
N ′W =

1

4

[
A?
N ′

√
kf (GB − 1) CYW√

kf (GB − 1) CYW

]
,

(A37)

with A?
N ′ = [1 + 2(GB − 1)(1 + κSNS)]I2.

2. For the L0
ηB channel, we get

Λ?
N ′W =

1

4

[
[1 + 2(1− ηB)κSNS ]I2

√
kf (1− ηB) CYW√

kf (1− ηB) CYW AW

]
.

(A38)

3. For the Ã0
GB

channel, we get

Λ?
N ′W =

1

4

[
−1 + 2GB [1 + 2(1 + κSNS)]I2

√
GBkf CYW√

GBkf CYW AW

]
.

(A39)

With ν?± denoting the symplectic eigenvalues of Λ?
N ′W ,

we have that ,

χE(κS , κf ) = g(NB)− E?Ψc⊗I(κS , κf ), (A40)

with

E?Ψc⊗I(κS , κf ) = g[(4ν?+ − 1)/2] + g[(4ν?− − 1)/2]

− g[(4µ?+ − 1)/2]− g[(4µ?− − 1)/2].
(A41)

We complete this section by presenting our numeri-
cal verification, shown in Fig. 8, that E?Ψc⊗I(κS , κf ) is
convex, where, for better visualization, we have plot-
ted E − Emax with E ≡ E?Ψc⊗I(κS , κf ) and Emax ≡
maxκS ,κf

E?Ψc⊗I(κS , κf ). Although these plots assume
NS = 0.1, we have verified that similar behaviors prevail
at other NS values of interest.

Appendix B: Proof of Theorem 2

Our proof uses the fact that performing arbitrary local
unitaries on the W modes preserves F (ρSmW ). In par-
ticular, we have the following lemma; see Appendix C for
its proof.

Lemma 3 For the Eq. (31) constraint, i.e.,

M∑
n=1

[
| 〈âSm âWn〉 |2 + | 〈â†Sm

âWn〉 |2
]

= K
(m)
f C2

S , (B1)

we can apply beam-splitter unitaries to the W modes that
result in output modes W̃ modes that reduce Eq. (B1) to

| 〈âSm âW̃1
〉 |2 + | 〈â†Sm

âW̃1
〉 |2 + | 〈âSm âW̃2

〉 |2 = K
(m)
f C2

S .

(B2)
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In what follows we shall omit the tildes on the preced-
ing output modes. Bear in mind that the beam-splitter
unitaries that we are using for this proof are a concep-
tual tool, i.e., they do not need to be implemented in the
TW-QKD system.

With Lemma 3 in hand, we will maximize F (ρSmW )
over the reduced density operator ρS,W1,W2 subject to the
constraints from Eq. (21),

〈â†Sm
âSm
〉 = κ

(m)
S NS , , (B3)

and (B2), to obtain

χ′E
(
κ

(m)
S ,K

(m)
f

)
= max
ρSmW1W2

[S(ρB)− EΨc⊗I(ρSmW1W2)].

(B4)
It can be shown that the W modes which emerge from
Lemma 3’s beam-splitter unitaries are still in indepen-
dent, identically-distributed thermal states with average
photon number NS . Also, Ref. [40]’s subadditivity result
implies we need only consider ρSmW1W2

that are Gaus-
sian. Hence our goal for completing Theorem 2’s proof
is maximizing Eq. (B4) for Gaussian ρSmW1W2

that obey
Eqs. (B2) and (B3). In the rest of the proof, which is sim-
ilar to what we did in Appendix A, we will omit the m
subscripts and superscripts and use S,W1,W2 to denote
the three modes under consideration.

To begin, we note that the S(ρB) maximization
from Appendix A 1 applies in the present circumstances,
i.e., maxρSW1W2

S(ρB) = g(NB), and this maximum is

achieved by having 〈âS〉 = 0. The optimum Gaus-

sian state ρSW1W2 is therefore zero-mean with 〈â†S âS〉 =

κSNS , 〈â†W1
âW1
〉 = 〈â†W2

âW2
〉 = NS , and 〈â†W1

âW2
〉 =

〈âW1
âW2
〉 = 0, so four additional complex-valued param-

eters, 〈â2
S〉, 〈âS âW1〉, 〈â†S âW1〉, 〈âS âW2〉—equivalently

eight real parameters—complete its characterization.
Now, by appropriate phase shifts of the S, W1 and W2

modes—which will not affect the entropy-gain term—we
can assume that

〈â2
S〉 = c1 ≥ 0, where c1 ≤ κSNS , (B5)

〈âS âW1
〉 = a1 ≥ 0, (B6)

〈â†S âW1〉 = b1e
iθ, where b1 ≥ 0, θ ∈ [0, 2π), (B7)

〈âS âW2〉 = a2 ≥ 0. (B8)

Consequently, the entropy-gain minimization,

minρSW1W2
EΨc⊗I(ρSW1W2

) =

minρSW1W2
[S(ρN ′W1W2)− S(ρSW1W2)], (B9)

will only involve five parameters, {c1, a1, b1, θ, a2}, of
which only four are independent, because Eq. (B2) im-
plies that

a2
1 + b21 + a2

2 = KfC
2
S . (B10)

Furthermore, with {νk : 1 ≤ k ≤ 3} and {µk : 1 ≤
k ≤ 3} being the symplectic eigenvalues of the covariance

matrices ΛSW1W2
and ΛN ′W1W2

, we have that

EΨc⊗I(ρSW1W2
) =

3∑
k=1

{g[(4νk − 1)/2]− g[(4µk − 1)/2]}. (B11)

The covariance matrices that we need are given as fol-
lows. For ΛSW1W2

we have that

ΛSW1W2
=

1

4

 AS CSW1
CSW2

CSW1 AW 0

CSW2
0 AW

 , (B12)

where

AS =

[
1 + 2(κSNS + c1) 0

0 1 + 2(κSNS − c1)

]
, (B13)

CSW1 = 2

[
a1 + b1 cos θ b1 sin θ

b1 sin θ −a1 + b1 cos θ

]
, (B14)

CSW2
= 2a2 Diag[1,−1], and AW = (2NS + 1)I2. For

ΛN ′W1W2
, however, we need expressions for each of Bob’s

three channels.

1. For the A0
GB

channel, we get

ΛN ′W1W2 =
1

4

 AN ′ CN ′W1
CN ′W2

CN ′W1
AW 0

CN ′W2
0 AW

 , (B15)

where

AN ′ =

[
1 + 2xN ′+ 0

0 1 + 2xN ′−

]
, (B16)

with xN ′± = (GB − 1)(1 + κSNS ± c1),

CN ′W1
= 2
√
GB − 1

[
a1 + b1 cos θ b1 sin θ

−b1 sin θ a1 − b1 cos θ

]
,

(B17)
and CN ′W2

= 2
√
GB − 1 a2 Diag[1, 1].

2. For the L0
ηB channel, we get

ΛN ′W1W2
=

1

4

 AN ′ CN ′W1
CN ′W2

CN ′W1
AW 0

CN ′W2
0 AW

 , (B18)

where

AN ′ =

[
1 + 2xN ′+ 0

0 1 + 2xN ′−

]
, (B19)

with xN± = (1 − ηB)(κSNS ± c1), CN ′W1
=√

1− ηB CSW1
, and CN ′W2

=
√

1− ηB CSW2
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3. For the Ã0
GB

channel, we get

ΛN ′W1W2
=

1

4

 AN ′ CN ′W1
CN ′W2

CN ′W1
AW 0

CN ′W2
0 AW

 , (B20)

where

AN ′ =

[ −1 + 2xN ′+ 0

0 −1 + 2xN ′−

]
, (B21)

with xN ′± = GB(1 + κSNS ± c1), CN ′W1
=√

GB CSW1
, and CN ′W2

=
√
GB CSW2

At this point it is possible—for all three of Bob’s
channels—obtain closed-form expressions for the entropy
gain that are functions of {c1, a1, b1, θ, a2}. In principle,
these expressions can be minimized, subject to Eq. (B10),
but in practice they are too complicated for that to be
done analytically. Numerical minimization can be done,
however, for which transforming to

c1 = κSNS cos2(τr), (B22)

a1 =
√
Kf CS cos(τ1), (B23)

b1 =
√
Kf CS sin(t1) cos(τ2), (B24)

a2 =
√
Kf CS sin(t1) sin(τ2), (B25)

with τr ∈ [0, π/2], τ1 ∈ [0, π/2], and τ2 ∈ [0, π], au-
tomatically ensures that Eq. (B10) is satisfied, and re-
duces the entropy gain’s numerical minimization to a
four-dimensional optimization.

The preceding analysis completes the proof of Theo-
rem 2 modulo our proving Lemma 3, which we accom-
plish in Appendix C.

Appendix C: Proof of Lemma 3

Proof. Our objective is to show that a collection of
beam-splitter unitaries involving the W modes can re-
duce Eq. (B1) to Eq. (B2). We begin by showing how to
eliminate the undesired phase-insensitive cross correla-

tions, i.e., the 〈â†Sm
âWn
〉} for 2 ≤ n ≤M . First, we apply

phase shifts to the W modes so that all 〈â†Sm
âWn
〉} ≥ 0

for 1 ≤ n ≤ M , with 〈â†Sm
âW1〉 > 0 [64]. Next, starting

with n = 2 and continuing until n = M , we use beam
splitters to effect the following transformations,

â
(n)
W1

=
√

1− ηn â(n−1)
W1

+
√
ηn âWn ,

â′Wn
=
√
ηn â

(n−1)
W1

−
√

1− ηn âWn
, (C1)

with

ηn ≡
〈â†Sm

âWn
〉2

〈â†Sm
â

(n−1)
W1

〉
2

+ 〈â†Sm
âWn
〉2
, (C2)

where â
(1)
W1
≡ âW1

is the W1 mode’s initial photon-
annihilation operator, and â′Wn

, for 2 ≤ n ≤ M , is the
Wn mode’s photon annihilation operator after its beam-
splitter transformation. For 2 ≤ n ≤ M , it is easily
verified that this process results in

〈â†Sm
â

(n)
W1
〉 =

√
〈â†Sm

â
(n−1)
W1

〉
2

+ 〈â†Sm
âWn
〉2,

〈â†Sm
â′Wn
〉 = 0. (C3)

Collapsing this iteration into a single formula gives us
our desired result,

〈â†Sm
â

(M)
W1
〉 =

√√√√ M∑
n=1

〈â†Sm
âWn
〉2,

〈â†Sm
â′Wn
〉 = 0, for 2 ≤ n ≤M. (C4)

It is also straightforward to obtain expressions for

〈âSm
â

(M)
W1
〉 and {〈âSm

â′Wn
〉 : 2 ≤ n ≤ M}, all of which,

in general, will be nonzero. To suppress the unwanted
phase-sensitive cross correlations, we parallel what we
just did for the phase-insensitive case.

First, we apply phase shifts to {â′Wn
: 2 ≤ n ≤ M} so

that all 〈âSm
â′Wn
〉 ≥ 0 for 2 ≤ n ≤M , with 〈âSm

â′W2
〉 >

0 [63]. Next, starting with n = 3 and continuing until
n = M , we use beam splitters to effect the following
transformations,

â
′(n)
W2

=
√

1− η′n â′(n−1)
W2

+
√
ηn â

′
Wn
,

â′′Wn
=
√
η′n â

′(n−1)
W2

−
√

1− η′n â′Wn
, (C5)

with

η′n ≡
〈âSm

â′Wn
〉2

〈âSm
â
′(n−1)
W2

〉
2

+ 〈âSm
â′Wn
〉2
, (C6)

where â
′(2)
W2
≡ â′W2

is the W ′2 mode’s initial photon-
annihilation operator, and â′′Wn

, for 3 ≤ n ≤ M , is the
W ′n mode’s photon annihilation operator after its beam-
splitter transformation. For 3 ≤ n ≤ M , it is easily
verified that this process results in

〈âSm
â
′(n)
W2
〉 =

√
〈âSm

â
′(n−1)
W2

〉
2

+ 〈âSm
â′Wn
〉2,

〈âSm â
′′
Wn
〉 = 0. (C7)

Finally, because the beam-splitter transformations pre-
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serve total correlations, we have that

M∑
n=1

| 〈âSm
âWn
〉 |2

= | 〈âSm â
(M)
W1
〉 |2 +

M∑
n=2

| 〈âSm â
′
Wn
〉 |2 (C8)

= | 〈âSm
â

(M)
W1
〉 |2 + | 〈âSm

â
′(M)
W2
〉 |2

+

M∑
n=3

| 〈âSm
â′′Wn
〉 |2

= | 〈âSm
â

(M)
W1
〉 |2 + | 〈âSm

â
′(M)
W2
〉 |2, (C9)

where we used Eq. (C7) in Eq. (C9). Combining Eq. (C4)
and Eq. (C9), we complete the proof.
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M. Dušek, N. Lütkenhaus, and M. Peev, The Security
Of Practical Quantum Key Distribution, Rev. Mod.
Phys. 81, 1301 (2009).

[39] M. A. Nielsen, Conditions For A Class Of Entanglement
Transformations, Phys. Rev. Lett. 83, 436 (1999).

[40] Q. Zhuang, Y. Zhu, and P. W. Shor, Additive Classical
Capacity Of Quantum Channels Assisted By Noisy
Entanglement, Phys. Rev. Lett. 118, 200503 (2017).

[41] C. Weedbrook, S. Pirandola, R. Garćıa-Patrón, N. J.
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[46] R. Garćıa-Patrón, C. Navarrete-Benlloch, S. Lloyd,
J. H. Shapiro, and N. J. Cerf, Majorization Theory
Approach To The Gaussian Channel Minimum Entropy
Conjecture, Phys. Rev. Lett. 108, 110505 (2012).

[47] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University
Press, Cambridge, 2010).

[48] A. Leverrier, and P. Grangier, Unconditional Security
Proof Of Long-Distance Continuous-Variable Quantum
Key Distribution With Discrete Modulation, Phys. Rev.
Lett. 102, 180504 (2009).

[49] Bob’s number of modes per encoded symbol is
ME = TBWA, where TB-s is the time duration of Bob’s
symbol and WA-Hz is the bandwidth of Alice’s
transmitted light. Side-channel attacks are not
considered in the current framework, i.e., we assume
that the ME modes are all that enters Bob’s lab in each
symbol duration;As a first step to ward off Eve’s
attacking the QKD protocol, by illuminating Bob’s
terminal with out-of-band light that would be encoded
by Bob and returned to her, we consider Bob employing
an optical filter—not shown in Fig. 2—to limit the light
entering his encoder to the spectral region of Alice’s
transmitted light.

[50] We will assume that cTB , where c is light speed, is a
distance that can be wholly confined within Bob’s
laboratory, making it impossible for Eve to employ
intra-symbol feedback in her most general
block-coherent attack.

[51] O. Fawzi and R. Renner, Quantum Conditional Mutual
Information And Approximate Markov Chains,
Commun. Math. Phys., 340, 575 (2015).

[52] M. Tomamichel, R. Colbeck, and R. Renner, A Fully
Quantum Asymptotic Equipartition Property, IEEE
Trans. Inf. Theory 55, 5840 (2009).

[53] A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner,
Chain Rules For Smooth Min- And Max-Entropies,
IEEE Trans. Inf. Theory 59, 2603–2612 (2013).

[54] F. Dupuis, O. Fawzi, and R. Renner, Entropy
Accumulation, arXiv:1607.01796 [quant-ph].

[55] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner,
and T. Vidick, Practical Device-independent Quantum
Cryptography Via Entropy Accumulation, Nat.
Commun. 9, 459 (2018).

[56] R. Arnon-Friedman, R. Renner, and T. Vidick, Simple
And Tight Device-independent Security Proofs,
arXiv:1607:01797 [quant-ph].

[57] M. M. Wolf G. Giedke and J.I. Cirac, Extremality Of

http://dx.doi.org/10.1103/PhysRevLett.89.187902
http://dx.doi.org/10.1103/PhysRevA.88.062302
http://dx.doi.org/10.1038/srep04936
http://dx.doi.org/10.1038/srep04936
http://stacks.iop.org/0953-4075/47/i=3/a=035501
http://stacks.iop.org/0953-4075/47/i=3/a=035501
http://dx.doi.org/10.1103/PhysRevA.89.012309
http://dx.doi.org/10.1103/PhysRevA.92.052317
http://dx.doi.org/10.1103/PhysRevA.92.052317
http://dx.doi.org/10.1103/PhysRevA.92.062323
http://dx.doi.org/10.1103/PhysRevA.92.062323
http://dx.doi.org/10.1038/srep22225
http://science.sciencemag.org/content/283/5410/2050
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.441
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.441
http://dx.doi.org/10.1038/nphys684
http://dx.doi.org/10.1038/nphys684
http://dx.doi.org/10.1103/PhysRevLett.102.110504
http://dx.doi.org/10.1103/PhysRevLett.102.110504
http://dx.doi.org/10.1103/PhysRevLett.110.030502
http://dx.doi.org/10.1103/PhysRevLett.110.030502
http://www.worldscientific.com/doi/abs/10.1142/S0219749912500591
http://www.worldscientific.com/doi/abs/10.1142/S0219749912500591
https://www.worldscientific.com/doi/abs/10.1142/S0219749908003256
https://www.worldscientific.com/doi/abs/10.1142/S0219749908003256
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/RevModPhys.81.1301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.436
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.200503
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1038/ncomms11712 
http://dx.doi.org/10.1088/1367-2630/8/12/310
http://dx.doi.org/10.1103/PhysRevLett.108.110505
http://dx.doi.org/10.1103/PhysRevLett.102.180504
http://dx.doi.org/10.1103/PhysRevLett.102.180504
https://link.springer.com/article/10.1007%2Fs00220-015-2466-x
http://ieeexplore.ieee.org/document/5319753/
http://ieeexplore.ieee.org/document/5319753/
http://ieeexplore.ieee.org/document/6408179/
https://www.nature.com/articles/s41467-017-02307-4
https://www.nature.com/articles/s41467-017-02307-4


21

Gaussian Quantum States, Phys. Rev. Lett. 96, 080502
(2006).
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du |〈Ê†S(t)ÊW (u)〉|2,

which proves the basis-invariance of the
pairwise-permutation constraints. For the pairwise-sum
constraints to be basis invariant we require that
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