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We propose a protocol using a tunable Xmon qubit chain to construct generalized Su-Schrieffer-
Heeger (SSH) models that support various topological phases. We study the time evolution of a
single-excitation quantum state in a SSH-type qubit chain and find that such dynamics is linked
to topological winding number. We also investigate the adiabatic transfer of a single-excitation
quantum state in a generalized SSH-type qubit chain and show that this process can be connected
with topological Chern number and be used to generate a novel entanglement-dependent topological
pumping. All results have been demonstrated to be robust against qubit coupling imperfections and
can be observed in a short Xmon qubit chain. Our study provides a simple method to directly
measure topological invariants rooted in momentum space using quantum dynamics in real space.

I. INTRODUCTION

Supercounducting circuits nowadays have been widely
recognized as one of the leading quantum systems for
quantum computation [1–4]. The fundamental challenge
in building a full-fledged superconducting quantum com-
puter is to balance high coherence and straightforward
connectivity. Remarkable experimental progresses have
recently been made in this regard [5–12]. In particu-
lar, Xmon qubits have been shown to possess excellent
scalability simultaneously with high coherence [5]. Mean-
while, the coupling between Xmon qubits can be dynam-
ically varied through a g-mon coupler [6]. Moreover, it is
now believed that superconducting circuit can be further
scaled up to several tens of qubits and show its quantum
supremacy in the near term [13]. Such state-of-the-art
enables superconducting qubit chains to be a promising
platform for implementing large-scale quantum simula-
tion [14–45].

On the other hand, searching topological states in cold
atoms as well as photonic systems has recently become
a rapidly growing research field [46–48]. In the context
of superconducting circuits, some topological states and
effects have also been theoretically studied [49–62]. Ex-
perimentally, several progresses studying topological phe-
nomenons recently have been made in superconducting
qubits and resonators [63–69]. Specifically, topological
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concepts have been investigated in the parameter space
of superconducting qubits [63–66], including the topo-
logical Chern numbers and topological phase transitions;
Topological quantum walks and Zak phases have been
realized and measured in the phase space of microwave
resonators [67, 68]. Considering the-state-of-art in Xmon
qubits, a natural question to ask is whether we can re-
alize topological phases rooted in the momentum space
of a superconducting Xmon qubit lattice. It is also quite
interesting to study how to detect topological invariants
in this qubit lattice.

In this paper, we present an experimental protocol to
realize a generalized SSH model [70] in a superconduct-
ing Xmon qubit chain with tunable qubit couplings. This
model has a variety of topological magnon bands and
supports different topologcial insulator phases character-
ized by topological winding numbers and Chern numbers.
We first investigate the quantum dynamics of a single-
excitation quantum state in a SSH-type qubit chain. In-
terestingly, we find that the time average of the cen-
ter of qubit excitation difference (CED) associated with
this quantum dynamics is topology-dependent and can
be linked to the topological winding number. Winding
number is one of the basic topological invariants but its
detection method is still lacking. Our result thus gives
a new method to directly measure the topological wind-
ing number using quantum dynamics of single-excitation
states in the real space.

We also study the adiabatic transfer of a single-
excitation quantum state in a generalized SSH-type qubit
chain by slowly ramping the qubit couplings. We show
that the shift of the center of qubit excitation (CE) af-
ter one periodic ramping is exactly quantized as topo-
logical Chern number. We also find that both the
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amplitude and the direction of such quantized shift
are entanglement-dependent. This process thus cre-
ates a novel entanglement-dependent topological pump-
ing. Compared with topological Thouless particle pump-
ing [71–75], this pumping is with respect to a single-
excitation quantum state and quantum entanglement
plays an important role here. This pumping can also be
used to directly detect the topological Chern numbers.
In contrast to recent experiments on topological proper-
ties in superconducting circuits [63–69], which focus on
the parameter space of the qubits and resonators, our
study aims at the intrinsic topological properties associ-
ated with Bloch energy bands and rooted in momentum
spaces.
This paper is organized as follows. In Sec. II, we con-

struct a generalized SSH model with a tunable Xmon
qubit chain and study its topological features. In Sec.
III, we study the time evolution of a single-excitation
state in a SSH-type qubit chain. In Sec. IV, we inves-
tigate the adiabatic transfer a single-excitation state in
a generalized SSH-type qubit chain by slowing ramping
qubit couplings. In Sec. V, we give a summary for the
main results presented in this paper.

II. TOPOLOGICAL STATES IN A TUNABLE

SUPERCONDUCTING XMON QUBIT CHAIN

kQ 1kQ +kJ

FIG. 1: Superconducting circuit for the one-dimensional
Xmon qubit lattice. Two nearest neighbour Xmon qubits Qk

and Qk+1 are inductively coupled and the coupling strength
can be tuned through the middle connected gmon coupler
(CP).

The superconducting qubit chain we consider consti-
tuts an array of coupled Xmon qubits with tunable qubit
couplings, as shown in Fig. 1. Suppose each Xmon qubit
has two energy levels and the same transition frequency.
The Hamiltonian of such Xmon qubit lattice can be de-
scried by a spin-chain Hamiltonian

H =
L
∑

k=1

Jkσ̂
†
kσ̂

−
k+1 +H.c. (1)

where σ̂†
k = |e〉k〈g|, Jk is the coupling strength between

two nearest neighbour Xmon qubits. Here we omit the
constant qubit frequencies and only consider singe qubit
excitation, which can be precisely prepared with current
superconducting qubit technology [7]. Because the num-
ber of excitations is conserved in our model, the above
Hamiltonian can be reduced to single excitation sub-
space. Based on the Matsubara-Matsuda transformation

[76], the qubit chain can be rewritten into the following
magnon Hamiltonian

H =

L
∑

k=1

(Jkm̂
†
km̂k+1 +H.c. (2)

where the single excitation is called as magnon in a spin
chain and its annihilation operator is m̂k = σ̂−

k . Such
Xmon qubit chain recently has been experimentally real-
ized for studying surface-code quantum error correction
[77]. Motivated by recent experiment using gmon cou-
pler to tune the Xmon qubit couplings [6], we assume
the coupling strength

Jk = g0 + g1 cos(2πk/p+ θ), (3)

where g0 and g1 are the coupling constants, p is the num-
ber of qubits in one unit cell, and θ is the control param-
eter.
For p = 2, each unit cell contains two qubits labeled

by a and b, respectively. The resulted qubit chain can be
described by the SSH model Hamiltonian

Ĥ1 =

N
∑

x=1

(J1â
†
xb̂x + J2b̂

†
xâx+1 +H.c.), (4)

where α̂†
x = σ̂+

αx

(α = a, b) is the magnon creation opera-

tor for qubit at ax (bx), Ji = g0 + (−1)ig1 cos θ (i = 1, 2)
and N is the number of unit cells. To study its topo-
logical feature, we rewrite it in the momentum space as

Ĥ =
∑

kx

m̂†
kx

ĥ(kx)m̂kx
, where m̂kx

= (âkx
, b̂kx

)T , âkx

and b̂kx
are the momentum space operators,

ĥ(kx) = dxτ̂x + dy τ̂y, (5)

where dx = J1 + J2 cos(kx), dy = J2 sin(kx), and τ̂x and
τ̂y are the Pauli spin operators defined in the momen-
tum space. The energy bands of the Hamiltonian (4) are
characterized by topological winding number [78]

ν =
1

2π

∫

dkxn× ∂kx
n =

1

2
[1 + sgn (g0g1 cos θ)] , (6)

where n = (nx, ny) = (dx, dy)/
√

d2x + d2y. Let g0g1 be a

positive number. We find that

ν =

{

1, θ ∈ (−π/2, π/2)
0, θ ∈ (π/2, 3π/2)

(7)

The winding number ν = 1 (0) shows that the above SSH-
type qubit chain is in the topological nontrivial (trivial)
insulator phase.
For the case of p > 2, a generalized SSH model can be

formed, which supports p magnon bands. Different from
the p = 2 case, their topological features are character-
ized by Chern numbers. In particular, in the p = 3 case,
each unit cell has three qubits labeled as a, b, and c, the
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Hamiltonian describing this generalized SSH-type qubit
chain has the form

Ĥ2 =

N
∑

x=1

(J1â
†
xb̂x + J2b̂

†
xĉx + J3ĉ

†
xâx+1 +H.c.), (8)

where α̂†
x (α = a, b, c) is the magnon creation operator

and Js = g0 + g1 cos(2πs/3 + θ) (s = 1, 2, 3) is the cou-
pling strength. To explore topological features of the
Hamiltonian (8), we rewrite it in the momentum space as

Ĥ =
∑

kx

m̂†
kx

ĥ(kx, θ)m̂kx
, with m̂kx

= (âkx
, b̂kx

, ĉkx
)T ,

ĥ(kx, θ) =
∑

i=1,4,5,6

hiŜi, (9)

where h1 = J1, h4 = J3 cos (kx), h5 = −J3 sin (kx),
h6 = J2, and Ŝi being the i-th Gell-Mann spin operator.
By combining the momentum space of quasimomentum
kx with the control variable θ, we have a synthetic two-
dimensional space with parameters k = (kx, θ). The en-
ergy spectrum in the first Brillouin zone {kx ∈ (0, 2π/3],
θ ∈ (0, 2π]} of this synthetic space has three energy
bands. For the synthetic two-dimensional space, the un-
derlying topological properties of the Hamiltonian (8) are
characterized by the Chern number defined in the first
Brillouin zone. Denote the Bloch function of the n-th
magnon band as |ukn〉. The Chern number for the n-th
magnon band is defined as [79, 80]

Cn =
1

2π

∫

kx

∫

θ

dkxdθ Fn(kx, θ), (10)

where Fn(kx, θ) = i(|〈∂θukn|∂kx
ukn〉 − c.c.) is the Berry

curvature and c.c. refers to the complex conjugate. Using
equation (10), we calculate the Chern numbers for the
first (bottom), second (middle), and third (top) magnon
bands. The results are

{C1, C2, C3} =

{

{2,−4, 2}, −g1/4 < g0 < g1/4

{−1, 2, 1}, otherwise
. (11)

Equation (11) shows that the p = 3 generalized SSH-type
qubit chain supports two types of topological insulator
phases separated by the transition points g0 = ±g1/4.

III. TOPOLOGY-DEPENDENT QUANTUM

DYNAMICS AND WINDING NUMBER

DETECTION

In this section, we will study the time evolution of
a single-excitation quantum state in a SSH-type qubit
chain (p=2). Suppose the SSH-type qubit chain is ini-
tially prepared into a single-excitation bulk state. As
shown in Fig. 2(a), we choose to excite one of the mid-
dle qubits into the excited state |e〉 and the other qubits
are in the ground state |g〉. Then the initial state of the
system can be written as

|ψ(0)〉 = |gg · · · e · · · gg〉. (12)
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FIG. 2: (a) The schematic of the topology-dependent quan-
tum dynamics. The time-dependent average of the CED P̄d(t)
versus time is shown in (a) for θ = 0.1π with ν = 1 and in
(c) for θ = 0.9π with ν = 0. In the presence of qubit coupling
imperfection, P̄d(t) in the above two cases is shown in (b) and
(d), respectively, with the imperfect strength W = 0.2g1. The
other parameter is g0 = g1. g1 is used as energy unit in this
work.

The quantum dynamics of such single excitation state
is governed by the Hamiltonian in Eq. (4). After an
evolution time t, the state of the system becomes

|ψ(t)〉 = e−iĤ1t|ψ(0)〉. (13)

The relation between the above quantum dynamics and
the topological feature of the SSH-type qubit chain can
be revealed through the CED in the qubit chain. The
CED is defined as

P̂d =

N
∑

x=1

x(P̂ e
ax

− P̂ e
bx
) (14)

with P̂ e
q = |e〉q〈e| (q = ax, bx). Then the time-dependent

average of the CED associated with the above single-
excitation quantum dynamics is given by

P̄d(t) = 〈ψ(t)|P̂d|ψ(t)〉. (15)

Furthermore, we transfer Eq. (15) into the momentum
space and get

P̄d(t) =
1

2π

∫ π

−π

dkx〈ψ(0)|eiĥ(kx)ti∂kx
τ̂ze

−iĥ(kx)t|ψ(0)〉.
(16)

By substituting Eq. (5) into Eq. (16), we find P̄d(t)
can be connected with the topological winding number ν
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defined in Eq. (6), i.e.,

P̄d(t) =
ν

2
− 1

4π

∫

dkx cos(2dtt)n× ∂kx
n, (17)

where dt =
√

J2
1 + J2

2 + 2J1J2 cos(kx). The second oscil-
lation term in Eq. (17) vanishes at the critical times

tc = (2s+ 1)π/4
√

J2
1 + J2

2 , (18)

where s is an integer number. At these times, the topo-
logical winding number can be directly measured via
CED, i.e.,

ν = 2P̄d(tc). (19)

In the long time limit, we can also obtain a relation-
ship between the winding number and the time-averaged
CED, i.e.,

ν = lim
T→∞

2

T

∫ T

0

dt P̄d(t). (20)

One can find that the time-averaged CED is just the oscil-
lation center of the CED varying with time, which depen-
dents on the topology of the band structure of the qubit
chain. Thus our result demonstrates that the quantum
dynamics of a single-excitation state in a SSH-type qubit
chain is topology-dependent, which can be employed for
directly detecting the topological winding number.
In Figs. 2(b) and 2(d), we have further numerically cal-

culated P̄d(t), when the qubit chain is in the topological
nontrivial and trivial phases, with the topological wind-
ing numbers ν = 1 and 0, respectively. The numerical re-
sults show that P̄d(t) oscillates around the average values
0.5 and 0, respectively, which gives the topological wind-
ing numbers ν = 1 and 0 according to Eq. (20). We have
also calculated P̄d(t) for different choices of qubit chain
lengthes. We find that the oscillation center of P̄d(t) in
a chain of four qubits is same as the ones in longer qubit
chains. It means that the signatures of topological wind-
ing number predicted in Eq. (20) can be unambiguously
observed in a qubit chain with short length.
As revealed in Eq. (19), the topological winding num-

ber can be directly detected by the CED at some critical
time points. In Figs. 2(b) and 2(d), our numerical re-
sults show that, the oscillation curves of P̄d(t) for differ-
ent choices of qubit chain lengthes intersect at the time
critical points tc, with their values P̄d(tc) = 0.5 and 0,
respectively. According to Eq. (19), P̄d(tc) directly gives
the topological winding number ν = 1 and 0.
In practical experiments, the qubit couplings can not

be perfectly tuned to exact values due to the intrinsic im-
perfections in device fabrication. This imperfection can
be described by the Hamiltonian Hd =

∑

x δJ1xa
†
xbx +

δJ2xb
†
xax+1+H.c., where the influence of the imperfection

on tuning qubit couplings is characterized by a disorder
variable δJ1x,2x = Wδ, with δ ∈ [−0.5, 0.5] being a ran-
dom number and W being the imperfect strength. In

1,3c
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FIG. 3: (a) The schematic of the entanglement-dependent
topological pumping. The time-dependent average of the CE
P̄n(t) versus time is shown in (a) and (b). The change of
P̄n(t) during one periodic pumping δP̄n versus qubit coupling
imperfections is shown in (c) and (d). The ramping rate is
Ω = 0.39g1. The qubit number is L = 18 and g0 = g1.

Figs. 2(c) and 2(e), we have taken into account the influ-
ence of qubit coupling imperfection and numerically re-
calculated P̄d(t) for the topological nontrivial and trivial
cases, respectively. For each δJ1x,2x, we choose 30 sam-
ples to perform the numerical simulation. The resulted
CED P̄d(t) is obtained by averaging over the results of all
samples. The results clearly show that P̄d(t) still oscillate
around 0.5 and 0. The critical time points where P̄d(t) in-
tersects at the oscillation center are also same as the ones
shown in Figs. 2(a) and 2(c) without considering qubit
coupling imperfection. Thus our results are quite robust
to the practical imperfections in qubit coupling engineer-
ing and provide an experimentally promising method to
directly detect the topological winding number.

IV. ENTANGLEMENT-DEPENDENT

TOPOLOGICAL PUMPING AND CHERN

NUMBER DETECTION

In this section, we will investigate adiabatic transfer of
a single-excitation quantum state in a generalized SSH-
type qubit chain by slowly ramping the control parameter
θ. For illustration, we take p = 3 and g0 = g1, under
which the three magnon bands have the Chern numbers

C1,3 = −1, C2 = 2. (21)

Let the control parameter

θ(t) = Ωt+ ϕ0, (22)
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where Ω is the ramping rate and ϕ0 is the initial phase.
The total time for one pumping period is then Tp =
2π/Ω. Such time-dependent coupling has recently been
implemented in superconducting Xmon qubits [43].
At time t = 0, let θ(0) = ϕ0 = π. The coupling

strengths are then J1,2 = 3g1/2 and J3 = 0, i.e., the
unit cells are isolated with zero inter-cell coupling. The
Hamiltonian for a single isolated unit cell in single ex-
citation space is Ĥs = J(σ̂

+
a σ̂

−
b + σ̂+

b σ̂
−
c )+H.c. with

J = 3g1/2. The eigenstates for such single-excitation
Hamiltonian are

|χ1,3〉 = (|egg〉 ∓
√
2|geg〉+ |gge〉)/2,

|χ2〉 = (|egg〉 − |gge〉)/
√
2. (23)

The corresponding eigenenergies of the above three
states are E1 = −

√
2J , E2 = 0, and E3 =

√
2J , re-

spectively. To prepare the state |χ1〉, we firstly de-
couple the selected unit cell from the rest of the qubit
chain by increasing or decreasing the detuning of qubits
in this unit cell from that of all other qubits. From
the ground state |ggg〉, a driving pulse in the form

of V̂3 = Ω0 cos (ωdt)
(

σ̂x
a −

√
2σ̂x

b + σ̂x
c

)

is applied with

the driving frequency ωd = ωq +
√
2J . In the rotat-

ing frame of ωd, this driving field can be written as
V̂ rot
3 = Ω0(σ̂

x
a −

√
2σ̂x

b + σ̂x
c )/2. It can be shown that

〈χ1|V̂ rot
3 |ggg〉 = Ω and 〈χ2,3|V̂R|ggg〉 = 0. By applying

this pulse for a duration of t3 = π/2Ω0, the state |χ1〉 is
generated. The time duration of this operation is also on
the order of nanoseconds. Similarly, the states |χ2〉 and
|χ3〉 can be generated by applying corresponding driving
pulses.
As shown in Figs. 3(a), we assume the qubits in one

of the middle selected unit cells are prepared in the state
|χn〉 (n = 1, 2, 3) defined in Eq. (23) and all other qubits
are in their ground states. Then the initial state of the
qubit chain can be written as

|ψn[θ(0)]〉 = |ggg · · ·χn · · · ggg〉. (24)

Note that |ψn〉 is just the Wannier function of the n-th
magnon band. When θ is swept from t = 0 to t = Tp,
the state in the initial unit cell experiences an adiabatic
pumping and the entanglement will propagate to the
other unit cells. Define the CE as

P̂ =

N
∑

x=1

x(P̂ e
ax

+ P̂ e
bx

+ P̂ e
cx
). (25)

The time-dependent average of the CE for an initial exci-
tation |χn〉 (n = 1, 2, 3) during the pumping is described
by

P̄n(t) = 〈ψn[θ(t)]|P̂ |ψn[θ(t)]〉. (26)

We further write the above equation into momentum
space and get

P̄n(t) =
1

2π

∫

dkxi〈ukx,θ,n|∂kx
|ukx,θ,n〉

=
1

2π

∫

dkxAn(kx, θ),

(27)

where the Wannier function |ψn〉 has been rewrit-
ten in form of the Bloch wave function as |ψn〉 =
1
2π

∫

dkxe
ikxr|ukx,θ,n〉. Equation (27) indicates that the

CE is related to the Berry connection An(kx, θ) =
i〈ukx,θ,n|∂kx

|ukx,θ,n〉, which depends on the choice of the
gauge in the Bloch state. Let θ be changed continuously
from θi to θf . The shift of the CE is then

P̄n(tf )− P̄n(ti) =
1

2π

∫

dkxAn(kx, θf)

− 1

2π

∫

dkxAn(kx, θi)

(28)

Using the Stokes theorem, equation (28) can be rewritten
in terms of Fn(kx, θ) with Fn(kx, θ) = ∇ × An(kx, θ) =
i(|〈∂θukn|∂kx

ukn〉−c.c.). For a pumping circle of 2π, i.e.,

θf = θi + 2π, Ĥ(θi) = Ĥ(θf ), and the shift of the CE is
given by the integral of the Berry curvature on the torus
{kx ∈ (0, 2π/3], θ ∈ (0, 2π]}. We thus find

P̄n(Tp)− P̄n(0) =
1

2π

∫

kx

∫

θ

dkxdθ∇×An(kx, θ)

=
1

2π

∫

kx

∫

θ

dkxdθ Fn(kx, θ)

= Cn,

(29)

which shows that the shift of the CE during one pumping
circle is equal to the Chern number of the corresponding
topological magnon band and is gauge invariant.
In Figs. 3(b) and 3(c), we numerically calculate P̄1,3(t)

and P̄2(t) for a chain of 18 qubits (N = 6), where the
qubits in the third unit cell are prepared in the state
|χ1,3〉 and |χ2〉, respectively. It is found that P̄1,3(t) is
shifted to the left by one unit cell and P̄2(t) is shifted
to the right by two unit cells. Moreover, the shifts of
the CE are equal to the corresponding Chern numbers
C1,3 = −1 and C2 = 2, respectively. Such process
yields an entanglement-dependent topological pumping,
where both the quantized shift number and pumping di-
rection are entanglement-dependent. This pumping can
be realized with the following parameters: g1/2π = 100
MHz and Ω = 0.39g1. The total pumping time is
Tp = 2π/Ω = 25.5 ns, much longer than typical deco-
herence times of superconducting X-mon qubits. Simi-
larly, the entanglement-dependent topological pumping
also can be realized in the generalized SSH-type qubit
chain with p > 3.
We now analyze the influence of practical imperfections

in tuning qubit couplings on the above entanglement-
dependent topological pumping. This imperfection can

be described by the Hamiltonian Hd =
∑

x δJ1xâ
†
xb̂x +

δJ2xb̂
†
3xĉx + δJ3ĉ

†
xâx+1 + H.c., where δJ1x,2x,3x = Wδ,

with δ ∈ [−0.5, 0.5] being a random number andW being
the imperfect strength. In Figs. 3(d) and 3(e), we have
numerically calculated

δP̄n = P̄n(Tp,W )− P̄n(0,W ) (30)
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where P̄n(t,W ) (n = 1, 2, 3) is the CE in the presence
of imperfect qubit coupling. For each δJ1x,2x,3x, we
choose 50 samples to perform the numerical simulation.
The final derived P̄n(t,W ) is obtained by averaging over
the results of all samples. Our numerical results show
that the entangle-dependent topological pumping is ro-
bust against qubit coupling imperfections. The quan-
tized shifts of the CE δP̄1,3 and δP̄2 have plateaus at
the values −1 and 2 when the imperfection strength
W ≤ 0.1g1, which correspond to the topological Chern
numbers C1,3 = −1 and C = 2, respectively.

V. CONCLUSIONS

In conclusion, we have proposed an experimentally fea-
sible protocol using a tunable Xmon qubit chain to realize
SSH and generalized SSH models that support a variety
of topological magnon phases protected by topological
winding numbers and Chern numbers. We have explic-
itly studied the dynamics of a single-excitation quantum
state in these qubit chains and revealed new topologi-
cal phenomenons, including the entanglement-dependent
topological pumping. We have also found that the topo-

logical invariants can be directly measured from the
dynamics of qubit excitation, which provides a simple
method to directly measure topological invariants rooted
in the momentum space using quantum dynamics in the
real space. Our work may open a new prospect to real-
ize various topological models and explore new topolog-
ical effects in well-controllable quantum computing plat-
forms.
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Kurpiers, A. Potočnik, A. Mezzacapo, U. Las Heras, L.
Lamata, E. Solano, S. Filipp, A. Wallraff, Phys. Rev. X
5, 021027 (2015).

[42] S.H. Gourgy, V.V. Ramasesh, C.D. Grandi, I. Siddiqi,
and S.M. Girvin, Phys. Rev. Lett. 115, 240501 (2015).

[43] P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Bab-
bush, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A.
Dunsworth, A. G. Fowler, E. Je?rey, J. Kelly, E. Lucero,
J. Y. Mutus, P. J. J. OMalley, M. Neeley, C. Quintana,
D. Sank, A. Vainsencher, J. Wenner, T. White, E. Kapit,
H. Neven, and J. Martinis, Nat. Phys. 13, 146 (2016).

[44] P.J.J. OMalley, R. Babbush, I.D. Kivlichan, J. Romero,
J.R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tran-
ter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, A.G. Fowler, E. Jeffrey, E. Lucero, A.
Megrant, J.Y. Mutus, M. Neeley, C. Neill, C. Quintana,
D. Sank, A. Vainsencher, J. Wenner, T.C. White, P.V.
Coveney, P.J. Love, H. Neven, A. Aspuru-Guzik, and J.
M. Martinis, Phys. Rev. X. 6, 031007 (2016).

[45] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch,
and A. A. Houck, Phys. Rev. X. 7, 011016 (2017).

[46] N. Goldman, J. C. Budich, and P. Zoller, Nat. Phys. 12,
639 (2016).

[47] L. Lu, J. D. Joannopoulos, and M. Soljacic, Nat. Photon.
8, 821 (2014).

[48] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi,
L. Lu, M. Rechtsman, D. Schuster, J. Simon, O. Zilber-
berg, I. Carusotto, arXiv: 1802.04173.

[49] J.Q. You, X.F. Shi, X.D. Hu, and F. Nori, Phys. Rev. B.
81, 014505 (2010).

[50] J. Koch, A. A. Houck, K. Le Hur, and S.M. Girvin, Phys.
Rev. A 82, 043811 (2010).

[51] M. Hafezi, P. Adhikari, and J. M. Taylor, Phys. Rev. B
90, 060503(R) (2014).

[52] E. Kapit, M. Hafezi, and S. H. Simon, Phys. Rev. X. 4,
031039 (2014).

[53] D. I. Tsomokos, S. Ashhab, and F. Nori, Phys. Rev. A
82, 052311 (2010).

[54] S. Gasparinetti, P. Solinas, and J. P. Pekola, Phys. Rev.
Lett. 107, 207002 (2011).

[55] A. A. Abdumalikov, J. M. Fink, K. Juliusson, M. Pechal,
S. Berger, A. Wallraff, S. Filipp, Nature 496, 482 (2013).

[56] F. Mei, J.B. You, W. Nie, R. Fazio, S.-L. Zhu, and L. C.
Kwek, Phys. Rev. A 92, 041805(R) (2015).

[57] F. Mei, Z.-Y. Xue, D.-W. Zhang, L. Tian, C. Lee, and
S.-L. Zhu, Quantum Sci. Technol. 1, 015006 (2016)

[58] Y.P. Wang, W.L. Yang, Y. Hu, Z.Y. Xue, Y. Wu, npj
Quantum Information 2, 16015 (2016).

[59] Z.H. Yang, Y.P. Wang, Z.Y. Xue, W.L. Yang, Y. Hu,
J.H. Gao, Y. Wu, Phys. Rev. A 93, 062319 (2016).

[60] J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P.
Roushan, D. Jaksch, and D. G. Angelakis, Phys. Rev.
Lett. 117, 213603 (2016),

[61] X. Gu, S. Chen, and Y. X. Liu, arXiv:1711.06829v1.
[62] T. Goren, K. Plekhanov, F. Appas, and K. L. Hur, Phys.

Rev. B 97, 041106(R) (2018).
[63] M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M.

Sandberg, J. Gao, M. R. Vissers, D. P. Pappas, A.
Polkovnikov, and K. W. Lehnert, Phys. Rev. Lett. 113,
050402 (2014).

[64] P. Roushan, C. Neill, Y Chen, M. Kolodrubetz, C. Quin-
tana, N. Leung, M. Fang, R. Barends, B. Campbell, Z.
Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly,
A. Megrant, J. Mutus, P. J. J. O’Malley, D. Sank, A.
Vainsencher, J. Wenner, T. White, A. Polkovnikov, A.
N. Cleland, and J. M. Martinis, Nature 515, 241 (2014).

[65] Z. Zhang, T. Wang, L. Xiang, J. Yao, J. Wu, and Y. Yin,
Phys. Rev. A 95, 042345 (2017).

[66] X. Tan, D.-W. Zhang, Q. Liu, G. Xue, H.-F. Yu, Y.Q.
Zhu, H. Yan, S.-L. Zhu, and Y. Yu, Phys. Rev. Lett. 120,
130503 (2018).

[67] V. V. Ramasesh, E. Flurin, M. Rudner, SI. iddiqi, and
N. Y. Yao, Phys. Rev. Lett. 118, 130501 (2017).

[68] E. Flurin, V.V. Ramasesh, S. Hacohen-Gourgy, L. S.
Martin, N.Y. Yao, and I. Siddiqi, Phys. Rev. X 7, 031023
(2017).

[69] O. Viyuela, A. Rivas, S. Gasparinetti, A. Wallraff, S.
Filipp, and M.A. Martin-Delgado, npj Quantum Infor-
mation 4, 10 (2018).

[70] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev.
Lett. 42, 1698 (1979).

[71] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[72] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa,

L. Wang, M. Troyer, and Y. Takahashi, Nature Phys. 12,
296 (2016).

[73] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger,
and I. Bloch, Nature Phys. 12, 350 (2016).

[74] F. Mei, J. B. You, D. W. Zhang, X. C. Yang, R. Fazio, S.
L. Zhu, and L. C. Kwek, Phys. Rev. A 90, 063638 (2014).

[75] H. I. Lu, M. Schemmer, L. M. Aycock, D. Genkina, S.
Sugawa, and I. B. Spielman, Phys. Rev. Lett. 116, 200402
(2016).



8

[76] T. Matsubara and H. Matsuda, Prog. Theor. Phys. 16,
569 (1956).

[77] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C.Hoi,
C. Neill, P.J.J. OMalley1, C. Quintana, P. Roushan,
A.Vainsencher, J. Wenner, A.N. Cleland, and J.M. Mar-
tinis, Nature (London) 519, 66 (2015).

[78] A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig,
New J. Phys.12, 065010 (2010).

[79] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[80] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).


