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We theoretically investigate mid- and long-wavelength infrared laser filamentation in solids, reveal-
ing extreme self-steepening and optical shock, multi-octave spanning supercontinuum generation,
and most importantly sub-cycle light bullet generation. Light bullet generation in solids at long
wavelengths depends critically on plasma, which is in sharp contrast to that in air where the arrest
of collapse for light bullet generation is dominated by radiation loss. Our method for sub-cycle
light bullet generation in solids at long wavelengths can open new possibilities for extreme ultrafast
nonlinear optics including high-order harmonic and attosecond pulse generation.

PACS numbers: 42.65 Jx, 42.65 Re, 42.65 Sf

Laser filamentation, which is self-guidance of a high-
intensity, ultrashort laser pulse, is a remarkable nonlinear
optical phenomenon because of its rich and novel science,
and many practical applications [1–4]. Although laser fil-
amentation has been studied mainly with near-infrared
and visible wavelengths, recent advances of laser tech-
nology in the mid-infrared (mid-IR) and even the long-
wavelength infrared (LWIR) [5–9] enable investigation of
unexplored wavelength regimes of laser filamentation and
nonlinear optics. For example, with longer wavelengths,
beams can deliver significantly more energy due to the λ2

scaling of the critical power for self-focusing [10], where λ
is the wavelength. Moreover, the scaling of electron pon-
deromotive energy with λ2 [11, 12] makes mid-IR/LWIR
useful for high-order harmonic generation (HHG) [13–15]
and zeptosecond pulse generation [16].

Recent theoretical work on mid-IR pulse propagation
in gases has predicted that at long wavelengths, self-
compression and self-steepening give rise to single-cycle
pulses and a supercontinuum that spans multiple octaves
[17]. Mid-IR/LWIR ultrashort pulses have been shown to
exhibit drastically different propagation dynamics than
pulses in the near-IR, including optical shock formation
[17–20], accelerated third-harmonic generation via vibra-
tional excitation of N2 and O2 [21], extended and smooth
filamentation [22, 23], and a significant defocusing con-
tribution due to many-body effects, leading to long-range
self-channeling [24]. Furthermore, Panagiotopoulos et al.
[18] have theoretically demonstrated long-range, high-
power 3-D spatio-temporal solitary waves (i.e., light bul-
lets [25, 26]) in air via mid-IR laser filamentation.

Light bullets [25, 26] are non-diffractive and non-
dispersive optical pulses. Solids in the anomalous group-
velocity dispersion (GVD) regime have been shown to
support light bullets at 1.8 µm [27] and 1.9 µm [28], and
light bullets have been predicted to propagate with the
aid of resonant radiation [29]. Extending the concept to
long wavelengths, Voronin et al. [30] predicted optical
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solitary wave propagation at 3.9 µm in YAG. However,
light bullet propagation at even longer wavelengths, into
the LWIR, has not been reported.

Recently, a lot of research efforts are also being un-
dertaken for laser filamentation and nonlinear optics at
long wavelengths in condensed matter [31]. For instance,
mid-IR filamentation in solids has been shown to be ef-
fective for the probing of material band structure via
HHG [31], supercontinuum generation and pulse com-
pression [32–34], and even sub-cycle pulse generation via
self-compression [30, 35, 36]. However, many uncertain-
ties remain, in particular about filamentation in solids
in the mid-IR/LWIR. For instance, how similar is mid-
IR/LWIR filamentation in solids to that in gaseous me-
dia, and is the arrest of beam collapse no longer dom-
inated by plasma, as was shown to be true in air [18]?
Are light bullets supported in the LWIR? To answer these
questions, a systematic study of wavelength-scaled laser
filamentation in solids is imperative.

In this study, we present a numerical investigation of
mid-IR and LWIR pulse evolution in novel propagation
regimes in solids. In particular, we explore wavelength-
scaled filamentation in highly-nonlinear ZnSe [37–39],
which is significantly different from gases due to the im-
portance of plasma. Pulse propagation is modeled with
carrier-resolved unidirectional pulse propagation equa-
tions (UPPE) [40–42], revealing unique temporal and
spectral characteristics including extreme self-steepening
and optical shock, and multi-octave spanning supercon-
tinuum generation. Most notably, we identify highly
stable, sub-cycle LWIR light bullets, which are self-
compressed via a combination of anomalous dispersion,
self-steepening and plasma. Our LWIR light bullets criti-
cally depend on enhanced plasma defocusing and absorp-
tion, which is in sharp contrast to 4-µm air light bullets
[18] and 1.9-µm light bullets in fused silica [29] stabilized
via radiation loss. Because of this stable, self-steepened
sub-cycle propagation, mid-IR/LWIR laser filamentation
in solids can be an excellent tool for HHG [14, 15] and
potentially isolating attosecond pulses.

We use carrier-resolved, radially symmetric UPPE [40–
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42] to model pulse propagation in ZnSe for a total propa-
gation distance of 1.5 cm at central wavelengths of λ = 4
µm (normal GVD, with GVD parameter k2 = 7.5×10−28

s2/cm) and λ = 6, 8 and 10 µm (anomalous GVD, with
k2 = −1.36×10−27, −5.2×10−27 and −1.2×10−26 s2/cm,
respectively). Zero GVD occurs in ZnSe at λ ∼ 4.8 µm.
ZnSe is chosen due to its high nonlinearity [37–39, 43]
and broad transmission bandwidth in the mid-IR/LWIR.
The input power is set to 7 times the critical power for
self-focusing (Pcr) with λ = 4 µm, and 4Pcr with λ =
6, 8, and 10 µm. These powers are low enough to avoid
multifilamentation, which our radially-symmetric model
cannot account for. The critical power in bulk media is

defined as Pcr = αλ2

4πnn2
[10], where n is the refractive in-

dex, n2 is the nonlinear refractive index coefficient, and
α is a factor that depends on the mode profile (α =
1.8962 for a Gaussian beam). In our calculations n2 ∼
7×10−15 cm2/W, which has very little dispersion at the
wavelengths used in ZnSe [43]. For λ = 4, 6, 8 and 10
µm, Pcr ∼ 1.4, 3.2, 5.7 and 9 MW, respectively. For each
wavelength, the full width at half-maximum (FWHM)
input pulse duration is 60 fs and the input 1/e2 beam
radius is 100 µm.

The evolution of the electric field is described in the
spectral domain with the UPPE as [40–42]:
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We solve for the field Ẽ in Fourier space over the propaga-
tion distance, z. Here the wavevector is k(ω) = n(ω)ω/c,
where ω is the angular frequency, c is the speed of light,

andD = k(ω)−ω/vg, where vg is the group velocity. P̃NL
is the Fourier transform of the nonlinear polarization in
the time domain given by PNL = ε0χ

(3)E3. Here ε0 is the
permittivity of free space and χ(3) is the third-order non-
linear susceptibility. The free charge-induced current in

the spectral domain is J̃ = (e2/me)(νe+iω)/(ν2
e+ω2)ρ̃E,

where me and e are the electron mass and charge, respec-
tively, νe is the electron collision frequency, and ρ is the
free electron density. Absorption due to field ionization
is accounted for by α̃NL, which is the Fourier transform

of αNL = ρ0W (I)U
I E, where ρ0 is the neutral atomic den-

sity (2.2×1022 cm−3 in ZnSe), W (I) is the field ionization
rate, U = 2.82 eV is the band gap in ZnSe [44], and I is
the intensity of the pulse. The right-hand side of Eq. (1)
contains terms representing diffraction, dispersion, non-
linear polarization, plasma effects, and absorption due to
field ionization, respectively.

UPPE are coupled to a plasma generation equation,
which considers field ionization, collisional ionization and
plasma recombination. The complete Keldysh optical
field ionization rate in condensed matter is given by [45]:
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Here the Keldysh adiabaticity parameter [45] is γ =
ω0

eE

√
m∗U , where ω0 is the central angular frequency of

the laser pulse, e is the fundamental electric charge, E is
the laser electric field, m∗ is the reduced mass between an
electron-hole pair (0.19me in ZnSe [46], where me is the
mass of an electron), and U is the band gap. The neutral
atomic density is ρ0, ~ is the reduced Planck constant,
and 〈.〉 denotes the integer part. K and H are complete
elliptic integrals of the first and second kinds, respec-
tively, and ϕ is the Dawson function. In the regime of
multiphoton ionization (γ � 1), Eq. (2) is simplified to
the multiphoton ionization rate [3]:

WMPI = σkI
k (10)

Here k is the number of photons for multiphoton ioniza-
tion, σk is the multiphoton ionization cross section, and
I is the intensity of the laser pulse. In the tunneling
ionization limit (γ � 1), Eq. (2) is expressed as [47]:
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Plasma generation is described by [3]:

∂ρ

∂t
= W (I)(ρ0 − ρ) +

σBI

U
ρ− ρ

τr
(12)

The first term on the right-hand side describes plasma
generation due to optical field ionization, the second term
describes collisional ionization, and the third term de-
scribes plasma recombination. Here ρ is the plasma den-
sity, W (I) is the optical field ionization rate (either the
full Keldysh optical field ionization rate, or the multipho-
ton or tunneling limit), σB is the inverse Bremsstrahlung
cross section, and τr = 150 fs is the plasma recombination
time.
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FIG. 1. (color online) Calculated optical field ionization rates
are shown in each graph as a function of intensity for the
full Keldysh optical field ionization rate (red dotted lines),
the multiphoton ionization rate (black solid lines) and the
tunneling ionization rate (blue dashed lines). Rates are shown
for ZnSe at central wavelengths of (a) λ = 4, (b) λ = 6, (c) λ
= 8, and (d) λ = 10 µm.

Equation (12) is incorporated into our UPPE model,
where W (I) is modeled with either multiphoton or tun-
neling ionization, depending on which rate more closely
agrees with the complete Keldysh optical field ionization
rate at a particular wavelength and peak intensity. By us-
ing either multiphoton or tunneling ionization, the UPPE
calculation is significantly less computationally intensive
than with the complete Keldysh model. For each wave-
length, when the intensity is below a threshold intensity
(where the multiphoton ionization rate equals the com-
plete Keldysh ionization rate), the multiphoton rate is
used for plasma density calculations, since the tunneling
ionization rate is inaccurate at low intensities. When the
intensity is above the threshold intensity, the tunneling
ionization rate is used for plasma density calculations,
since the multiphoton rate is inaccurate at high intensi-
ties. Figure 1 shows the full optical field ionization rate,
the multiphoton ionization rate, and the tunneling ion-
ization rate in ZnSe at central wavelengths of 4, 6, 8 and
10 µm, as a function of laser intensity. For λ = 4, 6, 8,
and 10 µm, the threshold intensities are Ith = 3.4×1011,
1.1×1011, 6.8×1010, and 4.1×1010 W/cm2, respectively.

Figure 2 shows plasma generated by optical field ion-
ization and collisional ionization, with a comparison be-
tween two cases of optical field ionization: the full model
and the model that is used in our UPPE calculations,
which switches between multiphoton ionization and tun-
neling ionization. Calculations are made for ZnSe at cen-
tral wavelengths of λ = 4, 6, 8, and 10 µm, as a function
of time in the presence of a laser pulse with a Gaussian
temporal profile and a FWHM pulse duration of 60 fs. As
shown in Fig. 2, there is excellent agreement between the
full model and the model used for the UPPE calculations.

UPPE calculations yield peak intensities versus prop-
agation distances that are shown in Fig. 3(a). Filaments

FIG. 2. (color online) Calculated plasma densities resulting
from a laser pulse with a Gaussian temporal profile and a
FWHM pulse duration of 60 fs in ZnSe. Plasma is generated
due to both optical field ionization and collisional ionization.
Plasma densities are calculated with the complete Keldysh
ionization rate (labeled as black solid lines, full model) and
with the multiphoton and tunneling ionization rates (labeled
as red dashed lines, MPI/TI model). Input wavelengths λ
and input peak intensities I0 are (a) λ = 4, I0 = 5.7×1011,
(b) λ = 6, I0 = 3×1011, (c) λ = 8, I0 =1.8×1011, and (d)
λ = 10 µm, I0 = 1×1011 W/cm2. Laser intensity profiles are
shown in magenta and labeled on the right vertical axis.

reach peak intensities of ∼ 1.2×1012, ∼ 1.2×1012, ∼
1.1×1012, and ∼ 9.5×1011 W/cm2 with λ = 4, 6, 8 and 10
µm, respectively. Generated peak plasma densities are ∼
1×1019, ∼ 2.1×1019, ∼ 6.6×1018, and ∼ 3.3×1018 cm−3

with λ = 4, 6, 8 and 10 µm, respectively, as shown in
Fig. 3(b). These high plasma densities show that ioniza-
tion effects are important during mid-IR/LWIR filamen-
tation in solids. This is in sharp contrast to calculations
of mid-IR/LWIR filamentation in gases [17, 48], where
plasma densities decrease as the driver wavelength in-
creases. Differences in ionization effects between gases
and solids are particularly critical for light bullet gener-
ation, which will be highlighted later.

To understand the effects of energy loss during prop-
agation, the energy of the pulse is calculated for each

FIG. 3. (color online) Peak intensities and peak plasma den-
sities versus propagation distance are shown in (a) and (b),
respectively, for central wavelengths of λ = 4 (black dashed
lines), λ = 6 (red solid lines), λ = 8 (blue dotted lines), and
λ = 10 µm (green solid lines with circles).
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FIG. 4. (color online) Calculated energies in pulses at each
wavelength during propagation are shown in (a), and the in-
verse Bremsstrahlung cross-section in ZnSe, σB , is shown in
(b).

wavelength over the entire propagation distance by spa-
tial and temporal integration of the spatio-temporal in-
tensity profiles. Figure 4(a) shows the energies as a func-
tion of propagation distance. Energy losses with λ = 4,
6, 8, and 10 µm are 15%, 22%, 43% and 43%, respec-
tively. These losses are mainly due to plasma generation
and plasma absorption. Energy loss increases at longer
wavelengths due to increased plasma absorption, which
is described by the inverse Bremsstrahlung cross-section,
σB (λ) [3], as shown in Fig. 4(b). Additionally, since sta-
ble filamentation occurs over longer distances with longer
wavelengths (see Fig. 3), larger cumulative plasma den-
sities are generated at long wavelengths, which further
increases loss.

Supercontinuum generation leads to broadened spectra
at all wavelengths, as shown by the spatially-averaged
spectral profiles versus propagation distance in Fig. 5.
On-axis spectral profiles at the input and at positions of
shortest on-axis pulse durations are shown in Fig. 6: with
λ = 6 and 8 µm [Figs. 6(b, c)], on-axis supercontinuum
(via self-phase modulation [SPM]) at the 10−2 intensity
level spans over 3 and over 2 octaves, respectively. Al-
most 2 octaves are spanned with λ = 10 µm [Fig. 6(d)],

FIG. 5. (color online) Spatially-averaged spectral profiles ver-
sus propagation distance are shown for (a) λ = 4, (b) λ = 6,
(c) λ = 8, and (d) λ = 10 µm. The color bars show spectral
intensity in dB.

FIG. 6. (color online) Normalized on-axis spectral profiles
at the input (red dashed lines) and at labeled positions of
shortest on-axis pulse duration (black solid lines) are shown
with (a) λ = 4, (b) λ = 6, (c) λ = 8, and (d) λ = 10 µm.

which is narrower than with λ = 6 and 8 µm due to lower
intensities with λ = 10 µm [see Fig. 3]. Third-harmonic
(TH) signals are visible for each wavelength during early
propagation.

As shown by the spatio-temporal intensity profiles in
Fig. 7, an extremely steep trailing edge forms during
propagation, especially at 6 and 8 µm, which leads to op-
tical shock, similar to that calculated previously in con-
densed matter [30, 49] and gases [17, 18, 20, 22, 49]. This
steep trailing edge enhances the generation of high fre-
quencies via SPM [3]. The temporal modulations shown
in Fig. 7 and elsewhere in this work are due to the carrier
resolution of the UPPE model. Intensity envelopes are
retrieved for all figures with temporal modulations (see
Appendix D for more details). Large plasma densities
also contribute to the spectral blue shift.

According to our calculations, high-frequency peaks
appear in the spatially-averaged (on-axis) spectra at 2.45
(2.5), 1.82 (1.85) and 1.57 (1.61) µm for central wave-
lengths of λ = 6, 8 and 10 µm, respectively. These
peaks resemble those of resonant radiation (also known as
dispersive waves, Cherenkov radiation and nonsolitonic
radiation) shown in Fig. 1 of Brée et al. [29]. To in-
vestigate the possible role of resonant radiation in our
calculations, we consider the phase-matching condition
for resonant radiation, where the phase of the soliton
ϕ(ωs) = k(ωs)z−ωs zvg + ωsn2Isz

2c matches that of the res-

onant radiation ϕ(ω) = k(ω)z − ω z
vg

[50]. Here ωs is the

angular frequency of the soliton, k is the wavenumber, z
is the propagation distance, vg is the group velocity of the
soliton, n2 is the nonlinear index coefficient, Is is the in-
tensity of the soliton, c is the speed of light, and ω is the
angular frequency of the generated resonant radiation.
Setting ϕ(ωs) = ϕ(ω), the phase-matching condition for
resonant radiation can be expressed as:

∆kRR = k(ω)− k(ωs) +
ωs − ω
vg

− ωsn2Is
2c

(13)
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Resonant radiation is expected to occur efficiently
when ∆kRR = 0 rad/m. We solve Eq. (13) at propaga-
tion distances where self-focusing occurs, yielding even-
tual filamentation: z = 0.32, 0.22 and 0.186 cm with
λ = 6, 8 and 10 µm, respectively. The quantities k and
vg, which depend on the material dispersion, are calcu-
lated using the plasma-dependent refractive index: n(ω)

= [n0(ω)−1] (ρ0−ρ)
ρ0

+1− ρ
2ρc

, where n0(ω) is the refractive

index in a neutral medium based on the Sellmeier equa-
tion, ρ is the plasma density, ρ0 is the neutral medium
density, and ρc is the critical plasma density. At the prop-
agation distances considered, ρ ∼ 3.2×1017, 2×1017 and
1×1017 cm−3, and Is ∼ 7×1011, 5.9×1011, and 3.7×1011

W/cm2 with λ = 6, 8 and 10 µm, respectively. We also
consider any shifts in the central wavelength of the soli-
ton during propagation: λ = 6, 8 and 10 µm are shifted

FIG. 7. (color online) Spatio-temporal intensity profiles at
labeled propagation distances of shortest pulse duration are
shown for (a) λ = 4, (b) λ = 6, (c) λ = 8, and (d) λ =
10 µm. The corresponding on-axis lineouts of the intensity
profiles are shown for (e) λ = 4, (f) λ = 6, (g) λ = 8, and (h)
λ = 10 µm, at the input (red dotted lines) and the position
of shortest pulse duration (black solid lines). The color bars
show intensity in W/cm2, and on-axis pulse durations are
labeled with arrows.

FIG. 8. (color online) On-axis spectral profiles versus propa-
gation distance are shown for (a) λ = 6, (b) λ = 8, and (c)
λ = 10 µm. The color bars show spectral intensity in dB,
and arrows point to high-frequency components that may be
due to resonant radiation. Phase-matching calculations for
resonant radiation are shown in (d) for λ = 6 µm (red solid
lines), λ = 8 µm (blue solid lines with circles) and λ = 10 µm
(green dashed lines). Dashed vertical lines with colors match-
ing fundamental wavelengths are shown for wavelengths that
are phase-matched for resonant radiation (∆kRR = 0 rad/m).

to 6.4, 8.2 and 10.1 µm, respectively, at the considered
propagation distances.

Phase-matching calculations for resonant radiation are
shown in Fig. 8(d), which are compared with on-axis
spectral profiles versus propagation distances in Fig. 8(a
− c). As shown in Fig. 8(d), ∆kRR = 0 rad/m at reso-
nant radiation wavelengths of 1.91, 1.56 and 1.31 µm for
input wavelengths of λ = 6, 8 and 10 µm, respectively,
in good agreement with our observations (the resonant
radiation may be red-shifted by a few hundred nm at
most to match the observed values of 2.5, 1.85 and 1.61
µm). The 2.5-µm signal with λ = 6 µm may also be due
to third-harmonic generation. With λ = 10 µm, there
is another prominent peak at ∼ 3.65 µm, which is likely
the red-shifted third harmonic of the fundamental beam.

On-axis spectra also exhibit additional high-frequency
peaks that are not explained by the standard resonant
radiation phase-matching in Eq. (13). For example, with
λ = 6 µm, a peak at 1.53 µm is visible after z ∼ 0.75
cm. This peak may be due to a mechanism based on
the coupling of the fundamental pulse to the negative-
frequency branch of the dispersion relation, known as
negative-frequency resonant radiation [51], where phase-
matching is described by:

∆kNRR = k(ω)− k(ωs) +
ωs − ω
vg

+ 2
(n(ωs)ωs

c
−
ωs

vg

)
+
ωsn2Is

2c
(14)

Using this phase-matching condition, calculations show
that negative-frequency resonant radiation is phase-
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matched at 1.33 µm for the λ = 6-µm beam at z = 0.32
cm, which is close to the observed value of 1.53 µm. As
we will show later, although resonant radiation is ob-
served in our calculations, it is not the dominant mecha-
nism for light bullet formation, in contrast to the 1.9-µm
light bullet generated by resonant radiation in Ref. [29].
In the LWIR, the primary collapse-arresting/light bul-
let generation mechanism is enhanced plasma absorption
and defocusing. This is also consistent with the calcula-
tion in Ref. [29] in which a longer wavelength shows less
effects of resonant radiation (2 µm vs. 1.9 µm).

Self-compression occurs with all central wavelengths,
as shown by the calculated on-axis temporal profiles ver-
sus propagation distance in Fig. 9. Anomalous GVD,
SPM, plasma, and extreme self-steepening (shown in
spatio-temporal intensity profiles in Fig. 7) yield on-axis
FWHM pulse durations of ∼ 18, ∼ 15, and ∼ 19 fs for
λ = 6, 8, and 10 µm, each below single cycle durations
of 20, 27, and 33 fs, respectively. At λ = 4 µm, on-axis
pulse durations are compressed to ∼ 24 fs, which is due to
plasma and self-steepening. Sub-cycle on-axis pulse du-
rations persist over many dispersion lengths (Lds) during
filamentation (∼ 25Lds and ∼ 23Lds for λ = 8 and 10 µm,
respectively). Spatially-averaged (over 35 µm) pulse du-
rations versus propagation distance, shown in Fig. 10(a),
reveal that for central wavelengths of λ = 8 and 10 µm,
beams propagate as sub-cycle temporal solitary waves for
many dispersion lengths. For example, with λ = 8 µm,
the FWHM pulse duration is bounded between 24 and
26 fs over propagation from z = 0.4 cm to at least 0.6
cm, which is over 4 times the dispersion length [Lds(26
fs) < 0.05 cm]. At λ = 10 µm, temporal solitary waves
persist for over 10 times the dispersion length, with a
pulse duration between 25 fs and 29 fs. With λ = 4 and
6 µm, temporal solitary waves are not observed.

It is important to compare the sub-cycle self-
compression mechanism occurring here with previous
studies. The mechanism of compression in ZnSe at mid-
IR/LWIR wavelengths is similar to that observed pre-
viously in fused-silica at 1.9 µm [27], giving rise to light
bullets [26]: SPM generates low frequencies near the lead-
ing edge of the pulse, and they are swept towards the
trailing edge in anomalous dispersion. High frequencies
are generated near the trailing edge, and are swept for-
ward. Since high-density plasma is generated in ZnSe,
plasma defocusing, which is mainly responsible for pulse
compression in noble gases [52, 53], should contribute
to light bullet generation. Moreover, Refs. [53] and [54]
reported that self-steepening can assist in further com-
pression. However, in noble gases dispersion plays a very
small role in compression. The compression which oc-
curs in normal dispersion in the present work is mainly
plasma-assisted, but does not result in sub-cycle pulse
durations. This is in contrast to the sub-cycle pulse com-
pression occurring in anomalous dispersion, which shows
the important role of dispersion for sub-cycle compres-
sion in solids. We will show later that dispersion effects
in ZnSe are assisted by plasma, yielding favorable condi-

FIG. 9. (color online) On-axis temporal profiles versus prop-
agation distance are shown for (a) λ = 4, (b) λ = 6, (c) λ
= 8, and (d) λ = 10 µm. The color bars show intensity in
W/cm2.

tions for light bullet generation by extending the anoma-
lous dispersion bandwidth. This is also in contrast to re-
cently reported light bullet generation in air at 4 µm [18],
where dynamics are influenced strongly by radiation loss
rather than plasma/defocusing loss. Similarly, plasma ef-
fects were shown to be negligible during propagation in
gases at 2 µm where dynamics during compression were
strongly influenced by initial carrier-envelope phase and
harmonic generation [54]. Other notable mechanisms for
self-compression have been proposed in solids, such as ef-
ficient spectral broadening via cascaded four-wave mixing
during propagation in GaAs near zero GVD [35]. How-
ever, in ZnSe zero GVD occurs near ∼ 4.8 µm, and ef-
ficient compression occurs even with λ = 10 µm, so the
mechanism proposed in Ref. [35] is quite different from
that in our work.

Strikingly, sub-cycle light bullets [25, 26] propagate
with λ = 8 µm. The temporally-averaged beam diameter
[Fig. 10(b)] during filamentation is ∼ 28 µm, with mini-
mal change. This results in light bullet propagation from
z = 0.4 cm to at least z = 0.6 cm, which is a propaga-
tion distance of ∼ 4.2Lds and ∼3.6Ldf at a FWHM pulse
duration of ∼ 26 fs (see examples of spatio-temporal in-
tensity profiles in Fig. 11). In particular, the light bullet
propagates stably as a self-steepened waveform at sub-
cycle pulse durations with a dominating (most intense)
cycle, providing a robust and promising tool for poten-
tial attosecond pulse isolation and HHG [14, 15]. For
instance, Chin et al. [55] measured up to the 7th har-
monic from ZnSe using 3.9-µm, 200-fs beams at an in-
tensity ∼ 1011 W/cm2. Since our peak intensity is one
order of magnitude larger with a longer harmonic driver
wavelength and sub-cycle pulse duration, we expect that
higher-order harmonics should be generated. Further-
more, we believe our method can be applied to HHG
from any bulk crystals in which long-wavelength laser
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FIG. 10. (color online) Spatially-averaged FWHM pulse du-
rations (a) and temporally-averaged FWHM beam diameters
(b) versus propagation distance for λ = 4 (black dashed lines),
λ = 6 (red circles), λ = 8 (blue dot-dash lines), and λ = 10
µm (green solid lines).

pulses undergo filamentation and pulse compression in
the anomalous-GVD regime. We also check propagation
with λ = 8 µm for different powers and a different in-
put pulse duration (see Appendix A for more details).
Light bullets still propagate at higher input powers, but
they are not observed with longer input pulse durations.
Compared to temporal solitons in fibers, our light bullets
have soliton numbers that do not exceed 1.4 and are thus
similar to fundamental solitons [56].

In contrast to the negligible effects of plasma in gases
at similar central wavelengths [18], ionization effects here
significantly impact filamentation and light bullet gener-
ation. For example, in Ref. [18] a plasma density of ρ ∼
7×1014 cm−3 with λ = 4 µm yields an index contribution
due to plasma (np ∝ − ρ

2ρc
, where ρc is the critical plasma

FIG. 11. (color online) Spatio-temporal intensity profiles are
shown for λ = 8 µm at (a) z = 0, (b) z = 0.2, (c) z = 0.4, (d)
z = 0.5, (e) z = 0.6, and (f) z = 0.8 cm. A light bullet persists
from z = 0.4 to z = 0.6 cm. The color bars show intensity
in W/cm2, and spatially-averaged pulse durations are labeled
with arrows where light bullets propagate.

FIG. 12. (color online) Peak intensity versus propagation dis-
tance with λ = 8 µm is shown in (a) without plasma (red
dashed lines) and with plasma (black solid lines). Spatio-
temporal intensity profiles without plasma are shown at (b)
z = 0, (c) z = 0.2, (d) z = 0.4, (e) z = 0.6 cm and (f) z =
0.8 cm. The color bars show intensity in W/cm2.

density) of np ∼ −5×10−6 compared to a neutral index of
∼ 1, whereas in ZnSe at 4 µm, with a plasma density of ρ
∼ 1×1019 cm−3 (based on our calculations), np ∼ −0.07,
compared to a neutral index of ∼ 2.4. Therefore, the
effects of plasma are significantly greater in solids. Note
that in Ref. [49] small plasma densities are generated
during carrier-shock formation at 8 µm in single-crystal
diamond. However, this is mainly due to diamond’s high
ionization energy (5.5 eV), yielding low plasma densities.

To investigate the effects of plasma on the filamen-
tation dynamics, calculations are performed with λ = 8
µm and an input power of 4Pcr, but plasma generation is
turned off. For these calculations, terms describing field
ionization, collisional ionization, and plasma absorption
are set to zero. The FWHM pulse duration is set to 60 fs
and the input 1/e2 beam radius is set to 100 µm. In con-
trast to air, where the effects of plasma are small [18],
the resulting spatio-temporal dynamics in ZnSe with-
out plasma are drastically different. Without plasma in
our calculations, an abrupt intensity spike occurs dur-
ing early propagation (around z = 0.35 cm), as shown in
Fig. 12(a), which shows the importance of plasma as a
mechanism for arresting collapse and formation of a sta-
ble filament and light bullet. Spatio-temporal intensity
profiles [Fig. 12(b − f)] reveal that self-steepening still
occurs without plasma, but the pulse abruptly splits into
two portions of lower peak intensities, preventing collapse
[Fig. 12(f)]. Neither temporal nor spatial solitary wave
behavior is observed over extended propagation distances
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FIG. 13. (color online) Spatially-averaged FWHM pulse du-
rations (a) and temporally-averaged FWHM beam diameters
(b) are shown with plasma (black dashed lines) and without
plasma (red dot-dashed lines). Calculations are performed
with λ = 8 µm and an input power of 4Pcr.

without plasma, as shown in Fig. 13(a) (pulse duration)
and Fig. 13(b) (beam diameter).

Spatially-averaged spectral profiles comparing the
cases with plasma [Fig. 14(a)] and without plasma
Fig. 14(b)] reveal that for the case without plasma, the
pulse contains significantly less high-frequency content
over the entire propagation distance (∼ 1 order of mag-
nitude lower spectral intensity than with plasma at spec-
tral components with λ < 2 µm by the end of propaga-
tion). This is due to the spectral blue shift associated
with plasma [3], which provides high-frequency compo-
nents during propagation.

GVD parameters are calculated using the frequency-
and plasma-dependent refractive index, defined as n(ω)

= [n0(ω)−1] (ρ0−ρ)
ρ0

+1− ρ
2ρc

, where n0(ω) is the refractive

index in a neutral medium based on the Sellmeier equa-
tion, ρ0 is the neutral medium density, ρ is the plasma
density, ω is the angular frequency of the pulse, and
ρc is the critical plasma density. Figure 15 shows cal-
culated refractive indices and group velocity dispersion
both with and without plasma. Furthermore, as shown
in Figs. 15(b) and (c), the zero GVD wavelength is ∼ 4.8
µm without plasma, and with a plasma density of ρ ∼
6×1018 cm−3 it is shifted to ∼ 3.2 µm. This results in
a significantly larger bandwidth for the anomalous-GVD
regime with plasma, which can support pulse compres-
sion and light bullet propagation better.

We also perform cross-correlation frequency-resolved

FIG. 14. (color online) Spatially-averaged spectral profiles
versus propagation distance are shown with λ = 8 µm and an
input power of 4Pcr with plasma (a) and without plasma (b).
The color bars show spectral intensity in dB.

FIG. 15. (color online) Calculations of (a) refractive in-
dex, (b) GVD parameter and (c) GVD parameter zoomed
in near zero GVD are shown with a plasma density of ρ ∼
6×1018 cm−3 (black solid lines) and without plasma (red
dashed lines). In (b) and (c), the normal-GVD regime ap-
pears above the green horizontal line (GVD parameter > 0)
and the anomalous-GVD regime appears below (GVD param-
eter < 0).

optical gating (XFROG) [57] with and without plasma
to visualize the spectral content of the 8-µm propaga-
tion at different temporal positions. Furthermore, addi-
tional calculations show that the high plasma densities
and non-monotonic wavelength scaling of plasma density
in ZnSe (see Fig. 3) are due to high-frequency bursts at
the pulses’ trailing edge caused by high intensities and
self-steepening, which is the result of propagation in the
anomalous-GVD regime in a high-density solid. Details
of the XFROG analysis and propagation at lower medium
densities can be found in Appendices B and C, respec-
tively.

In conclusion, we have investigated the mid-IR/LWIR
wavelength scaling of laser filamentation in ZnSe by
solving carrier-resolved unidirectional pulse propagation
equations. Our calculations reveal rich spatio-temporal
dynamics, with extreme self-steepening leading to optical
shock and multi-octave spanning supercontinuum gener-
ation at long central wavelengths. It is shown that unlike
mid-IR/LWIR filamentation in gases, plasma in solids is
important for stabilizing laser filamentation over an ex-
tended range and enhancing compressibility via extend-
ing a bandwidth of the anomalous-GVD regime. Fur-
thermore, we predict the propagation of sub-cycle light
bullets at λ = 8 µm for about 3.6 times the diffraction
length and 4.2 times the dispersion length. These sub-
cycle light bullets at LWIR can provide a promising tool
for extreme nonlinear optics at long wavelengths includ-
ing HHG and potential generation of attosecond pulses
in solids.

This work is supported by National Science Foundation
(NSF) (PHY-1707237) and Air Force Office of Scientific
Research (AFOSR)(FA9950-18-1-0223).

APPENDIX A: SPATIO-TEMPORAL DYNAMICS
WITH DIFFERENT INPUT PARAMETERS

To supplement our observation of light bullets at λ =
8 µm with an input power of 4Pcr (see main calculations
for more details), we investigate filamentation in ZnSe
with λ = 8 µm at input powers of 6Pcr and 8Pcr with
input FWHM pulse durations of τp = 60 fs and input
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FIG. 16. (color online) Peak intensities and peak plasma den-
sities versus propagation distance are shown in (a) and (b),
respectively, with λ = 8 µm and input powers and input pulse
durations of 4Pcr, 60 fs (black dashed lines), 6Pcr, 60 fs (red
solid lines), 8Pcr, 60 fs (blue dotted lines), and 4Pcr, 120 fs
(green solid lines with circles).

1/e2 beam radii of 100 µm. Calculations are also per-
formed for λ = 8 µm at 4Pcr with an input FWHM pulse
duration of 120 fs and an input 1/e2 beam radius of 100
µm. Figure 16 shows the peak intensity and peak plasma
density versus propagation distance for the various in-
put powers, including a reproduction of results shown in
the main manuscript with 4Pcr and τp = 60 fs. Fila-

FIG. 17. (color online) On-axis temporal profiles (left col-
umn) and spectral profiles (right column) are shown at the
input and at propagation distances where the pulse duration
is minimized, as labeled. For each calculation, λ = 8 µm and
input powers and input pulse durations are (a, e) 4Pcr, 60 fs,
(b, f) 6Pcr, 60 fs, (c, g) 8Pcr, 60 fs, and (d, h) 4Pcr, 120 fs.
On-axis pulse durations are labeled with arrows.

FIG. 18. (color online) Spatially-averaged FWHM pulse du-
rations (a) and temporally-averaged FWHM beam diameters
(b) versus propagation distance are shown at λ = 8 µm and
input powers and input FWHM pulse durations of 4Pcr, 120
fs (green solid lines), 4Pcr, 60 fs (black dashed lines), 6Pcr, 60
fs (red closed circles), and 8Pcr, 60 fs (blue dot-dashed lines).

ments form with 6Pcr, 8Pcr (τp = 60 fs) and 4Pcr (τp =
120 fs) over a similar range as 4Pcr (τp = 60 fs) at a
clamped peak intensity of ∼ 1.1×1012 W/cm2 and with
peak plasma densities of ∼7.7×1018 cm−3.

Figure 17 shows on-axis temporal and spectral pro-
files at the input and at positions of shortest pulse du-
ration. Supercontinuum is generated over 2 octaves (at
the 10−2 intensity level) with 6Pcr and 8Pcr (τp = 60
fs) [Figs. 17(f) and (g), respectively], similar to that dis-
cussed in the main manuscript at 4Pcr (τp = 60 fs) [re-
produced here in Fig. 17(e)]. The spectrum is broad-
ened by slightly under 2 octaves with 4Pcr (τp = 120
fs) [Fig. 17(h)]. Self-steepening, anomalous GVD, and
plasma result in sub-cycle pulse compression for each in-

FIG. 19. (color online) Spatio-temporal intensity profiles are
shown for λ = 8 µm at labeled propagation distances with
input powers and input FWHM pulse durations of (a − d)
6Pcr, 60 fs, (e − h) 8Pcr, 60 fs, and (i − l) 4Pcr, 120 fs. The
color bars show intensity in W/cm2, and selected spatially-
averaged pulse durations are labeled with arrows.
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put power and pulse duration [Figs. 17(a − d)]. Fur-
thermore, with 6Pcr and 8Pcr (τp = 60 fs), light bullet
propagation at sub-cycle spatially-averaged (within the
filamentation region of ∼ 35 µm FWHM) pulse durations
(18 − 23 fs) and temporally-averaged FWHM diameters
(25 − 26 µm) is observed for distances of ∼ 0.13 cm, cor-
responding to ∼ 3.5Lds and ∼ 2.8Ldf [Fig. 18], where Ldf
and Lds are the diffraction length and dispersion length,
respectively. Figure 19(a − h) shows spatio-temporal
profiles of light bullets with input powers of 6Pcr and
8Pcr (τp = 60 fs), which are similar to those with 4Pcr
(τp = 60 fs) (see main calculations). With a longer pulse
duration, light bullets do not propagate. Spatio-temporal
profiles are shown for this case in Fig. 19(i − l).

APPENDIX B: SPECTRAL CONTENT
VISUALIZATION AT DIFFERENT TEMPORAL

POSITIONS VIA XFROG

Without plasma, the beam splits temporally into
pulses of similar intensity, preventing light bullet forma-
tion. When light bullets propagate with plasma, they are
accompanied by low-intensity side lobes that propagate
ahead and behind the main pulse. The main collapse-
arresting mechanism with plasma is defocusing and ab-
sorption due to plasma, but energy leakage from the cen-
tral solitary wave into the side lobes may assist preven-
tion of collapse. Figure 20 shows on-axis intensity pro-
files from the main calculations (λ = 8 µm, 4Pcr input
power), where a temporal solitary wave persists on axis
from z = 0.4 to 0.8 cm. As shown in Fig. 20(d), ex-

FIG. 20. Normalized on-axis intensity profiles are shown with
λ = 8 µm and an input power of 4Pcr for various propagation
distances as labeled: (a) z = 0, (b) z = 0.1, (c) z = 0.2, (d)
z = 0.3, (e) z = 0.4, (f) z = 0.5, (g) z = 0.6, (h) z = 0.7, and
(i) z = 0.8 cm.

FIG. 21. (color online) Normalized on-axis electric fields are
shown for (a) the XFROG reference (Ref.) pulse, (b) λ =
8-µm pulse, z = 0.4 cm, plasma on, (c) λ = 8-µm pulse, z =
0.6 cm, plasma on, (d) λ = 8-µm pulse, z = 0.4 cm, plasma
off and (e) λ = 8-µm pulse, z = 0.6 cm, plasma off.

treme self-steepening at z = 0.3 cm produces a burst of
high-frequency content that trails the central peak. En-
ergy leakage into this high-frequency portion can aid the
arrest of collapse, similar to that reported in air [18].
Furthermore, at z = 0.4 cm another lobe, which con-
tains similar spectral content to the main pulse, begins
to propagate ahead of the main pulse. This side lobe
travels faster than the main peak, and the peak intensity
of the lobe grows from 17% of the main self-steepened
pulse at z = 0.4 cm to 50% by the end of propagation at
z = 1.5 cm. Similar to the high-frequency content, this
lobe may aid plasma defocusing/absorption in the arrest
of collapse, as energy leaks from the main pulse into this
lobe during propagation.

To visualize the frequency content of the self-steepened

FIG. 22. (color online) XFROG spectrograms (normalized)
are shown for the 8-µm beam with (a) plasma on, z = 0.4 cm,
(b) plasma off, z = 0.4 cm, (c) plasma on, z = 0.6 cm, and
(d) plasma off, z = 0.6 cm. Here the delay axis corresponds
to the offset between the reference pulse and the signal pulse
(to be analyzed), where a delay of 0 fs means the reference
field at 0 fs is overlapped with the signal field at 0 fs (see
examples of signal fields in Fig. 21). More positive delays
show wavelength content at the trailing edge of the pulse.
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main pulse and the side lobes in more detail, we per-
form cross-correlation frequency-resolved optical gating
(XFROG) [57] on the λ = 8-µm beam on axis at z =
0.4 cm (light bullet propagation begins here) and z =
0.6 cm (light bullet propagation ends around here) both
with plasma turned on and off. A reference pulse with
a wavelength of λRef = 2 µm and a FWHM pulse dura-
tion of 10 fs is used to measure sum frequency generation.
Fig. 21 shows the reference pulse and the λ = 8-µm pulse
electric fields to be characterized (normalized).

Figure 22 shows the XFROG spectrograms. For both
with and without plasma, short wavelengths propagate
at the trailing lobe (large positive delays in XFROG
spectrogram), accompanied by a much smaller signal
at long wavelengths. At z = 0.4 cm without plasma,
where a large burst of high-frequency content occurs, the
short-wavelength signal is much more intense than the
long-wavelength signal at the trailing lobe [Fig. 22(b)].
The main pulse and the leading lobe are composed of
broad bandwidths of long wavelengths, as can be seen
in Fig. 22(c) and (d). Furthermore, the high-magnitude
leading lobe at z = 0.6 cm without plasma indicates the
onset of pulse splitting without plasma, preventing light
bullets.

APPENDIX C: NON-MONOTONIC
PLASMA-WAVELENGTH SCALING AND

PROPAGATION WITH DIFFERENT MEDIUM
DENSITIES

In the main calculations, the peak plasma densities
are ρ = 1×1019, 2.1×1019, 6.6×1018, and 3.3×1018 cm−3

for λ = 4, 6, 8 and 10 µm, respectively. This result is
quite different from gases because in gases peak plasma
density decreases monotonically with increasing wave-
length (for example, see Fig. 3(c) in [48] and Fig. 3(b)
in [17]). As will be discussed, this is due to stronger
high-frequency generation at λ = 6 µm because of high
densities in solids. Figure 23 shows on-axis intensity pro-
files and on-axis plasma density growth at propagation
positions where maximum plasma density is generated
for each wavelength. Comparing profiles with λ = 4 µm
at z = 0.45 cm [Figure 23(a, e)] to λ = 6 µm at z = 0.35
cm [Figure 23(b, f)], it is clear that with λ = 6 µm, more
pronounced high-frequency bursts occur at the back of
the pulse than the case with λ = 4 µm. High frequencies
are also emitted with λ = 4, 8, and 10 µm, but the peak
amplitude of these spectral components is not as high as
with 6 µm. This efficient high-frequency generation with
λ = 6 µm is mainly due to a combination of a high peak
intensity (I0 = 1.2×1012 W/cm2 for λ = 6 µm compared
to I0 = 1.1×1012 and 9.5×1011 W/cm2 with λ = 8 and 10
µm, respectively) and pronounced self-steepening (max-
imum |dIdt | over the entire propagation distance at the

trailing edge is 2.17×1026 W/cm2/s with λ = 6 µm com-
pared to 1.47×1026 W/cm2/s with λ = 4 µm). With λ =
6 µm, high frequencies are also made by third-harmonic

FIG. 23. (color online) On-axis intensity profiles (carrier in
magenta [light gray] solid lines and envelope in black dot-
ted lines) and on-axis plasma density (blue [dark gray] solid
lines) are shown at labeled propagation distances of maximum
plasma density with (a, e) λ = 4 µm, z = 0.45 cm (b, f) λ =
6 µm, z = 0.35 cm (c, g) λ = 8 µm, z = 0.4 cm and (d, h)
λ = 10 µm, z = 0.45 cm.

generation, and/or by phase-matched resonant radiation,
as discussed in the main manuscript.

To quantitatively extract the dominant frequency ver-
sus time for each pulse in the main calculations, we calcu-
late the instantaneous frequency, ωinst = −dϕdt , where ϕ
is the temporal phase. Electric field profiles at propaga-
tion distances of maximum plasma density are shown in
Fig. 24(a), (d), (g) and (j) for λ = 4, 6, 8 and 10 µm, and
the temporal phase of each is shown in Fig. 24(b), (e),
(h) and (k), respectively. According to our calculations,
high-frequency components are especially pronounced for
the 6-µm pulse. For example, at the temporal FWHM
intensity position at the trailing edge of the 6-µm pulse
(delay = 49 fs), the peak wavelength is ∼ 2 µm. With
the 4-µm pulse, at the temporal FWHM position at the
trailing edge (delay = 42 fs), the peak wavelength is ∼
2.9 µm. Therefore, even though the input wavelength is 6
µm, extreme spectral broadening due to propagation in
the anomalous-GVD regime yields frequencies that are
higher than those generated by the 4-µm pulse. This
high-frequency content propagating with the 6-µm pulse
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FIG. 24. (color online) On-axis normalized electric field tem-
poral profiles are shown at labeled propagation distances of
maximum plasma density with central wavelengths of (a) λ =
4, (d) λ = 6, (g) λ = 8 and (j) λ = 10 µm. The temporal
phase of each field is shown for each central wavelength in
(b) λ = 4, (e) λ = 6, (h) λ = 8 and (k) λ = 10 µm. Corre-
sponding XFROG spectrograms (normalized) are shown for
central wavelengths of (c) λ = 4, (f) λ = 6, (i) λ = 8 and
(l) λ = 10 µm. Here the delay axis corresponds to the offset
between the reference pulse and the signal pulse (to be ana-
lyzed), where a delay of 0 fs means the reference field at 0 fs is
overlapped with the signal field at 0 fs. More positive delays
show wavelength content at the trailing edge of the pulse.

is also a consequence of phase-matched resonant radia-
tion (as discussed in the main manuscript). Furthermore,
since these frequencies are generated at the back of the
pulse, their interaction with plasma is an especially im-
portant factor that determines the peak plasma density,
because the trailing edge is exposed to highest plasma
densities. This high-frequency burst drastically alters
the relative effects of plasma between the two central-
wavelength calculations, which yields the non-monotonic
scaling of plasma density versus wavelength. For in-
stance, assuming the same plasma density ρ for both the
λ = 4 and 6-µm pulses and considering the peak wave-
lengths at the trailing edge of each pulse (2.9 and 2.0
µm, respectively), the ratio of the refractive index change
due to plasma ∆np ∼ − ρ

2ρc
(here ρc ∝ 1/λ2 is the crit-

ical plasma density) experienced by the trailing edges is

(
∆n2.9µm

∆n2.0µm
∼ 2.1, whereas if the central wavelengths were

unchanged,
∆n4µm

∆n6µm
∼ 0.44, which changes the plasma in-

teraction significantly.
The physical origin of this anomalous wavelength-

α = 1
λ(µm) τp(fs) w0(µm) ztotal(cm)

4 60 100 1.5
6 60 100 1.5
8 60 100 1.5
10 60 100 1.5

α = 0.5
λ(µm) τp(fs) w0(µm) ztotal(cm)

4 175 175 10
6 175 200 10
8 175 225 10
10 175 250 10

α = 0.1
λ(µm) τp(fs) w0(µm) ztotal(cm)

4 200 450 10
6 200 500 10
8 200 550 10
10 200 600 10

α = 0.05
λ(µm) τp(fs) w0(µm) ztotal(cm)

4 225 825 20
6 225 875 20
8 225 950 20
10 225 1000 20

TABLE I. Shown here are changes to parameters made in
calculations at lower molecular densities. The quantities λ, τp,
w0 and ztotal are the central wavelength, input pulse duration,
input beam waist, and total propagation distance for each
calculation. α is the fractional density coefficient used in each
case.

scaled filamentation in solids is high densities in solids. In
our additional simulations, we vary the neutral molecular
density ρ0 which is reduced to a fractional density αρ0,
where α is the fractional density coefficient set to 1, 0.5,
0.1, and 0.05 (α = 1 gives the same results as the main
calculations). This procedure is analogous to studying
propagation in gases at different pressures, so we scale
all parameters such as dispersion, linear and nonlinear
indices, collisional parameters, etc. in our calculations
according to that previously done in high-pressure gases
[58]. We maintain the same input powers (in terms of
the critical power) in all calculations (7Pcr for λ = 4
µm and 4Pcr for λ = 6, 8, and 10 µm). Since low frac-
tional densities yield high critical powers and hence more
plasma at the beginning of propagation, the input beam
waist is increased, which keeps input plasma densities low
enough to prevent initial defocusing. Increasing the beam
waist leads to a longer self-focusing length compared to
the dispersion length, so the input pulse duration is in-
creased for lower fractional densities to allow for filament
formation. Lower densities also require longer propaga-
tion lengths due to longer self-focusing lengths. Table I
summarizes some important parameters in the variable-
density calculations. We also make calculations without
collisional effects (ionization and absorption) to test their
role.

Peak intensities versus propagation distance with dif-
ferent molecular densities are shown in Fig. 25, and peak
plasma densities versus propagation distance are shown
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in Fig. 26, both with and without collisional effects (ion-
ization and absorption). For each case filamentation oc-
curs, but with lower peak intensities and peak plasma
densities at lower molecular densities. When collisional
ionization/absorption is turned off, the peak intensity in-
creases and the peak plasma density decreases for each
case. However, at low molecular densities, the effect
of collisional ionization/absorption is less pronounced,
yielding similar peak intensities and peak plasma densi-
ties regardless of collisional ionization/absorption. Vari-
able molecular density calculations of maximum peak
plasma densities over the entire propagation distance are
shown for α = 1, 0.5, 0.1 and 0.05 in Fig. 27(a), (b), (c)
and (d), respectively. In contrast to the non-monotonic
plasma-wavelength scaling with α = 1, when the molecu-

FIG. 25. (color online) Peak intensities versus propaga-
tion distance are shown with collisional ionization/absorption
turned on (a − d) and off (e − h), and fractional density coef-
ficient α set to (a, e) α = 1, (b, f) α = 0.5, (c, g) α = 0.1, and
(d, h) α = 0.05. Results are shown for central wavelengths of
λ = 4 (black dashed lines), λ = 6 (red solid lines), λ = 8 (blue
dotted lines), and λ = 10 µm (green solid lines with circles).

lar density is decreased enough, plasma density decreases
monotonically with wavelength, as shown in Fig. 27(c)
and (d) for α = 0.1 and 0.05, respectively. We attribute
this to the lack of high-frequency bursts with low molec-
ular densities, which will be discussed later. Compar-
ing Fig. 27(a) to Figs. 27(b − d) also shows that col-
lisional ionization/absorption affects plasma generation
much more if α = 1 compared to α < 1. For exam-
ple, with α = 1 at λ = 6 µm, the difference in peak
plasma density between the case with collisional ioniza-
tion/absorption on versus off is ∼ 78% of the value with
collisional ionization/absorption on, whereas with α =
0.05 the difference is ∼ 3%.

FIG. 26. (color online) Peak plasma densities versus propaga-
tion distance are shown with collisional ionization/absorption
turned on (a − d) and off (e − h), and fractional density coef-
ficient α set to (a, e) α = 1, (b, f) α = 0.5, (c, g) α = 0.1, and
(d, h) α = 0.05. Results are shown for central wavelengths of
λ = 4 (black dashed lines), λ = 6 (red solid lines), λ = 8 (blue
dotted lines), and λ = 10 µm (green solid lines with circles).
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FIG. 27. (color online) Maximum plasma densities versus
wavelength are shown with fractional density coefficient α and
collisional ionization/absorption turned on (solid red lines,
stars) and off (dashed blue lines, solid circles) for (a) α = 1,
(b) α = 0.5, (c) α = 0.1, and (d) α = 0.05.

To compare the frequency content of pulses in the main
calculations (high density) to low-density calculations,
we carry out instantaneous frequency and XFROG cal-
culations at each wavelength with α = 0.05, at locations
of highest plasma density. Figure 28 shows these cal-
culation results, which can be directly compared with
Fig. 24 for the main calculations. As shown by the fields
in Fig. 28(a), (d), (g) and (j) and the temporal phase in
Fig. 28(b), (e), (h) and (k) of each pulse, there are no ap-
parent high-frequency bursts at any wavelength with α =
0.05. In particular, with α = 0.05 the central wavelength
at the FWHM intensity position of the trailing edge of
the 6-µm pulse is 5.6 µm, while for the 4-µm pulse the
central wavelength at the trailing edge is 3.71 µm. This
is made visually clear by comparing the XFROG spectro-
gram at 6-µm for the main calculations [Fig. 24(f)], which
shows a high-frequency lobe, to the 6-µm XFROG spec-
trogram with α = 0.05 [Fig. 28(f)], which does not have
a high-frequency lobe. Therefore, since high-frequency
bursts do not occur with α = 0.05, we do not have non-
monotonic plasma density scaling with wavelength at this
low density, in contrast to the main calculations.

We conclude that the non-monotonic plasma scaling
with wavelength as seen in our main calculations is
mainly due to the high-frequency bursts caused by high
intensities and self-steepening occurring in high-density
ZnSe, and in particular the role of collisional ioniza-
tion/absorption is enhanced at this high density. With
low densities, high-frequency bursts do not occur, yield-
ing monotonic scaling of plasma density with wavelength.
Also note that the dispersion effect is proportional to the
medium density.

FIG. 28. (color online) Calculations are shown here with low
molecular densities (α = 0.05). On-axis normalized electric
field temporal profiles are shown at labeled positions of max-
imum plasma density with central wavelengths of (a) λ = 4,
(d) λ = 6, (g) λ = 8 and (j) λ = 10 µm. The temporal phase
of each field is shown for each central wavelength in (b) λ =
4, (e) λ = 6, (h) λ = 8 and (k) λ = 10 µm. Corresponding
XFROG spectrograms are shown for central wavelengths of
(c) λ = 4, (f) λ = 6, (i) λ = 8 and (l) λ = 10 µm. Here
the delay axis corresponds to the offset between the reference
pulse and the signal pulse (to be analyzed), where a delay of
0 fs means the reference field at 0 fs is overlapped with the
signal field at 0 fs.

APPENDIX D: ENVELOPE INTERPOLATION
OVER CARRIER OSCILLATIONS

Since the UPPE is carrier-resolved the modeled pulses
contain fast oscillations with periods at the carrier cy-
cle. To retrieve the intensity envelope, we interpolate
the carrier-resolved intensity. Envelope-interpolated ver-
sions of Figs. 7, 9, 11, 12 and 19 are shown in Figs.
29, 30, 31, 32 and 33, respectively. Oscillations shown
in Fig. 3 are numerical artifacts that occur due to a mis-
match between the group velocities and phase velocities
at each wavelength, causing carrier-envelope phase drifts
and varying peak intensities.
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FIG. 29. (color online) An envelope-interpolated version of
Fig. 7: spatio-temporal intensity profiles at labeled propaga-
tion distances of shortest pulse duration are shown for (a) λ =
4, (b) λ = 6, (c) λ = 8, and (d) λ = 10 µm. The color bars
show intensity in W/cm2

FIG. 30. (color online) An envelope-interpolated version of
Fig. 9: on-axis temporal profiles versus propagation distance
are shown for (a) λ = 4, (b) λ = 6, (c) λ = 8, and (d) λ = 10
µm. The color bars show intensity in W/cm2.

FIG. 31. (color online) An envelope-interpolated version of
Fig. 11: spatio-temporal intensity profiles are shown for λ =
8 µm at (a) z = 0, (b) z = 0.2, (c) z = 0.4, (d) z = 0.5,
(e) z = 0.6, and (f) z = 0.8 cm. A light bullet persists from
z = 0.4 to z = 0.6 cm. The color bars show intensity in
W/cm2, and spatially-averaged pulse durations are labeled
with arrows where light bullets propagate.

FIG. 32. (color online) An envelope-interpolated version of
Fig. 12: spatio-temporal intensity profiles are shown with λ =
8 µm and an input power of 4Pcr at propagation distances of
(a) z = 0, (b) z = 0.2, (c) z = 0.4, (d) z = 0.6, and (e) z =
0.8 cm, as labeled. Here plasma effects are turned off. The
color bars show intensity in W/cm2.

FIG. 33. (color online) An envelope-interpolated version of
Fig. 19: spatio-temporal intensity profiles are shown for λ =
8 µm at labeled propagation distances with input powers and
input FWHM pulse durations of (a − d) 6Pcr, 60 fs, (e −
h) 8Pcr, 60 fs, and (i − l) 4Pcr, 120 fs. The color bars show
intensity in W/cm2, and selected spatially-averaged pulse du-
rations are labeled with arrows.



16

[1] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and
G. Mourou, Opt. Lett. 20, 73 (1995).

[2] S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge,
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A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Mur-
nane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).

[7] A. Thai, M. Hemmer, P. K. Bates, O. Chalus, and
J. Biegert, Opt. Lett. 36, 3918 (2011).

[8] H. Liang, D. L. Weerawarne, P. Krogen, R. I. Grynko, C.-
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Schrauth, A. Gaeta, C. Hernández-Garćıa, L. Plaja,
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[39] R. Šuminas, G. Tamošauskas, G. Valiulis, V. Jukna,
A. Couairon, and A. Dubietis, Appl. Phys. Lett. 110,
241106 (2017).

[40] M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604
(2004).

[41] A. Couairon, E. Brambilla, T. Corti, D. Majus,
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