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Optical phase-spaces represent fields of any spatial coherence, and are typically measured through
phase-retrieval methods involving a computational inversion, optical interference, or a resolution-
limiting lenslet array. Recently, a weak-values technique demonstrated that a beam’s Dirac phase-
space is proportional to the measurable complex weak-value, regardless of coherence. These direct
measurements require raster scanning through all position-polarization couplings, limiting their di-
mensionality to less than 100,000 [C. Bamber and J. S. Lundeen. Phys. Rev. Lett. 112, 070405
(2014)]. We circumvent these limitations using compressive sensing, a numerical protocol that al-
lows us to undersample, yet efficiently measure high-dimensional phase-spaces. We also propose an
improved technique that allows us to directly measure phase-spaces with high spatial resolution
with scalable frequency resolution. With this method, we are able to easily and rapidly measure a
1.07-billion-dimensional phase-space. The distributions are numerically propagated to an object in
the beam path, with excellent agreement for coherent and partially coherent sources. This protocol
has broad implications in quantum research, signal processing, imaging, including the recovery of
Fourier amplitudes in any dimension with linear algorithmic solutions and ultra-high dimensional
phase-space imaging.

I. INTRODUCTION

Phase-space representations of light are typically func-
tions of conjugate variables allowing the description of
full optical fields of any coherence [1–3]. This informa-
tion has applications in lensless imaging [3], beam shap-
ing [4, 5], as well as imaging in scattering media [6]. While
measuring a spatially coherent beam’s amplitude and
phase through well established techniques such as optical
interference [7] or phase retrieval [8] is relatively straight-
forward, tomographical measurements of partially coher-
ent beams at high resolution are a laborious challenge,
and many require a computational inversion [3, 9] or im-
precisely scanning physical components to recover the
phase-space distribution. Fortunately, tomography is a
standard tool in quantum research used for estimating
quantum states [10, 11], and the language of quantum
mechanics allows us to develop new tools even for classi-
cal fields [12].

Recently, a new tomography method was introduced
using quantum weak-value techniques [13–15] to directly
measure physical states without optical interference or
numerical inversion. Unlike typical quantum tomograph-
ical methods that estimate states in terms of the density
matrix ρ [11] or Wigner function [3, 10], the simplest form
of the weak-value tomography measures the Dirac phase-
space, also known as the Kirkwood-Rihaczek distribution
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[16–18]. The Dirac phase-space is a non-Hermitian com-
plex quasi-probability distribution related to the Fourier
transform of the density matrix [19, 20]. When describing
quasi-monochromatic and stationary light, optical phase-
spaces are functions of four transverse variables: two spa-
tial coordinates and two spatial frequencies. Explicitly, if
we have a system with density matrix ρ with transverse
positions x = (x, y) and spatial frequencies k = (kx, ky),
the antistandard ordered Dirac representation [21] is

S(x,k) = Tr [|k〉〈k|x〉〈x|ρ] = 〈k|x〉〈x|ρ|k〉 (1)

while the standard ordered distribution is

S(k,x) = Tr [|x〉〈x|k〉〈k|ρ] = 〈x|k〉〈k|ρ|x〉 (2)

where Tr[∗] is the trace. While these distributions are
simply complex conjugates, their measurement sequences
are different. As with the Wigner function, the marginals,
taken by summing over position or frequency variables,
give the positive intensity and spectrum of the field, i.e.
〈x|ρ|x〉 and 〈k|ρ|k〉.

The idea behind these weak-values tomographies is to
weakly couple the preselected state of interest (like the
transverse state) to another independent degree of free-
dom, a meter state (such as polarization), and then filter
the result by specific measurement outcomes (postselec-
tion) in a basis conjugate to the degree of freedom of the
preselected state (the Fourier plane of the preselected
plane). For example, in the measurement of (1), analysis
of the meter state gives the complex weak-value [15]

Aw =
〈k|x〉〈x|ρ|k〉
〈k|ρ|k〉

∼ S(x,k) (3)
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with measurable real and imaginary parts. This method
allows for direct measurement of the phase-space, remov-
ing the need for a computational inversion. Experimental
demonstrations of direct measurements of (1) were first
performed measuring transverse pure states [14, 22] and
later mixed (incoherent) states [21]. Weak-value tomogra-
phies have also been performed on polarization [23, 24]
and orbital angular momentum states [25]. Weak-value
direct measurements have also been used to find the
quantum process matrix of an arbitrary operation [26].

Direct tomography, while reducing computational
complexity, does not necessarily reduce the number of re-
quired measurements. Previous demonstrations required
scanning through all possible measurements, limiting
tests to low-dimensional systems. Here we circumvent
previous limitations by incorporating compressive sens-
ing (CS) [27–29], which allows us to reduce the resource
requirements, especially for high-dimensional states. CS
is a numerical method that reconstructs undersampled
signals after sampling in a compressive way. CS relies on
the assumption of sparsity or approximate sparsity, i.e.,
the signal of interest has few (or few significant) nonzero
components in a predefined basis. This assumption works
quite well for most signals, as signals of interest usually
have structure in some basis that set them apart from
random noise. CS has also shown promise in quantum
systems [30–32] and in the coupling interaction in weak-
value wavefront sensing [33, 34].

In this work, we improve upon previous tests by com-
pressively measuring high-dimensional classical antistan-
dard Dirac spaces. In CS terms, we are using many low-
dimensional single pixel cameras to recover the higher di-
mensional phase-space. Our method goes significantly be-
yond past incorporations of CS into weak-value measure-
ments [33, 34], in that it works in the more general case
of partially coherent light. We then modify this method
to measure the standard Dirac phase-space, allowing for
faster acquisition of even larger phase-spaces. With this
technique, we easily and efficiently measure phase-spaces
of over 1-billion dimensions. Additionally, we expand on
previous tests by using a strong polarization-position
coupling, which mitigates state-estimation errors [35].

II. THEORY

A. Imaging the Antistandard Dirac Space
Compressively

To introduce CS into the measurement of (1), we use
the experimental setup is shown in Fig. 1. The light
passes through an ~ cutout and propagates freely to a
polarizer to prepare the meter state. Since we are inter-
ested in the transverse distribution, we couple position
to polarization by using a spatial light modulator (SLM)
to rotate the polarization by an angle θ at certain pixels.
We apply M masks of N × N random binary patterns
fi(x), for i = 1, 2, ...,M , to the SLM, which couple ran-

FIG. 1: Experimental Setup: Light passes through an ~ paper
cutout before propagating 40cm to a horizontal polarizer and SLM.
To make the source partially coherent, we insert a rotating glass
diffuser in the focal plane of the beam expander. The SLM rotates the
polarization at randomly chosen pixels to couple position and
polarization. After passing through polarization projection optics, a
lens Fourier-transforms the light reflected off the SLM onto a
postselection camera. A separate camera acts as a normalizing bucket
detector on the reflected port of the beamsplitter in front of the SLM.

dom positions with polarization. As the measurement is
compressive, M << N2. The SLM’s operation is

Û(fi(x), θ) =

∫
dx
[
1σ(1− fi(x)) + fi(x)e−iσ·nθ

]
|x〉〈x|

(4)
where σ is the usual Pauli operator, 1σ is the Pauli iden-
tity, and n is the axis of rotation. The first term ensures
pixels where fi(x) = 0 stay horizontally polarized, while
the second term rotates the polarization of pixels where
fi(x) = 1. For the strongest possible coupling, we let
θ → π/2, so these pixels are rotated to vertical polariza-
tion. This operation is shown in Fig. 2. For simplicity, let

FIG. 2: Polarization Projections: a. Poincaré sphere showing the
nearly orthogonal polarizations that each pixel occupies as the light
leaves our SLM. b. Here we show an ~ pixelated into the two outgoing
polarizations.

the input state be a pure state |Ψ〉 = |ψ(x)〉|H〉. Apply-
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ing the operation in Eq. (4), the input state becomes

U(fi(x), θ)|Ψ〉 =

∫
dxψ(x) [(1− fi(x)) |H〉+ fi(x)|V 〉] |x〉.

(5)
Next, we postselect on different frequency components.

This postselection creates an interference between the
position and frequency projections of ρ that allows for
transverse phase-information retrieval. To postselect, a
lens Fourier-transforms the light reflected off of the SLM
onto a camera, which takes N ×N pictures for each cou-
pling mask on the SLM. The unnormalized state at each
camera pixel is

|ψps〉 ∼ ψ̃(k)|H〉−
∫

dxfi(x)ψ(x)e−ik·x(|H〉−|V 〉), (6)

where ψ̃(k) is the Fourier transform of ψ(x). Note that
the postselection is a pixel-wise operation, meaning that
there is a strong frequency projection measurement at
each pixel. Since the transverse state is coupled to polar-
ization, a polarization analysis (we record an image for
each mask of each polarization projection) determines
the real and imaginary parts of the transverse Dirac dis-
tribution.

For a pure state, the Dirac distribution (1), can be

written as S(x,k) ∼ ψ(x)ψ̃∗(k)e−ik·x where ψ∗ is the
complex conjugate of ψ. By performing the following po-
larization projections [35], we can measure the partially
compressed real and imaginary parts of the Dirac distri-
bution at each pixel (kx, ky),

yreal,i,k =

∫
dxfi(x)Re{S(x,k)} ∼ 〈σx + 2|V 〉〈V |〉ψps

yimag,i,k = −
∫

dxfi(x)Im{S(x,k)} ∼ 〈σy〉ψps
.

(7)
To more efficiently measure the non-Hermitian operator
σx + iσy, we reduced our number of measurements by
decomposing this into a complex sum of Hermitian oper-
ators as in [36]

σx + iσy =
4

3

2∑
q=0

e2πiq/3|sq〉〈sq| (8)

where

|sq〉 =
1√
2

(|H〉+ e−4πiq/3|V 〉). (9)

If we think of our four-dimensional Dirac phase-space
as a 2D space with indexed positions (x, y) as rows and
spatial frequencies (kx, ky) as columns, the combined im-
ages of the polarization projections for a single coupling
mask correspond to a single row. That is, we measure
an M × N2 compressed phase-space, where each of the
M rows corresponds to a coupling mask. Essentially in
this 2D reshaping picture, the phase-space is only com-
pressed in one dimension. Each column is then separately
reconstructed from the measurement matrix. Thus, re-
construction of the full phase-space comes from solving
many smaller CS problems.

B. Standard Dirac Phase-Space

To modify this experiment to measure (2), we insert a
lens after the object to focus the light onto the SLM. This
effectively reverses the domains of the previous test; the
spatial frequencies are coupled to polarization and the
postselection camera captures the transverse positions.
All of the previous analysis applies with the appropriate
changes. For example, we now write the coupling inter-
action of the SLM as

Û(fi(k), θ) =

∫
dk
[
1σ(1− fi(k)) + fi(k)e−iσ·nθ

]
|k〉〈k|.

(10)
The compressed real and imaginary components at each
camera pixel (x, y) then are

yreal,i,x =

∫
dkfi(k)Re{S(k,x)} ∼ 〈σx + 2|V 〉〈V |〉ψps

yimag,i,x = −
∫

dkfi(k)Im{S(k,x)} ∼ 〈σy〉ψps
.

(11)
While this is a simple experimental change, it offers

several practical advantages. First, we are now able to use
the high-resolution postselection camera to gather more
spatial dimensions. Since most practical applications do
not require such high-resolution spatial frequency infor-
mation, we can perform faster lower resolution CS scans
on the SLM (see below for data collection benefits). These
lower dimensional CS reconstructions also lower the com-
putational burden, while still acquiring a higher dimen-
sional phase-space faster than the previous method.

III. CS RECONSTRUCTIONS

We reconstructed the real and imaginary parts of the
Dirac phase-space separately, one component at a time.
For our CS solver, we use a total-variation-minimization
solver TVAL3 [37], which searches for solutions to the
problem

arg min
x

[
||Dx||1 +

µ

2
||Ax− y||22

]
(12)

where D is the discrete gradient across x and || ∗ ||p is
the Lp−norm. Variable A is a matrix containing our pro-
jectors, and variable y is a vector containing our mea-
surement results. By using this solver, we assume that
the total variation of each distribution is sparse across
the SLM. We make this assumption because TVAL3 has
been shown to work well in image processing; images are
often well-defined by their edges and an image’s gradi-
ent will emphasize edges. It is not unreasonable to guess
that it should work in a similar way here. Beyond this,
we do not make any assumptions about the sparsity of
the Dirac distribution and performed all reconstructions
in the pixel basis. Unfortunately, this algorithm did not
incorporate any of the physical constraints [20] on the
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Dirac distributions, which left unphysical artifacts in the
reconstructions.

Next, we performed a Bayesian shrinkage denois-
ing algorithm with soft thresholding [38] followed by a
low (1%) hard thresholding to remove low-level high-
frequency noise from the Dirac distribution. With TV
minimization identifying the significant signal compo-
nents and finding their quantity to be less than the num-
ber of measurements, we then further correct the phase-
space elements using a least squares fitting algorithm on
each reconstruction result that assumed Gaussian noise
in signal [39].

IV. EXPERIMENT

In our first experiment measuring the antistandard
Dirac space, our source is a helium-neon (HeNe) laser
with and without a rotating ground glass diffuser for
coherent and partially coherent illumination. We use
N = 128, so that the measured phase-space dimension-
ality is 268-million (i.e., 1284) and we use randomized
Sylvester-Hadamard patterns, which are composed of 1s
and -1s. To perform this operation, we split each pat-
tern into a projection with 1s and 0s, and subtract an
inverse pattern with the 0s and 1s switched. The cou-
pling interaction uses a Meadowlark Optics XY spatial
light modulator (512×512 pixels with a pixel pitch of
15µm, binned into 128 × 128 pixels). We calibrate our
system through a polarization tomography [11] so that
the unrotated state is |H〉, and the rotated state is as
close to orthogonal (θ ≈ .98π) as possible, such that we
can reasonably approximate it as |V 〉.

We Fourier-transform the light on the face of the SLM
using a 250mm lens onto a Thorlabs DCC1545M camera
(1280×1024 pixels with 5.2µm×5.2µm pixels we use the
center 512 × 512 pixel section binned into 128 × 128 su-
perpixels). Unfortunately, the light quickly saturates the
camera since it is in the focal plane. This means that we
have to attenuate the light and average several images
per patten in order to resolve the high frequency com-
ponents. For the coherent illumination, we average 16
images taken with 6ms integration times, while for the
partially coherent light, we average 64 of these images.
The pixels report 8-bit intensity values; to remove back-
ground noise, we threshold away any pixel value less than
1-bit. All images are normalized for power fluctuations by
using the bucket detector shown in Fig. 1.

The marginals of the measured distributions are dis-
played in Fig. 3; these should be the probability distri-
butions of the light on the SLM and camera. To remove
any remaining unphysical negative and imaginary values,
we show the real part with negative values thresholded to
zero. As expected after the long free space propagation,
we see blurry images of the ~ and their diffraction pat-
terns. In the coherent source marginals, we can clearly
see fringes on the ~ and a tight diffraction profile. For
the partially coherent light, the ~ is simply blurred and

the diffraction pattern is quite broad. We perform this
measurement using a 20% sampling rate. That is, the
measurement uses approximately 3300 out of 1282 pos-
sible coupling projections, recording an image for each
pattern and polarization projection.
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FIG. 3: Marginals of the measured antistandard Dirac
distributions: The top row shows the results from the coherent
source; the bottom row contains the marginals from the partially
coherent source. All probability distributions have been individually
normalized to the same scale for visual clarity. a and c. The position
marginals corresponding to the intensities on the SLM. b. and d. The
frequency marginals, here in units k/2π, showing the diffraction
patterns on the camera. The insets show closer views of the center
64× 64 pixels of the diffraction patterns.

To test the reconstruction’s accuracy, we numerically
propagate the reconstructions 40cm back to the ~ cutout
to recover the light at the object. This is done by solving
the four-dimensional Bayesian propagation integral [20]

S(x′,k′) =

∫
dx dkK(x,k;x′,k′)S(x;k) (13)

where K(x,k;x′,k′) is the Dirac phase-space propagator.
Since the propagation is through free space, the spatial
frequency integrals vanish leaving an integral that can
be easily evaluated with standard computational Fourier
methods, independent of the spatial coherence of the
source. After propagating the distributions back to the
object plane, we find sharp object images shown in Fig 4.
The position marginals of the propagated distributions
are in excellent agreement with an image taken of the
cutout. The partially coherent results contain higher lev-
els of background noise, but this is most likely due to
the weaker signal after the diffuser. Again we remove un-
physical values by showing the real positive part of the
marginals.

To measure the standard Dirac phase-space, we use the
same configuration and data processing steps as above
except with a 250mm focal length lens inserted before
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FIG. 4: Comparison of numerical propagation with actual image: Plots have been normalized to be shown on the same scale. a. The
position marginal of the propagated Dirac distributions showing the intensities as functions of distance from the SLM (0cm) to the object (40cm).
The upper row shows the partially coherent light, while the lower row shows the coherent light. b. Actual image of the object. The propagation
data is in good agreement with the image for both sources.
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FIG. 5: Measurement of the standard ordered Dirac distribution: Plots have been normalized to be shown on the same scale. a. The
frequency marginal of the Dirac distributions showing the intensities across the SLM. The circular outline is due to an iris blocking the light from
the highly reflective edges of the SLM. b. Spatial marginal corresponding to the extremely out-of-focus image on the camera. c. The spatial
marginal after propagation, clearly showing the well-defined object.

SLM such that the SLM is in the back focal plane. We
switch our simple cutout for a DLP Lightcrafter 3000
digital micro-mirror device (DMD) displaying a crossed
3-slit pattern. In this configuration, an image of the front
focal plane of the new lens now appears on the camera
as it is a 4f imaging system. We displace the DMD 10cm
from this front focal plane, severely blurring the image
of the object on the camera. We broadly illuminate this
object with partially coherent radiation from a red LED,
frequency filtered with a 633nm line filter to work with
the SLM. An iris was placed just before the SLM to block
the light from reflecting off the metal edges, which would
only add noise to the signal.

We place 64 × 64 coupling patterns on the SLM, and
take 512× 512 images on the postselection camera. Thus
we acquire a 1.07-billion-dimensional phase-space (5122

spatial dimensions and 642 spatial frequencies). Our mea-
sured and propagated results are shown in Fig. 5 for a
20% sample rate. The measured position marginal (Fig.

5b.) corresponding to the light on the camera barely has
any recognizable structure to it, and yet clearly after
propagation (Fig. 5c.) we can see a sharp 3-slit object.
This altered setup has several practical benefits that shift
the required resources from experiment to computation.
First since the camera is now in an image plane of the
system, we avoid the saturation effects affecting the pre-
vious scheme. Thus we can take single images, removing
the need for averaging. For this test, we use a 25ms in-
tegration time (due to the dimness of the light on the
camera).

Since we are reconstructing the Dirac phase-space’s
real and imaginary part at each camera pixel separately,
theoretically we require 2N2 reconstructions. However,
when measuring the antistandard ordered Dirac matrix,
the measurement matrices y are quite sparse as many of
the spatial frequencies are zeros, so no reconstruction is
needed for these components since there is no signal. This
is confirmed in Fig. 3b and 3d. In total, we only have to
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perform 4544 reconstructions for the coherent illumina-
tion and 2871 reconstructions for the partially coherent
light of 128×128 pixel images. We would normally expect
that the partially coherent light requires more reconstruc-
tions than the coherent light since its measurement vector
should have more frequency components. However, it is
likely that the weaker high-frequency components are too
dim for the camera to see above the background noise.
This is not quite the case in measuring the standard or-
dered Dirac distribution, which requires more than 200K
reconstructions for each the real and imaginary due to
the broad image distribution on the camera. However,
these are smaller 64 × 64 reconstructions which can be
done quite quickly on modern computers. Furthermore,
since each reconstruction is independent, parallelized op-
erations are used to significantly reduce processing time.

V. DISCUSSION

Our new method measuring the standard Dirac dis-
tribution experiment significantly outperforms the com-
pressed antistandard test. For the lower-dimensional
phase-space antistandard test, the total time spent col-
lecting light is 1.5 hours for the coherent illumination,
and 5.5 hours of signal collection for partially coherent.
Whereas in the high-resoultion standard Dirac test, it
is only 2.8 minutes. The reduction in collection times is
due to the standard Dirac experiment avoiding the need
for image averaging (see Methods). Instead, it shifts the
important high-resolution spatial information from the
slower SLM CS acquisition to the faster camera. The ac-
tual experiment time is much longer than the integra-
tion times, but fortunately this is almost entirely due
to overhead from equipment limitations. For example,
most of this extra time came from the cameras not hav-
ing internal storage and requiring each image acquisition
be transferred to a computer. Additionally, our SLM re-
quired 100ms to stabilize for each coupling pattern. With
additional resources and better equipment this overhead
time could be virtually eliminated and could even reduce
the time spent collecting light. By performing the po-
larization projections and 1s and -1s CS projections in
parallel, we would reduce the light collection time by a
factor of 8, meaning that this measurement could be done
in seconds.

Also, by using a postselection camera combined with
compressive coupling, our required measurements only
scale as the resolution of our SLM N2, while measur-
ing an N4 dimensional phase space. Thus our technique
allows rapid acquisition of these high dimensional phase-
spaces. It also handles the high-dimensional phase-space
data in a computationally efficient way. Reconstructions
and least square fittings are performed component-wise
independently, limiting the number of operations neces-
sary on the full distribution.

Our demonstration here uses relatively simple scenes,
and our reconstructions only assume that total variation

of the beam across the SLM pixels would be sparse. How-
ever, total variation has been shown to work well for
natural images, and in practice one would usually know
something about the signal of interest allowing them to
choose a basis for reconstruction where the signal should
have a sparse representation. For example, natural im-
ages are known to also have sparse representations in
the discrete cosine and wavelet bases. Also as previously
stated, the TVAL3 solver does not incorporate any phys-
ical constraints[20] on the reconstructions, and so exper-
imental noise left unphysical artifacts in the phase-space.
The denoising and least squares steps fix some of the val-
ues, but the result is still slightly unphysical. This results
in marginals having complex and negative values when
they should be entirely positive since they are probabili-
ties. From a practical point of view, this does not strongly
affect the propagation and refocusing of the light, and by
viewing the real positive part of the marginals, we have
good agreement in the data shown in Fig 4 and Fig 5.

VI. CONCLUSION

We have shown that we can efficiently and rapidly ac-
quire high-dimensional optical phase-spaces for light of
any spatial coherence. With this information, we can
numerically propagate the light to any plane for lens-
less imaging. This goes significantly further than previ-
ous demonstrations that only worked in one dimension
and required scanning at every coupling pixel [21]. Un-
like other phase-space techniques, we did not need to use
lenslet arrays or moving components, and we were able
to directly measure the phase-space elements. Another
benefit to this method is that the measured Dirac distri-
bution scales as the product of the number of pixels in
the coupling interaction with the number of pixels in the
postselection meaning that we can very easily measure
extremely high-dimensional phase-spaces. In the future,
customized algorithms incorporating physical constraints
could give better reconstructions and further reduce the
number of measurements and the numerical resources re-
quired.

VII. APPENDIX: PROPAGATION

As noted in [15, 20], the Dirac distribution can
be propagated in a Bayesian manner. Therefore, us-
ing the definition of the Dirac distribution Eq.(1), for
S(x,k) we can find the Dirac representation in the plane
(x′, y′), S(x′,k′), through

S(x′,k′) =

∫
dx dk 〈k′|x′〉〈x′|x〉〈x|ρ|k〉〈k|k′〉

=

∫
dx dk

〈k′|x′〉〈x′|x〉〈k|k′〉
〈k|x〉

S(x;k)

(14)

where the propagator K(x,k;x′k′) of Eq. (13) is imme-
diately identified. For free space propagation over a dis-
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tance z, the terms in K simplify to

〈k′|x′〉
〈k|x〉

= ei(k·x−k
′·x′)

〈k|k′〉 = e−iz
√
k2−k2x−k2yδ(k− k′)

〈x′|x〉 =
1

(2π)2

∫
dk′′eik

′′·(x−x′)eiz
√
k2−k′′2x −k′′2y

(15)

where the middle term shows that through free-space
propagation, momentum is conserved. Putting this all to-
gether and rearranging terms results in the propagation
equation

S(x,k) =
1

(2π)2
e−iz
√
k2−k2x−k2ye−ik·x F−1

k′′→x

[
eiz
√
k2−k′′2x −k′′2y Fx′→k′′

[
eik·x

′
S(x′,k)

]]
,

(16)

where F (F−1) indicates a (inverse) Fourier transform.
This equation is very similar to Fourier optics field propa-
gation equations and can be easily evaluated with numer-
ical Fourier methods. However, (16) works for any field
regardless of coherence. Also note that operationally for
a discrete phase-space, if we reshape it into a 2D distri-
bution (x,k), we are propagating each spatial frequency
column separately.

To propagate (2), we could follow a similar procedure
as above, first propagating the distribution from the SLM
to the lens, through the lens, and then to the object.
However, we simply make the change ρ → UρU†, such

that

U = exp (if
k2
x + k2

y

2k
) exp (−ik x

2 + y2

2f
) exp (iz

k2
x + k2

y

2k
),

(17)
where z is the distance from the object to the lens and f is
the lens focal length. We then insert this into (2). Unlike
the propagation above the spatial frequency integrals do
not vanish, but standard Fourier propagation methods
are still be used to find the distribution at the object.
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