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Staircases in response functions are associated with physically observable quantities that respond
discretely to continuous tuning of a control parameter. A well-known example is the quantization
of the Hall conductivity in two dimensional electron gases at high magnetic fields. Here, we show
that such a staircase response also appears in the magnetization of spin-1 atomic ensembles evolving
under several spin-squeezing Hamiltonians. We discuss three examples, two mesoscopic and one ma-
croscopic, where the system’s magnetization vector responds discretely to continuous tuning of the
applied magnetic field or the atom density, thus producing a magnetization staircase. The examples
that we consider are directly related to Hamiltonians that have been implemented experimentally in
the context of spin and spin-nematic squeezing. Thus, our results can be readily put to experimental
test in spin-1 ferromagnetic 87Rb and anti-ferromagnetic 23Na condensates.

In the integer quantum Hall effect, the Hall conducti-
vity changes discretely to continuous tuning of the mag-
netic field [1, 2]. In general, when a system responds
discretely to a continuous change of a control parame-
ter, a staircase structure appears in its response function,
which is a distinctive characteristic of quantization. Such
phenomenon is significant on two counts. First, one can
stabilize the system on a step of the staircase, that is, the
flat region between two discrete jumps. Second, these
stable states are potentially topological and may carry
topological invariants of the system’s phase space. The
quantum Hall effect has been observed in fermionic two-
dimensional (2D) electron gases [3, 4].

Bosonic analogues of quantum Hall states have been
predicted to exist in rotating, weakly interacting Bose-
Einstein condensates (BEC)[5–11]. A spinless, non-
inteacting, rotating BEC in a harmonic trap is characte-
rized by Landau levels, similar to a 2D electron gas in a
magnetic field [5]. For a rotating BEC, the trap frequency
plays the role of the effective magnetic field and the cor-
responding lowest Landau level is degenerate in the an-
gular momentum about the axis of rotation. This means
that there are multiple angular momentum eigenstates
within the lowest Landau level, thus, a weak interaction
in the system may select one of these angular momentum
eigenstates as the ground state of the system depending
on the ratio of the interaction strength and the cyclotron
frequency [5, 6]. Thus, the system’s angular momentum
responds discretely to continuous tuning of the effective
magnetic field, in analogy with the quantum Hall effect.
Recently, such phenomena has been predicted even in a
spin-1 BEC [7] and a pseudo spin-1/2 BEC[10].

For the bosonic examples discussed above, the inte-
raction plays a pivotal role in the emergent angular mo-
mentum staircase as a function of the effective magne-
tic field. Two other quantum phenomena that also arise
from interactions are squeezing and many body entangle-
ment. Spin squeezed states have been prepared in boso-
nic systems [12–19] and used to enhance the precision in a
measurement, for example, of the applied magnetic field.

They are characterized by noise in the transverse spin
component that is lower than any classical state and are
generally prepared with the help of an interaction term
in the Hamiltonian. Two of the most common modes of
preparing squeezed states, one-axis twisting and two-axis
counter twisting, involve interactions [20].

In this letter, we show three examples of spin-squeezing
Hamiltonians, realizable in spin-1/2 and spin-1 BECs,
that are characterized by a staircase response in the mag-
netization. First we show this for one-axis twisting Ha-
miltonian. Second, we demonstrate that an interacting
ferromagnetic spin-1 BEC, where spin-nematic squeezing
has been demonstrated [16], also displays a staircase.
Third, we consider an interacting anti-ferromagnetic
spin-1 BEC, where a staircase is also obtained in the
direction of the magnetization. The first two examples
are mesoscopic, while the third is a macroscopic pheno-
menon. We also propose experiments to observe these
effects.
Staircase in one-axis twisting. First, we consider a

pseudo spin-1/2 BEC under the one-axis twisting Hamil-
tonian, H = χS2

z , where Sz is the total spin operator in
the z-direction and χ represents the strength of two body
interactions in the system [20]. By applying a magnetic
field p in the z-direction, we obtain a staircase structure
in the ground state magnetization of the Hamiltonian,
H = χS2

z−pSz. We use units where ~ = 1, Sz is dimensi-
onless, χ and p are frequencies. The eigenstates of Sz are
also eigenstates of this Hamiltonian. The energy of the
eigenstate with a magnetization m is Em = χm2 − pm,
for m = −N2 ,−

N
2 + 1, · · · N2 , where N is the number of

atoms in the condensate. By minimizing the energy, we
obtain the ground state magnetization mgs = [ p2χ ], where

[x] represents the integer closest to x. Here, pχ plays the
role of the control parameter to which the magnetization
responds discretely. The initial step of the magnetiza-
tion staircase occurs when p

χ < −N , with magnetization

mgs = −N2 , while the final step occurs when p
χ > N ,

with magnetization mgs = N
2 . In between, the mgs re-

sponds discretely to continuous variation of p as shown
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FIG. 1. Staircase in the one-axis twisting Hamiltonian: (a) Shows the ground state magnetization as a function of
the strength of the applied field p for constant interaction χ in the one-axis twisting Hamiltonian H = χS2

z − pSz, with and
without the perturbation εSx. The blue curve (the smooth curve) corresponds to the Hamiltonian with perturbation and the
black curve (the staircase curve with sharp edges) corresponds to the Hamiltonian without the perturbation. (b) Shows the
corresponding ground state and the first excited state energies around the level crossings between m = −1 and m = 0, as well
as m = 0 and m = +1. In the absence of the perturbation, there are true level crossings, but when the perturbation is added,
gaps open and thereby smooth the staircase. The term εSx is also responsible for changing the system’s magnetization, which
is otherwise conserved. (c) Shows the entanglement entropy of the local ground state as a function of the control parameter
p/χ. The black curve (the curve without cusps) shows the entanglement without the perturbation a written in Eq.1, while the
blue curve (the curve with cusps) shows the entanglement with the perturbation for ε

χ
= 0.02.

in Fig. 1(a).

Every step in this staircase is a distinct quantum state
and every jump corresponds to a level crossing. The ei-
genenergies in the vicinity of a level crossing are shown
in Fig. 1(b). Notice that this is a true level crossing,
even when the system size is small, that is, it is not an
avoided level crossing. Consequently, in order to observe
this effect, one has to facilitate each jump in the staircase
by opening up a gap at the level crossing. This can be
done by adding a weak field ε in the x-direction leading
to the Hamiltonian H = χS2

z −pSz− εSx, where ε is also
in units of Hz. The resulting energy gaps for crossings
between states with mgs = −1 and mgs = 0, as well as
mgs = 0 and mgs = +1 are shown in Fig. 1(b). The
term εSx also smoothes out the staircase in Fig. 1(a) and
is responsible for changing the system’s magnetization,
which is otherwise conserved.

The quantum states in this magnetization staircase are
related to the familiar Dicke ladder [21], where transiti-
ons between neighboring total angular momentum states
of atoms can occur coherently leading to superradiance.
An experiment where the control parameter p

χ is slowly
swept from −N to N would induce a transfer of the atom
population between the spin states, one atom at a time.
Furthermore, this is also a way of deterministically pro-
ducing all the Dicke states in this ladder, most of which
are highly entangled [22, 23]. In an experiment, the sy-
stem can be initialized at m = −N2 or m = N

2 , where it
is completely unentangled. As the control parameter p

χ

is tuned, the magnetization m increases in integer steps
and the corresponding entanglement entropy also steps
up, peaking at m = 0, see Fig. 1(c). The entanglement
entropy for magnetization m, in terms of the magnetiza-
tion per atom, µ = m

N , is given by [24]

E = −
(

1

2
− µ

)
log

(
1

2
− µ

)
−
(

1

2
+ µ

)
log

(
1

2
+ µ

)
.

(1)
The perturbation εSx, that was added to maintain adia-
baticity at the level crossing, also perturbs the entangle-
ment entropy, as shown in Fig. 1(c). The large dips in the
entanglement entropy that appear at the level crossings
are characteristic of a singular perturbation on the dege-
nerate ground state space. Indeed, at the level crossing
between magnetizations m and m + 1, the unperturbed
ground state is a two dimensional space spanned by the
eigenstates {|m〉, |m+ 1〉} of Sz with eigenvalues m and
m + 1, respectively. The perturbation breaks this dege-
neracy and picks one state from this space as the ground
state. For instance, with an εSx perturbation, the ground

state is |m〉−|m+1〉√
2

, independent of ε. This state has a lo-

wer entanglement entropy than |m〉 and |m + 1〉, and
it corresponds to the dip in the blue curve in Fig. 1(c).
Thus, when ε → 0, the blue curve approaches the black
curve at every point, excluding the level crossings.

There are several experimental systems where spin
squeezing has been demonstrated using the one-axis twis-
ting Hamiltonian including trapped ion systems [12, 17],
Bose-Einstein condensates [25], double well [13], cavity
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systems [14, 26–28] and BECs in a chip trap [29]. A
∼ 3 atom detection limit has been demontrated in a chip
trap recently [30]. Moreover, single site detection has
been established in quantum simulators that use neu-
tral atoms[31] and ions [32]. The Hamiltonian discussed
above can also be implemented in such systems [33]. We
present a more detailed study of the experimental limi-
tations in these systems showing that the staircase can
be observed with the existing technology in the supple-
mentary information [24].

The role of the interaction term χS2
z lies in introdu-

cing convexity into the energy functional. The energy,
Em = χ(m2 −m p

χ ) is a convex function in the discrete

variable m and the control parameter p
χ contributes a

linear term in this function. The minima of a convex
function can be shifted by adding a linear term, however
these shifts are discontinuous since the variable is dis-
crete. This is the primary characteristic of the ground
state energy of Hamiltonian which results in a staircase
phenomena. Next, we use this observation to identify a
staircase in the magnetization of a ferromagnetic spin-1
BEC, as a second example.

Staircase in a ferromagnetic spin-1 BEC. The Hamil-
tonian of a ferromagnetic spin-1 BEC of 87Rb atoms,
confined to an optical dipole trap and with an applied
magnetic field of Bz along the z-direction is [34]

H =

N∑
i=1

(
− ~2

2m
∇2
i + VT (ri)

)

+
4π~2

m

∑
i>j

δ(ri − rj)
∑
F=0,2

F∑
mF =−F

aF |F,mF 〉〈F,mF |

+

N∑
i=1

(
µBgFBzLzi +

µ2
B

~2∆
B2
zL

2
zi

)
.

(2)

Here, VT is the dipole trapping potential, the interaction
between pairs of atoms is modeled by a δ function po-
tential and it involves two s-wave scattering lengths, a0

and a2, corresponding to the possible total spin of the
two interacting atoms, both of which are in the spin-1
state. In addition, the relevant Landé g-factor is gF and
Lzi is the spin operator for the i-th atom. The hyper-
fine splitting between the F = 1 and F = 2 levels is
∆. Assuming that the trap is sufficiently tight, one can
approximate the ground state by a product of a spatial
wave function common to all spin modes and a collective
N -atom spin state. This is also known as the single mode
approximation (SMA). Under SMA, the spin part of the
Hamiltonian is

H = cS2 + qQzz − pSz, (3)

where c < 0 is the interaction strength, given by c =
4π~2(a2−a0)

3m

∫
|φ(r)|4dr, where φ(r) is the common spatial

wave function. The total spin operator of all the atoms
is S2, the strength of the quadratic Zeeman term is q =
µ2
B

~2∆ and the linear Zeeman contribution is p = µBgFBz
. The collective spin and second rank tensor operators
are Sz =

∑N
i=1 Lzi and Qzz =

∑N
i=1 L

2
zi, respectively.

This Hamiltonian has been used to produce spin-nematic
squeezed states [16].

We show that the quadratic Zeeman effect induces an
energy that is convex in the system’s magnetization and
therefore, with c and q fixed to appropriate values, we
can obtain an analogous staircase in this system. The
Hamiltonian commutes with Sz and therefore, it has si-
multaneous eigenstates with the latter. Let us denote
these eigenstates by |n,m〉, with

(cS2 + qQzz)|n,m〉 = λnm|n,m〉
Sz|n,m〉 = m|n,m〉

(4)

The eigenenergy of this state is Enm = λnm−pm. Obtai-
ning the ground state involves a simultaneous minimiza-
tion over n and m. We define the function Em as the
minimal value of Enm over all n, corresponding to the
ground state energy of the Hamiltonian for fixed magne-
tization. The global ground state is obtained by minimi-
zing Em over m. The Zeeman term p contributes a linear

FIG. 2. Convexity of the energy: The minimum energy
eigenvalue Em of the ferromagnetic Hamiltonian H = cS2 +
qQzz − pSz is a convex function of the magnetization m. For
the purpose of this illustration, we have used N = 10. The
minima of these curves correspond to the ground state mag-
netization. Because p is the coefficient of a linear term in m,
changing it has the effect of shifting the minimum. The four
values of p/|c| have their minima are different values of m, lea-
ding to a staircase response of the ground state magnetization
as p/|c| is changed.
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FIG. 3. Staircase in the magnetization direction: (a) shows the ground state magnetization vector of an anti-ferromagnetic
condensate with Hamiltonian H = cS2 + pSx + αQxz, for three different values of c with N = 100. The last term in the
Hamiltonian induces the tilting of the magnetization vector by specific angles, depending on where the system is on the
staircase. (b) shows the tilt angle for N = 20 as a function of c/p, a staircase, but in contrast with the previous examples, this
time it is not only in the magnitude of magnetization, but also in the direction. The blue curve shows the smoothened staircase
after adding an εQxx perturbation, with ε = 0.02p. The inset shows the ground state entanglement entropy as a function of
the control parameter. In both (a) and (b), α = 0.1p. The blue curve (the smooth curve) corresponds to the Hamiltoninan
with the Qxx perturbation and the black curve (the curve with the sharp edges) corresponds to the Hamiltoninan without the
Qxx perturbation.

term to Em leading to

Em = min
n
{λnm − pm} = min

n
{λnm} − pm (5)

We use |c| as our energy unit, and show in Fig. 2 that
Em is a convex function of m. Consequently, the ground
state magnetization varies through discrete values of m,
when the control parameter p/|c| is tuned. When q � |c|,
the energy Em ≈ −|c|N(N + 1)− pm is linear in m and
has a minimum at m = N

2 . When q � |c| and q > p, the
energy Em ≈ q|m|−pm has a minimum at m = 0. Upon
variation of q between these two extremes, Em must have
a minimum between m = 0 and m = N

2 , and must be a
convex function of m as seen in Fig. 2 .

Thus, we obtain a similar staircase structure in the
magnetization, when p

|c| is varied adiabatically. Like the

previous example, the flat areas in the staircase corre-
spond to distinct quantum states and a discrete jump
corresponds to a level crossing, which needs to be facilita-
ted by opening up an energy gap. Again, this can be done
by perturbing the Hamiltonian with a weak field in the
x-direction εSx. In typical experiments [16], |c| ∼ 10 Hz
and q ∼ 2|c|, indicating that the emergence of the mag-
netization staircase is also accessible to existing techni-
ques. Similar to the previous example, the entanglement
entropy also has a staircase structure.

Both of the examples discussed so far are mesoscopic in
the sense that the values of the control parameter corre-
sponding to adjacent steps are separated by ∼ 1

N , where
N is the number of atoms. Therefore, in the limit of

large atom numbers, it is increasingly more difficult to
resolve the different jumps. However, next we show that
in an anti-ferromagnetic condensate, a similar staircase
structure appears as a truly macroscopic manifestation,
where, the jumps are macroscopically separated.

Staircase in an anti-ferromagnetic spin-1 BEC. We
consider a spin-1 anti-ferromagnetic BEC with an app-
lied field p in the z-direction leading to the Hamiltonian
H = cS2−pSz, where c > 0 [35, 36]. For sufficiently small
magnetic field, we can omit the quadratic Zeeman terms.
The eigenstates of this Hamiltonian are the total spin sta-
tes |s,m〉 with −s ≤ m ≤ s and s = 0, 2, 4, · · · , N (assu-
ming N is even), due to bosonic symmetry. Here, s is the
total spin of the system, that is, S2|s,m〉 = s(s+1)|s,m〉.
The eigenenergy of |s,m〉 is Esm = cs(s+1)−pm. When
p > 0, the ground state has m = +s. In this case the
energy

Es = min
m

Esm = cs2 + (c− p)s (6)

is a convex function in s. In contrast to previous ex-
amples, the control parameter is the coefficient c of the
quadratic term instead of the field p in the linear Zeeman
contribution.

The ground state value of s is the non-negative integer
closest to p−c

2c . When c = 0, the ground state has s = N
and when c ≥ p, it has s = 0. Because s has a staircase
structure, so does the systems magnetization. The level
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crossings in this staircase occur at values of c given by

cs =
p

2s− 1
; s = 2, 4, · · · , N. (7)

The magnetization of the ground state is given by
〈~S〉 = (0, 0, s) and develops a staircase structure when
c is tuned. We show now that by adding a suitable per-
turbation to the Hamiltonian, this staircase structure can
be transferred to the direction of the magnetization.

Let us perturb the Hamiltonian by Qxz, which is a
quadratic variable given by Qxz =

∑
i{Lxi, Lzi} for a

single atom. The Hamiltonian becomes H = cS2−pSz +
αQxz. Within a given step in the staircase, p

2s+1 < c <
p

2s−1 , we use first order perturbation theory to obtain the
ground state

|ψs〉 = |s, s〉+
α

p
qs|s, s− 1〉 (8)

from the unperturbed ground state |s, s〉. Here, qs =

〈s, s|Qxz|s, s − 1〉 =
√

2s
4

(
2N+3
2s+3

)
is the relevant matrix

element [24]. In this case, the magnetization

〈~S〉 = sẑ +
α

p

√
2sqsx̂ (9)

is tilted away from the z-axis with a polar angle given by

θs = arctan

(
α
√

2sqs
ps

)
. (10)

This angle has a staircase structure with c as the control
parameter as shown in Fig. 3. Similar to the previous ex-
amples, the flat regions of the staircase are distinct quan-
tum states and the associated level crossings need to be
facilitated by the opening of a gap created by a pertur-
bation of the type εQxx, (here, Qxx =

∑N
i=1 L

2
xi) that in-

troduces an overlap between states |s, s〉 and |s±2, s±2〉.
Good candidates to observe this effect experimentally are
23Na condensates. Typically, c ∼ 20Hz [37] with a ma-
croscopic number of N = 105 atoms. The steps in Fig. 3,
corresponding to s = 1, 2, 3, are separated by a few hertz
on the c axis and they are independent of the number
of atoms. Therefore, this effect is macroscopic and also
observable within the existing experimental systems.

To conclude, we have described three examples where
atomic ensembles described by different spin-squeezing
Hamiltonians display a staircase structure in their mag-
netizations as a response to the external tuning of a conti-
nuous control parameter. This phenomena can be obser-
ved in spin-1 ferromagnetic 87Rb and anti-ferromagnetic
23Na condensates, using current experimental techniques.
Maintaining adiabaticity is crucial for such experiments.
Indeed, any deviation from adiabaticity would result in
superpositions of quantum states that would smear out
the staircase. Nevertheless, as we show in the paper and
in the supplementary information, observing this effect

is within the limitations of many of the existing physical
systems.
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