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Particle emission from open quantum systems

Kevin A. Fischer,∗ Rahul Trivedi, and Daniil Lukin
E. L. Ginzton Laboratory, Stanford University, Stanford CA 94305, USA

In this work, we discuss connections between different theoretical physics communities and their
works, all related to systems that act as sources of particles such as photons, phonons, or electrons.
Our interest is to understand how a low-dimensional quantum system driven by coherent fields,
e.g. a two-level system, Jaynes-Cummings system, or photon pair source driven by a laser pulse,
emits photons into a waveguide. Of particular relevance to solid-state sources is that we provide a
way to include dissipation into the formalism for temporal-mode quantum optics. We will discuss
the connections between temporal-mode quantum optics, scattering matrices, quantum stochastic
calculus, continuous matrix product states and operators, and very traditional quantum optical
concepts such as the Mandel photon counting formula and the Lindblad form of the quantum-
optical master equation. We close with an example of how our formalism relates to single-photon
sources with dephasing.

I. INTRODUCTION

An open-quantum system consists of a local system,
described by a low-dimensional (0-d) Hamiltonian H act-
ing on the Hilbert space Hsys, coupled to one or more
reservoirs or baths of modes in the Hilbert space Hbath

via a spatially local coupling. In this work, we specifically
consider the spatially local coupling in the Markovian or
white-noise limit [1], which allows the baths to be de-
composed into a set of quantum modes that have only a
single continuous degree of freedom and hence are called
1-d fields (although the underlying mode function may
have additional spatial dependence). The field operators
are usually bosonic to represent photons or phonons, but
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FIG. 1. The general problem we solve in this manuscript is to
compute the field scattered into a unidrectional (chiral) 1-d
field (waveguide) from an energy-nonconserving 0-d Hamil-
tonian. This class of Hamiltonian is often used to represent
coherent laser pulses scattering off quantum-optical systems
such as a two-level system, Jaynes-Cummings system, or en-
tangled photon pair source. First, we discuss just a single
waveguide (a) and later extend to the same system coupled
to a bath of modes that induce dissipation (b).
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occasionally emission into fermionic reservoirs is also con-
sidered. In the main text we will discuss the case with
bosonic reservoirs, however, it is well known that the
local system interacts bosonic and fermionic reservoirs
identically. The same similarity is also true for the new
formalism presented in this work (see Appendix A).

In these approximations, the open-quantum system
may be fully described by just the Hamiltonian of the
local system H and a tuple of operator-rate products
L from the local system that couple to the reservoir
fields [2]. For our specific case, we consider the local
system Hamiltonian to be time-varying H → H(t) so
that it injects energy into a reservoir of interest, which
we shall henceforth refer to as the waveguide. Such
a situation corresponds physically to modeling a semi-
classical coherent field driving the local system and caus-
ing it to scatter photons into the waveguide [3–8]. This
is extremely important for modeling sources of non-
classical light [9–12], and it was recently understood
that quantum-optical systems can be used as auxiliary
systems to generate one-dimensional continuous matrix
product states (CMPS) [13–17]. Hence, we take the state
of the local system plus waveguide |Ψ(t)〉 ∈ Hsys ⊗ Hwg

at time t = 0 to be |Ψ(0)〉 = |ψ〉 ⊗ |0〉 ≡ |ψ,0〉, i.e. with
the waveguide in its vacuum state.

Before beginning, we briefly outline the paper picto-
rially. For the system starting in an orthonormal basis
state of the local system |e′〉 and the waveguide in vac-
uum (|Ψ(0)〉 = |e′,0〉), Fig. 2 schematically shows how
each of the objects and concepts we address are related
to one another. Our main contributions related to arrows
on this diagram are to:

• Relate CMPS to a boundary theory we develop
from quantum stochastic calculus.

• Show how the boundary theory can be used to ob-
tain the scattering matrix of particle emission Σ.

• Use the boundary theory to compute the waveguide
density matrix by tracing out the system state, and
in the presence of other loss channels called the
bath (Fig. 1b) tracing them out as well.
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FIG. 2. General relationship between concepts in the theory of particle emission into a waveguide. Starting from the initial
state of |e′,0〉, which represents the system beginning in a local eigenstate |e′〉 and the waveguide in vacuum, the arrows indicate
increased embedding or calculation based on the previous object. Although this diagram is drawn for the case of just a single
waveguide, the relationships can easily be extended to include the additional loss channels of the bath (like in Fig. 1b) by
changing trsys → trsystrbath and trwg → trwgtrbath (the Kraus sum technique is also required). The dotted lines indicate that
two concepts are connected via specific types of techniques discussed in the paper. Blue color indicates novel contributions of
this work.

II. EMISSION INTO A SINGLE WAVEGUIDE

The total Hamiltonian can be written in terms of the
local system Hamiltonian, the waveguide Hamiltonian,
and their interaction: Htot = H(t) ⊗ 1 + 1 ⊗ Hwg + V
(and is pictorially shown in Fig. 1a). In an interaction
picture with respect to the waveguide evolution

H̃tot(t) = eiHwgtHtote
−iHwgt

= H(t)⊗ 1+ i
(
L⊗ b†(t)− L† ⊗ b(t)

)
, (1)

where L is the product of a system operator σ and a rate√
γ. The operator b(t) is the temporal mode operator for

the waveguide, which obeys [b(t), b†(s)] = δ(t − s) with
b(t) |0〉 = 0, and hence creates a delta-normalized excita-
tion of the waveguide in time. In terms of the frequency-
mode annihilation operator b(ω) that creates a photon at

a particular frequency, b(t) =
∫

dω b(ω)e−iωt/
√

2π.

For a short time increment dt, the evolution operator
of the interaction-picture wavefunction can be expanded
in a Born approximation. Keeping terms to only O(dt)

in the system and O(
√

dt) in the waveguide gives rise
to a quantum stochastic differential equation (QSDE)—
these QSDE’s allow for overcoming the singularities in
the Schrödinger equation from the temporal mode op-
erators [1, 18–22]. Specifically, the Itō increment for the
unitary propagator that describes evolution of |Ψ(t)〉 over

the interval [t+ dt) is given by (with ~ = 1)

dU(t) = U(t+ dt)− U(t) (2a)

=
{
− iHeff(t)⊗ 1 dt

+L⊗ dB†(t)−L† ⊗ dB(t)
}
U(t), (2b)

and hence the evolution can always be decomposed as

U(t) ≡ U(t, 0) (3a)

= U(t, sn) · · ·U(s2, s1)U(s1, 0) (3b)

for any t > sn > · · · > s1 > 0. The non-Hermitian ef-
fective ‘Hamiltonian’ is Heff(t) = H(t) − i 1

2L
†L and the

time-integrated quantity B(t) =
∫ t

0
ds b(s) with dB(t) =

B(t + dt)− B(t) is called the quantum noise or field in-
crement. Hence,

lim
dt→0

dB(t)

dt
= b(t), (4)

the increments commute with each other for non-equal
times, and dB(t) |0〉 = 0. In the derivation of Eq. 2b
and later to evaluate products of operators (involving
U(t) and) acting on vacuum, the zero-temperature Itō
algebra is used:

× dB(t) dB†(t) dt
dB(t) 0 dt 0
dB†(t) 0 0 0

dt 0 0 0
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The formal solution to the evolution operator is given
by integrating Eq. 2b

U(t) = T e
∫ t
0
{−iHeff(s)⊗1 ds+L⊗dB†(s)−L†⊗dB(s)}, (5)

where T is the chronological operator that time-orders
the infinitesimal products of Eq. 5. Then, the wavefunc-
tion of the total waveguide and system at time t is given
by

|Ψ(t)〉 = U(t) |ψ,0〉
= (1⊗ 1)U(t) |ψ,0〉

=
∑
e

∫
dT |e,T 〉 〈e,T |U(t) |ψ,0〉 (6)

where |e,T 〉 ≡ |e〉 ⊗ |T 〉 given {|e〉} and {|T 〉} form
orthonormal bases for states in Hsys and Hwg, respec-
tively. To be concrete about the waveguide states, T =
{t1, . . . , tn} is a time-ordered N [T ] = n element vector
that parameterizes the state |T 〉 = b†(t1) · · · b†(tn) |0〉
and 〈T ′|T 〉 = δ(T ′ − T ) [4, 23]. Hence,

∫
dT ≡∑∞

n=0

∫
0<t1<···<tn<t dt1 · · · dtn.

A. Connection to scattering theory and CMPS

We briefly relate this expansion to two important for-
malisms. First, when the Hamiltonian is asymptoti-
cally time independent and has at least one well-defined
ground state, then the propagator becomes the scattering
matrix Σ [4] and its expansion in terms of the temporal
modes is given by

〈e,T |Σ |ψ,0〉 = lim
t→∞

〈e,T |U(t) |ψ,0〉 . (7)

Let tc be the time when the Hamiltonian conserves
energy again, then these scattering elements may be

nonzero if limt→∞ T e−i
∫ t
tc

dsHeff(s) |e〉 has finite norm
[24]. Second, when U(t) operates on vacuum, the result

can be simplified to

|Ψ(t)〉 = U(t) |0〉

= T e
∫ t
0
{−iHeff(s)⊗1 ds+L⊗dB†(s)} |0〉 (8a)

= T e
∫ t
0

ds{−iHeff(s)⊗1+L⊗b†(s)} |0〉 . (8b)

This is done by first making use of the fact that [1 ⊗
dB(t), U(t)] = 0 with dB(t) |0〉 = 0 to remove the field
annihilation operators [1]. The equivalence of Eqs. 8a
and 8b can be seen by expanding each exponential oper-
ator with a Dyson series and making use of the definition
for B(t). If R = |ei〉 〈ej |, then a one-dimensional con-
tinuous matrix product state [25–27] can be constructed
from

|ΨCMPS〉 = trsys [RU(t)] |0〉 (9)

= trsys

[
R T e

∫ t
0

ds{−iHeff(s)⊗1+L⊗b†(s)}
]
|0〉 .

We note this is not the most general 1-d CMPS—we
would need to allow the coupling operator to vary in
time L→ L(t). These states were originally constructed
by putting the continuum of modes from a Hamiltonian
like Eq. 1 on a lattice, and then taking the thermody-
namic limit where the lattice spacing vanishes [28]. This
turns out to be mathematically equivalent to the coarse-
graining-in-time action of the quantum stochastic calcu-
lus we use here.

B. Boundary theory

Evaluating the propagator has previously been reduced
to calculating expectations of system operators, through
various different means (e.g. [4–6, 21, 24, 25, 29, 30]. In
field theory, this result is referred to as the holographic
property of CMPS [28] and in quantum optics language,
we call this a result of the boundary condition from input-
output theory [1]. These formulations have been cov-
ered extensively, and we will arrive at something like the
CMPS or scattering matrix result but using the language
of quantum stochastic differential equations.

Our next step in reducing the complexity of this prob-
lem is to turn the expansion of U(t) into vacuum expec-
tation values [4]. To do this, we need the commutation
[1 ⊗ dB(s),dU(s)] = (L⊗ 1) dt U(s) and the limit from
Eq. 4, which together give us the relation

[1⊗ b(t1), U(s, 0)] = lim
dt→0

[1⊗ dB(t1) /dt, U(s, t1 + dt) (dU(t1) +U(t1, 0))]

= lim
dt→0

U(s, t1 + dt) [1⊗ dB(t1),dU(t1)] /dt

= U(s, t1) (L⊗ 1)U(t1, 0) (10)

if s > t1 > 0. Using this commutation and the fact
that b(t) |0〉 = 0, we remove the free field annihilation

operators from the expectation

〈e,T |U(t) |ψ,0〉 =

〈e,0|U(t, tn) (L⊗ 1)U(tn, tn−1) (L⊗ 1) · · ·
(L⊗ 1)U(t1, 0) |ψ,0〉 . (11)
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We note this expression is written in the temporally fac-
torized form

〈0|A(t, s+ dt)U(s+ dt, s)C(s, 0) |0〉 (12)

for arbitrary s. The field increments from U(s + dt, s)
commute towards the vacuum states and annihilate,
given that [dB(s), C(s, 0)] = 0 and [dB†(s), A(t, s +
dt)] = 0. Hence, in the vacuum expectation the unitary
evolution operators cannot create or annihilate particles
and we make the replacement dU(s) → −iHeff(s) ds⊗1
for all s. Then we define

V (t1, t0) = 〈0|U(t1, t0) |0〉

= T exp

[
−i

∫ t1

t0

dsHeff(s)

]
(13)

and write the expectation value in terms of only system
operators

〈e,T |U(t) |ψ,0〉 = (14)

〈e|V (t, tn)LV (tn, tn−1)L · · ·LV (t1, 0) |ψ〉 .
This expectation has a very intuitive form, where the
non-unitary propagators V (·) correspond to evolution
conditioned on no particle emission into the field, and the
L operators scatter a particle into the waveguide. (This
result is similar as we derived in Refs. [4, 24]—there we
also noted that the pure-state calculation of Eq. 14 need
only be performed until the time tc, when energy is again
conserved, and projected onto the local system’s ground
states.)

We can also write the waveguide state’s U(·) evolu-
tion as a density matrix χ(t) = trsys [|Ψ(t)〉 〈Ψ(t)|], with
χ(0) = |0〉 〈0|. This calculation is a bit unusual: rather
than tracing over the waveguide, it is much more stan-
dard to trace out the system and obtain a quantum-
optical master equation (Sec. II C). Expanding this den-
sity matrix in the temporal mode basis 〈T ′|χ(t)|T 〉 =
Tr [|T 〉 〈T ′|Ψ(t)〉 〈Ψ(t)|] and utilizing Eq. 6 and Eq. 14
twice (once for the bra 〈Ψ(t)| = 〈Ψ(0)|U†(t) and once
for the ket |Ψ(t)〉 = U(t) |Ψ(0)〉), yields

〈T ′|χ(t)|T 〉 = (15)

trsys

[
V(t, τ̃R)SQ[τ̃R]V(τ̃R, τ̃R−1)SQ[τ̃R−1]

· · · SQ[τ̃1]V(τ̃1, 0) |ψ〉 〈ψ|
]
,

where we define a chronologically sorted list of times
{τ̃1, . . . , τ̃R} = sort{T ′ + T } and Q[τ̃ ] ∈ {0, 1} de-
pending on whether the time came from T ′ or T . We
also use a script letter to mean a superoperator, where
V(t, 0)χ ≡ V (t, 0)χV (0, t), S0χ = Lχ, and S1χ = χL†.
As a reminder, Eq. 15 describes the field state but is
written in terms of system superoperators only. Such a
density matrix has been coined both a matrix product
operator [23, 31] or superoperator state [32].

C. Master equation

On the other hand, the quantum-optical master equa-
tion for the reduced dynamics of the system is obtained

by applying unitary evolution and tracing out the waveg-
uide degrees of freedom [1, 18, 19], often using the Kraus
sum operator technique

ρ(t) = trwg

[
|Ψ(t)〉 〈Ψ(t)|

]
(16a)

= trwg

[
U(t, 0){|ψ〉 〈ψ| ⊗ |0〉 〈0|}

]
. (16b)

Here, U(t, 0)ρ ≡ U(t, 0)ρU(0, t) is the unitary evolution
superoperator. Further, because the system-waveguide
coupling is Markovian Eq. 16 can always be written as

ρ(t1) = trwg

[
U(t1, t0){ρ(t0)⊗ |0〉 〈0|}

]
, (17)

or similarly in the form of a Liouville equation ρ̇(t) =
L(t)ρ(t). Here, the Liovillian L(·) superoperator (or
transfer matrix T(·) in CMPS papers) is defined by

L(t)ρ = −i[H(t), ρ] +
{
− 1

2L
†L, ρ

}
+ LρL† (18a)

= −i[Heff(t), ρ] + J [L]ρ (18b)

where J [L]ρ = LρL† = S0S1ρ is the recycling or emis-
sion superoperator. We formally will express such a time
evolution in terms of the superoperator M(·) as

ρ(t1) =M(t1, t0)ρ(t0) (19a)

= T exp

[∫ t1

t0

dsL(s)

]
ρ(t0). (19b)

III. ADDITION OF LOSS CHANNELS

Our main contribution in this work is to formalize the
effects of loss into other channels, and on how it causes
the waveguide to enter a mixed state (shown pictorially in
Fig. 1b). Suppose L0 represents coupling to the waveg-
uide, whose state we want to keep track of, and the oper-
ators L1, · · · , Lj represent coupling to other loss channels
or the bath we will trace over. Then,

dU(t) =
{
− iHeff(t)⊗ 1 dt (20)

+
∑
k Lk ⊗ dB†k(t)−L†k ⊗ dBk(t)

}
U(t)

where the field increments from separate channels triv-
ially commute and now

Heff(t) = H(t)− i
∑
k

1

2
L†kLk. (21)

A. Waveguide field density operator

Here, we need to use a density operator to keep track
of the waveguide state

χ(t) = trsystrbath

[
|Ψ(t)〉 〈Ψ(t)|

]
(22)

= trsystrbath

[
U(t, 0){|ψ〉 〈ψ| ⊗ |0〉 〈0|wg |0〉 〈0|bath}

]
.

Again, projecting χ(t) onto the temporal mode basis like
in Eq. 15
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〈T ′|χ(t)|T 〉 = (23)

trsystrbath

[
V(t, τ̃R)

(
SQ[τ̃R] ⊗ 1bath

)
V(τ̃R, τ̃R−1)

(
SQ[τ̃R−1] ⊗ 1bath

)
· · ·
(
SQ[τ̃1] ⊗ 1bath

)
V(τ̃1, 0){|ψ〉 〈ψ| ⊗ |0〉 〈0|bath}

]

and noting S0χ = L0χ and S1χ = χL†0, but now with
V (t1, t0) = 〈0|U(t1, t0) |0〉wg or

V (t1, t0) = T exp

[∫ t1

t0

{
− iHeff(s)⊗ 1bath ds (24)

+
∑
k>0

Lk ⊗ dB†k(t)
}]
.

Taking the trace over the bath state, which can easily be
done according to the standard rules of quantum stochas-
tic calculus,

〈T ′|χ(t)|T 〉 = (25)

trsys

[
K(t, τ̃R)SQ[τ̃R]K(τ̃R, τ̃R−1)SQ[τ̃R−1]

· · · SQ[τ̃1]K(τ̃1, 0) |ψ〉 〈ψ|
]
.

Here,

K(t1, t0) = trbath

[
V(t1, t0){|ψ〉 〈ψ| ⊗ |0〉 〈0|bath}

]
= T exp

[∫ t1

t0

ds
{
L(s)− J [L0]

}]
(26)

which can be thought of as an unnormalized map that
evolves the density matrix conditional on no photon emis-
sions into the 0-th reservoir and

L(t)ρ = −i[H(t), ρ] +
∑
k

{
− 1

2L
†
kLk, ρ

}
+ LkρL

†
k

= −i[Heff(t), ρ] +
∑
k

J [Lk]ρ (27)

is the new Liouvillian including all L0, L1, . . . , Lj . This
new L(·) with inclusion of the bath is now the generator
of the map M(·). It is fairly trivial to extend this work
to cases where the bath is in a thermal state, by using
a different set of Itō algebra [1]—we simply opted for a
more economical exposition here. We now have access to
the entire state of the waveguide: we will later calculate
quantities such as the trace purity of the emitted states,
which is of interest for few-photon sources.

B. Particle counting formula

If T ′ = T , then 〈T |χ(t)|T 〉 gives precisely the Mandel
counting formula [20, 33] for the probability density of n

particle emissions to occur at the times t1, . . . , tn within
the interval [0, t], i.e.

p(t1, . . . , tn; [0, t]) = 〈T |χ(t)|T 〉 (28)

or equivalently

p(T ; [0, t]) = trsys

[
K(t, tn)J [L0]K(tn, tn−1)J [L0] · · ·

J [L0]K(t1, 0) |ψ〉 〈ψ|
]
.

(29)
The photocount distribution, i.e. the probability that n
particles are emitted is given by

Pn =

∫
N [T ]=n

dT p(T ; [0, t]). (30)

C. Correlations between field operators

While it is very useful to compute the precise field
state for understanding how a system emits light into the
waveguide, often the only measurable information about
the state comes from its normally- and time-ordered cor-
relation functions

〈b†(t1) · · · b†(tn)b(t′n′) · · · b(t′1)〉 . (31)

In quantum optics, these correlation functions are almost
always computed by using the boundary condition from
input-output theory to relate the field correlations to cor-
relations between system operators [1]. Here, we use our
quantum stochastic techniques.

Consider the (first-order coherence or) field-field cor-
relator

G(1)(t1, t
′
1) ≡ 〈b†(t1)b(t′1)〉 (32a)

= Tr
[
b†(t1)b(t′1) |Ψ(t)〉 〈Ψ(t)|

]
(32b)

= Tr
[
b(t′1) |Ψ(t)〉 〈Ψ(t)| b†(t1)

]
. (32c)

Equations 32a and 32b are simply definitions, while Eq.
32c is arrived at via the cyclic property of the trace. For
this correlation to be nonzero, t > t1, t

′
1. Considering the

specific case where t > t1 > t′1

G(1)(t1, t
′
1) = trsystrbath

[
U(t, t1) (S1 ⊗ 1)U(t1, t

′
1) (S0 ⊗ 1)U(t′1, 0){|ψ〉 〈ψ| ⊗ |0〉 〈0|bath}

]
= trsystrbath

[
(S1 ⊗ 1)U(t1, t

′
1) (S0 ⊗ 1)U(t′1, 0){|ψ〉 〈ψ| ⊗ |0〉 〈0|bath}

]
= trsys

[
S1M(t1, t

′
1)S0M(t′1, 0) |ψ〉 〈ψ|

]
. (33)
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FIG. 3. Examples of local quantum systems as particle sources, with their (L, H) tuples, corresponding non-Hermitian effective
Hamiltonians, and relevant propagators for photon emission. (a) Two-level system, driven by a laser pulse. Because there is
no dissipation, the scattered photonic state can be written and solved either as a pure-state |Ψ〉 or as a density matrix χ. (b)
Two-level system dispersively coupled to a bath, causing dephasing, and driven by a laser pulse. (c) Three-level cascade, driven
by a laser pulse, where only emission from the transition |i〉 → |g〉 is of interest. Due to the dissipation for (b) and (c), the
photonic state can only be a density matrix χ. All laser pulses are resonant with the |g〉 ↔ |e〉 transitions in (a)-(c).

(For the case where t1 < t′1, consider that G(1)(t1, t
′
1) is

conjugate symmetric with respect to exchanging times.)
The first step makes use of exactly the same commutation
techniques as in Eqs. 15 and 23. The second step is made
by noting that unitary evolution preserves the trace of the
density matrix so we replace U(t, t1)→ 1⊗ 1. The final
state is an example application of the so-called quantum
regression theorem, whereM(·) is again a map from the
generator L(·) including bath dissipation.

From this expression, it is clear that states with one
particle or more all contribute to the first-order coher-
ence. If the number of particles emitted is small, however,
then M(·) ≈ K(·) and the first-order coherence roughly
gives the density matrix for a single-particle state in the
waveguide G(1)(t1, t

′
1) ≈ 〈t′1|χ(t)|t1〉. Higher-order coher-

ences such as the (second-order coherence or) intensity-
intensity correlator can similarly be expressed in terms

of system operators (e.g. take t > t2 > t1)

G(2)(t1, t2) = 〈b†(t1)b†(t2)b(t2)b(t1)〉 (34)

= trsys

[
J [L0]M(t2, t1)J [L0]M(t1, 0) |ψ〉 〈ψ|

]
.

IV. EXAMPLES OF LOCAL QUANTUM
SYSTEMS AS PARTICLE SOURCES

In the previous sections, we overviewed mathematical
methods for describing the scattered particle field from
a local quantum system. For this section, we provide
explicit examples of local systems that emit particles,
and in particular show how a few common single-photon
sources map onto the mathematics described in this pa-
per. The streams of isolated photons produced by these
sources are of interest as inputs to optical networks for
quantum information processing [9, 10, 12, 34, 35].

As we mentioned in the introduction, the local sys-
tems we consider act as sources of particles because
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their Hamiltonians are time-dependent. In the case of
single-photon sources, the time-dependence typically re-
sults from a classical laser field driving the system. Be-
cause this work only considers open-quantum systems
with Markovian coupling to the bath, the laser field
can be included into the local system’s Hamiltonian via
a Mollow transformation. Then, H(t) = H0 + H1(t)
where H0 is the local system’s undriven Hamiltonian and
H1(t) = i

(
Lα∗(t)− L†α(t)

)
with α(t) as the amplitude

of the coherent state. The effective driving strength of
the laser on the system is typically written as the prod-
uct of a real-valued envelope centered around the carrier
frequency of the pulse and the coupling L, with

H1(t) = Ω(t)
(
ie−iωtσ† − ie−iωtσ

)
(35)

where σ again is a system coupling operator.
Figure 3 shows three such example systems, along with

their mathematical representations and mapping to the
relevant propagators for photon emission discussed in this
work. The first is the most basic system that can act as
a source of single photons: the quantum two-level system
driven by a short optical pulse from a laser (a) [4]. Two-
level systems based on InGaAs quantum dots are some of
the most promising single-photon sources, demonstrating
the lowest multi-photon error rates, highest efficiencies,
fastest generation speeds, and highest photon indistin-
guishabilities to date [10]. However, the physical imple-
mentations further suffer from various sources of dephas-
ing, due to interactions with phonon and electron reser-
voirs [9, 36–42]. The simplest model including dephas-
ing to the two-level system is shown in (b). Despite the
experimental success of the two-level system as a single-
photon source, the multi-photon error rates scale poorly
with the pulse length. Recent investigations have shown
that a 3-level photon cascade (c), where the photon is
collected from just one transition of the cascade, has sig-
nificantly lower multi-photon error rate [43–45].

Hence, we have established the connection for rela-
tively simple local quantum systems that emit particles
and our mathematics. Lastly, we note that our formal-
ism could be used to compute the scattered photonic
state emitted from a network of open-quantum systems.
In particular, by assigning each element in the network
a scattering matrix S that describes its connections to
other components, a single operator triple (S,L, H) can
be computed that gives a relationship between the input
and output channels of the network (SLH theory, explic-
itly named) [2, 46–50]. The final L and H can then be
used to construct the appropriate propagators V (·), V(·),
or K(·) for particle emission described in this work.

V. APPLICATION TO PHOTON
INDISTINGUISHABILITY

In Sec. III, we presented a new formalism for under-
standing how a local quantum system emits particles in
the presence of loss. We saw how our formalism allows
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FIG. 4. Photon emission from a two-level system with dephas-
ing under excitation by a short laser pulse (shown schemat-
ically in Fig. 3b). The laser pulse has a temporal width
τp = 0.1/γ0 that injects approximately one quanta of en-
ergy into the photon field, P1 = 0.95. Trace purity P of
single-photon component of emission (solid green curve) and
Hong-Ou-Mandel (HOM) interference parameter v (solid blue
curve) are shown.

for the calculation of the photonic density matrix χ(t)
in a waveguide, having traced over the unmonitored loss
channels causing dissipation. Now, we explore how hav-
ing access to elements of the photonic density matrix
directly provides new information compared with previ-
ous approaches of analyzing the indistinguishability of
single-photon sources.

For most applications requiring a source of single
photons, the output photonic state must be as pure
as possible (in the sense of trace purity). When the
single-photons are in identical quantum-mechanically
pure states, then they are indistinguishable and it is pos-
sible for two-photon interference to occur in a Hong-Ou-
Mandel experiment. From this experiment, one can ex-
tract a parameter called the visibility

v =

∫∫
dt1 dt′1

∣∣G(1) (t1, t
′
1)
∣∣2

〈n〉2
, (36)

where 〈n〉 =
∑
n nPn =

∫
dt1G

(1) (t1, t1) is the expected

number of photons in the emitted pulse and G(1) (t1, t
′
1)

is defined in Eq. 33 [45, 51, 52]. This parameter is tra-
ditionally used as a way to access the trace purity of the
photons emitted by a single-photon source, where for per-
fect single photons v = 1 while completely mixed single
photons yield v = 0.

By considering the quantum two-level system, coupled
to a reservoir causing dephasing and driven by a short
laser pulse (Fig. 3b), we now show where this metric can
fall short in estimating the trace purity. In particular,
consider the excitation scenario of a square laser pulse
where the length is one tenth of the spontaneous emission
lifetime. This corresponds to a fairly high probability of
single photon emission of P1 = 0.95. For zero dephasing,
the emitted state is entirely pure (in the trace sense)
since the evolution to compute the final state vector is
only the Schrödinger evolution, yet the visibility v < 1
(blue curve). The reason that v 6= 1 despite being a
quantum-mechanically pure state is that the first-order
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coherence, and hence the HOM visibility, is sensitive to
multiple photons not just a single one (as discussed in
Sec. III C).

Because our formalism for understanding particle emis-
sion provides direct access to the density matrix of the
photonic state χ(t), it is now possible to calculate the
trace purity of the emitted single-photon state

P =

∫∫
dt1 dt′1 |〈t′1|χ(t→∞)|t1〉|

2
/P 2

1 . (37)

The limit t → ∞ ensures the photons are completely
emitted, and the single-photon elements of the density
matrix are computed according to Eq. 25, i.e.

〈t′1|χ(t→∞)|t1〉 = (38)

trsys

[
K(∞, τ̃2)SQ[τ̃2]K(τ̃2, τ̃1)SQ[τ̃1]K(τ̃1, 0) |ψ〉 〈ψ|

]
.

Meanwhile, the single-photon emission probability is
computed from a special case of Eq. 30 with n = 1. The
results for P are shown as the green curve in Fig. 4, and
unlike the visibility, the trace purity of the single-photon
state is unity for zero dephasing as expected. Further,
as the dephasing rate increases, it can be seen that the
single-photon sate becomes increasingly more mixed due
to the drop in trace purity. Although the visibility fol-
lows the same basic trend as the trace purity they can be
seen to have different dependencies and have significant
disagreement.

From an experimental perspective, the significance
of this discussion is to understand that the Hong-Ou-
Mandel visibility is not identical to the trace purity (ex-
cept for an ideal single-photon source) and that the vis-
ibility parameter actually is dependent on photon re-
excitation just like the Hanbury-Brown and Twiss ex-
periment. From a theoretical perspective, we hope that
by providing a way to directly access the photonic den-
sity matrix, other metrics for quantifying single-photon
source indistinguishability can become practical. For ex-
ample, it has been suggested that the Frobenius distance
metric ||χsource−χtarget||2 might provide a better defini-
tion for indistinguishability [53].

VI. CONCLUSIONS

In summary, we have provided a complete frame-
work for understanding zero-dimensional Hamiltonians
as emitters of bosonic particles such as photons or
phonons. Of practical relevance is that our formula-
tion allows for the inclusion of dissipation into the par-
ticle emitters’ dynamics. Because dissipation is often
present in physical sources of particles it is important
to model correctly for applications in quantum informa-
tion processing. Although we only considered static de-
phasing, we believe our techniques are already applicable
to power-dependent dephasing [54] and that it might be
possible to extend them to a polaron theory [54–56] as
well. Finally, our formalism ties together nearly all as-
pects of Markovian open-quantum systems, and reveals

the connections between (0 + 1)-d field theories, contin-
uous matrix product states, and quantum stochastic cal-
culus.
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We thank Jelena Vučković and Shuo Sun for feedback
and discussions, and we gratefully acknowledge financial
support from the National Science Foundation (Division
of Materials Research Grant No. 1503759) and the Air
Force Office of Scientific Research (AFOSR) MURI Cen-
ter for Quantum Metaphotonics and Metamaterials. D.L.
acknowledges support from the Fong Stanford Graduate
Fellowship and the National Defense Science and Engi-
neering Graduate Fellowship. R.T. acknowledges sup-
port from the Kailath Stanford Graduate Fellowship.

Appendix A: Particle emission into fermionic
reservoirs

In the main text, we considered the reservoirs to
have a bosonic character, meaning that the continuous
field mode operators obeyed the commutation relations
[b(t), b†(s)] = δ(t− s). Because the interaction Hamilto-
nian is linear in field operators, however, only one par-
ticle can be emitted in any time interval dt. Hence, the
bosonic character of the reservoirs is actually never used
in the problem. To emphasize this point, further con-
sider the case where the reservoirs have a fermionic char-
acter so the continuous-mode operators anti-commute
{b(t), b†(s)} = δ(t− s), as was done in Haack et al. [57].
The key step that changes is from Eq. 10: the commu-
tator becomes an anti-commutator with the result that
{1⊗ b(t1), U(s, 0)} = U(s, t1) (L⊗ 1)U(t1, 0) for s > t1.
Applying this relation to the expansion of U(t) and us-
ing the anti-commutation relations of b(t) yields identi-
cal results through the rest of the paper. As expected,
in order to distinguish between emission into bosonic or
fermionic reservoirs, the system-reservoir coupling must
be non-linear in field operators.

Appendix B: List of important superoperators

• U(t, 0)ρ ≡ U(t, 0)ρU(0, t) is the unitary evolution
superoperator.

• S0χ = L0χ and S1χ = χL†0 are simply used to
pre- or post-multiply the coupling operator L0.
J [L]ρ = LρL† = S0S1ρ is the recycling or emis-
sion superoperator.

• ρ(t1) = M(t1, t0)ρ(t0) represents Lindblad evolu-
tion of the system density matrix, generated by the
Liovillian L.
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• V(t, 0)χ ≡ V (t, 0)χV (0, t) with V (t1, t0) =
〈0|U(t1, t0) |0〉wg represents evolution conditioned
on no emission into the waveguide.

• K(t1, t0) = trbath

[
V(t1, t0){|ψ〉 〈ψ| ⊗ |0〉 〈0|bath}

]
is an unnormalized map that evolves the density
matrix conditional on no photon emission into the
waveguide.
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Muñoz, Carlos Navarrete-Benlloch, and Tao Shi, “De-
terministic down-converter and continuous photon-pair
source within the bad-cavity limit,” Physical review let-
ters 117, 203602 (2016).

[9] Peter Michler, ed., Quantum Dots for Quantum Informa-
tion Technologies (Springer, 2017).

[10] Pascale Senellart, Glenn Solomon, and Andrew White,
“High-performance semiconductor quantum-dot single-
photon sources,” Nature Nanotechnology 12, nnano–
2017 (2017).

[11] Kevin A Fischer, Lukas Hanschke, Jakob Wierzbowski,
Tobias Simmet, Constantin Dory, Jonathan J Finley,
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