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The ability to characterize the complete quantum state of light is essential for both fundamental and applied
science. For single photons the quantum state is provided by the mode that it occupies. The spectral temporal
mode structure of light has recently emerged as an essential means for quantum information science. Here we
experimentally demonstrate a self-referencing technique to completely determine the pulse-mode structure of
single photons by means of spectral shearing interferometry. We detail the calibration and resolution of the
measurement and discuss challenges and critical requirements for future advances of this method.

Quantum photonic technology research is increasingly fo-
cusing on ultrashort optical pulsed modes due to their high in-
formation content and their compatability with integrated op-
tical platforms. The time-frequency (TF) degree of freedom
constitutes an infinite Hilbert space [1], allowing an informa-
tion content per photon limited only by the encoder and de-
tector resolution. Accessing the information contained in both
the spectral amplitude and phase domains of ultrafast pulsed
modes of quantum light raises the possibility of surpassing
the standard quantum limit in precision measurements such
as pulse time-of-flight [2] and atmospheric characteristics [3].
Furthermore, the freedom to encode quantum information in
multiple spectral-temporal modes, and then to recover that in-
formation, extends the usefulness of quantum secure informa-
tion protocols such as quantum key distribution (QKD) [4].
However, for these advantages to be exploited, complete and
reliable characterization techniques of quantum light pulses
are required.

Quantum optical technologies involve three experimental
stages: state preparation, state evolution or active manipula-
tion, and ultimately measurement. The ability to accurately
characterize the quantum state of light is crucial for develop-
ing all three stages of optical quantum technologies. Firstly,
the development of nonclassical light sources requires com-
plete characterization of the optical field output to certify the
output light matches the desired quantum state [5]. Secondly,
verifying operations that manipulate the quantum state of light
requires full characterization of a complete set of probe states
[6]. This forms the basis of optical quantum process tomogra-
phy. Finally, the development of new quantum optical detec-
tors requires the ability to probe the detector response with a
complete set of probe states, a technique known as quantum
detector tomography. The set of probe states can be verified
by first using a previously calibrated detector.

The pulse envelope of ultrashort optical pulses varies on a
time scale far shorter than the response time of the best pho-
todetectors, making direct sampling of the temporal intensity
of ultrashort optical pulses infeasible. Moreover, full recon-
struction of an optical pulse train necessitates knowledge of
its spectral or temporal phase even if the amplitude is known
in both the time and frequency domains [7]. Although signif-
icant progress has been made in characterizing intense ultra-
short light pulses using nonlinear optical interactions with a

shorter optical pulse, even enabling resolution of the carrier
frequency oscillations [8], techniques for single-photon level
characterization are in their infancy. Methods to estimate the
optical pulse shape of single-photon sources based on inter-
ference with well-known reference pulses have been realized,
but such approaches require stable, tunable, mode-matched
reference pulses [6, 9–11]. Such a tunable reference source is
difficult to obtain and requires a priori information about the
pulse to be characterized to ensure proper overlap with the ref-
erence. These approaches also require the reference pulse to
be scanned in multiple parameters, thus requiring long mea-
surement times and many on-demand copies of the original
state. We therefore seek a self-referencing method for char-
acterizing the ultrafast pulse mode structure of single-photon
sources without need for reconfiguration of the apparatus.

Spectral phase interferometry for direct electric field recon-
struction (SPIDER) is an established technique for character-
izing ultrashort pulses in the high field regime. The SPIDER
protocol involves interfering an ultrafast pulse with a copy of
itself to which a constant translation of the spectrum, or spec-
tral shear, has been applied. Information about the spectral
phase of the pulse can be recovered through measurements
of the spectral interference pattern between the two pulses
[8]. In previous work with bright pulses, the spectral shear
is typically obtained through second harmonic generation or
other processes which are nonlinear in the incident optical
field. Other methods of ultrafast pulse characterization such
as frequency-resolved optical gating (FROG) also rely on such
nonlinear processes [12]. However, in the quantum regime
such nonlinear processes are not practical under general con-
ditions due to the difficulty of achieving high probabilities of
nonlinear interactions at the single-photon level in a noise-
free, easily reconfigurable setting [13].

A promising method of obtaining the spectral shift needed
for spectral-shearing interferometry is electro-optic tempo-
ral phase modulation [14]. This involves passing the light
through an electro-optically responsive material such as
lithium niobate, in which the refractive index is simultane-
ously varied such that a temporally varying phase is applied
to the pulse. The effect of linear temporal phase modulation
is the desired uniform frequency shift. This method has the
advantage that it is deterministic and largely independent of
the incident pulse shape or amplitude, and is thus applicable
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FIG. 1. Schematic of EOSI. A pulse is coupled into a Mach-Zehnder
interferometer where one arm applies a spectral shear via electro-
optic modulation, whilst the other applies a relative temporal delay.
Spectrally-resolved detection at the output allows extraction of the
spectral phase through Fourier analysis.

at the single-photon level. Recently, the feasibility of such
scheme has been shown at the single-photon level [15].

Previous work has demonstrated the feasibility of electro-
optic spectral shearing interferometry (EOSI) with classical
light [14]. We demonstrated the first heralded single-photon
pulse reconstruction by EOSI [16]. This method utilized
triggered single-photon spectral measurements [17], which is
a key difference between our approach and standard spec-
tral shearing interferometry techniques that are not triggered.
Not only does this enable characterization of heralded single-
photon pulses, but multiple single-photon EOSI devices could
be used to characterize multi-photon states displaying high-
dimensional spectral-temporal entanglement. Here, we pro-
vide a detailed description of the methods and thoroughly dis-
cuss the scope and challenges of this class of characterization
scheme.

I. BACKGROUND

The quantum state of a single photon is given by the field
mode that it occupies [18–20]. Here we focus on the pulse
modes of an optical beam, in which the source emits single
photons into a well-defined transverse spatial and polarization
mode, such as that found in a single-mode optical fiber. To
understand how EOSI enables the reconstruction of the pulse
mode structure of a single-photon source, we begin by il-
lustrating how the spectral shearing interferometry algorithm
extracts the spectral phase of an electromagnetic field mode
[8, 21–23]. We will assume that successive pulses are iden-
tical, with the same polarization and spectral mode. We will
work in terms of the spectral representation of the analytic
field

ε̃(ω) = F{ε(t)}, (1)

where F{ε(t)} refers to the Fourier transform of ε(t). This
can be factored into a product, ε̃(ω) = ε0ψ̃(ω), consisting of a
constant amplitude ε0, which is the electric field strength, and

a normalized spectral mode function ψ̃(ω) = |ψ̃(ω)|eiφ(ω),
where φ(ω) is the spectral phase. The real-valued electric field
E(t) is related to the complex-valued analytic function, ε(t),
by

E(t) = Re{ε(t)}. (2)

Clearly, the spectral mode function ψ̃(ω) can be fully
reconstructed from measurements of the spectral intensity
S(ω) = |ε0ψ̃(ω)|2 and the spectral phase φ(ω). At the
single-photon level, measurement of S(ω) can be obtained
using a single-photon spectrometer described in section V.
However the spectral phase is more difficult to obtain and
measurements must be made indirectly.

The EOSI protocol for obtaining the spectral phase works
by splitting the pulse with a 50 : 50 beam splitter, applying
a spectral shift to one of the copies and a temporal shift to
the other, recombining the two at a second beam splitter, and
analyzing the spectral interference pattern (see Fig. 1). If the
spectral shear is given by Ω, the relative time delay by τ and
the intensity of the spectral interference pattern from the two
outputs by S+

Ω,τ (ω) and S−Ω,τ (ω), then

S±Ω,τ (ω) =
1

4
|ε̃(ω)eiωτ ± ε̃(ω + Ω)|2 (3)

=
1

4
(S(ω) + S(ω + Ω))

±1

2
Re{ε̃(ω)ε̃∗(ω + Ω)eiωτ}.

This can also be expressed in terms of the first-order spectral
correlation function of the field,

C(ω, ω′) = 〈ε̃∗(ω)ε̃(ω′)〉 , (4)

as

S±Ω,τ (ω) =
1

4
(C(ω, ω) + C(ω + Ω, ω + Ω)) (5)

±1

2
Re
{
C(ω + Ω, ω)eiωτ

}
.

The Fourier transform of this spectral interference pattern
results in three terms

S
±
Ω,τ (T ) ≡ F{S±Ω,τ (ω)}

=
1

2
S(T )(1 + eiTΩ) (6)

± F{|ε̃(ω)ε̃∗(ω + Ω)| exp[i∆φ(ω,Ω)]}~ δ(T − τ)

± F{|ε̃∗(ω)ε̃(ω + Ω)| exp[−i∆φ(ω,Ω)]}~ δ(T + τ),

where ~ indicates a convolution, ∆φ(ω,Ω) =
φ(ω) − φ(ω + Ω) and S(T ) ≡ F {S(ω)}, which has
a width determined by the transform-limited duration of
pulses with the spectrum S(ω).
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If τ is chosen to greatly exceed the pulse duration, then the
three terms of the above expression can be resolved from one
another, and it is possible to computationally filter one of the
two side bands centered about ±τ in the Fourier domain, e.g.

C(ω+Ω, ω)eiωτ = |ε̃(ω)ε̃∗(ω+Ω)|exp{i[ωτ +∆φ(ω,Ω)]},
(7)

where the equality holds for coherent, single-pulse mode
states. Taking the argument of this yields

θ(ω,Ω, τ) ≡ ωτ + ∆φ(ω,Ω), (8)

from which the spectral phase, φ(ω), can be faithfully recon-
structed if τ is well calibrated. Up to an irrelevant constant
phase, Eq. (8) can be rewritten as

θ(ω,Ω, τ) = (ω − ω0)τ + φ(ω)− φ(ω + Ω) (9)

where ω0 is some angular frequency, taken henceforth to be
the center frequency of the interference term. We call this
term the phase gradient, as it is similar, at the first order, to the
derivative of the phase with respect to frequency.

The Fourier analysis method used to extract the envelope
and the phase from the interference pattern is similar to a
Hilbert transform. It is achieved by digitally filtering one side-
band in the Fourier domain with a narrow filter and taking ei-
ther the modulus or the argument of the inverse Fourier trans-
form. This procedure is depicted using experimental data in
Fig. 4. Knowledge of Ω and τ is therefore sufficient to recon-
struct the absolute spectral phase as long the acquired inter-
ference pattern has sufficient spectral fringes that can be used
to extract the sideband in the Fourier domain.

A. Phase reconstruction

There are several mathematical approaches to extracting
the spectral phase φ(ω) from the measured phase gradient
θ(ω,Ω, τ). Although in principle any of these algorithms suf-
fices to reconstruct any spectral phase, a different reconstruc-
tion method might be appropriate depending on what the ex-
pected spectral phase profile behavior. For many applications,
only the low-order terms in ω of the spectral phase φ(ω) are
of interest and so it is most appropriate to proceed by finding
a polynomial expansion of φ(ω). It is helpful to reformulate
Eq. (8) using a Taylor series expansion of φ(ω + Ω) about ω,

θ(ω,Ω, τ) = (ω − ω0)τ − Ω
dφ

dω
− Ω2

2

d2φ

dω2
− · · · (10)

where derivatives are evaluated at ω. Now we express φ(ω) as
a power series about ω0 and defining δω ≡ (ω − ω0),

φ(ω0 + δω) = φ0 + φ1δω + φ2δω
2 + φ3δω

3 · · · (11)

where φn is the n-th term in the expansion for the spectral
phase. Substituting into Eq. (10) we obtain

θ(ω,Ω, τ) = δω τ − Ω(φ1 + 2δωφ2 + 3δω2φ3 · · · )
− Ω2(φ2 + 3φ3δω + · · · ) (12)
− Ω3(φ3 + · · ·

At this point we remark that if Ω is small compared to the
bandwidth of the pulse, then for most of the frequency range
where θ(ω,Ω, τ) is large compared to its error (i.e., the spec-
tral overlap region of the pulses) Eq. (10) reduces to

θ(ω,Ω, τ) = τδω − Ω
dφ

dω
, (13)

and hence φ(δω) can be directly extracted as

φ(δω) =
1

Ω

∫
[τδω − θ(ω,Ω, τ)]dω, (14)

with the integration performed over the region where
θ(ω,Ω, τ) can be reliably measured, set by the spectral range
over which there is sufficient amplitude to measure spectral
interference. Note that in this limit Eq. (12) shows

θ(ω,Ω, τ) = −Ωφ1 + δω(τ −2Ωφ2)−6Ωδω2φ3 + · · · (15)

and hence any error in the calibration of τ manifests after the
integration over ω as an error in the extracted value of φ2, the
second-order spectral phase or “chirp”. It is therefore vital
that τ is accurately characterized, with error much less than
2Ωφ2.

Within the regime of the shear Ω being much less than the
bandwidth of the pulse, the errors in the phase reconstruction
will be smaller with increasing shear. If the shear were com-
parable to the pulse bandwidth, the visibility of interference
fringes will be lost due to the reduced overlap of the sheared
and unsheared pulses, which would negatively affect phase re-
construction. The spectral shear applied by the set-up can be
tuned up to a maximum of approximately 0.3 nm, for a pulse
bandwidth of several nanometers, and so the interferometer
operates comfortably within the regime where the overlap is
close to unity. However the shear is large enough relative to
the bandwidth that the successive terms in Eq. (12) contribute
significantly across much of the range of the integral in Eq.
(14) and may not be ignored. Therefore, to extract the phase
terms, we note that Eq. (12) is linear in the spectral phase
terms φi and hence may be expressed as

δω τ − θ(δω,Ω) = A~φ, (16)

where ~φ is the vector (φ1, φ2, φ3 · · · )T and A is a matrix de-
fined with its columns as

A ≡ (Ω, (δω + Ω)2 − δω2, (δω + Ω)3 − δω3, · · · ). (17)

In our analysis we chose A to include terms up to (Ω/δω)4 ≈
10−4 to keep calculation errors small. Eq. (16) can be effi-
ciently and accurately solved numerically using a matrix divi-
sion routine to finally obtain the spectral phase.

For arbitrary spectral phase, provided the pulse’s temporal
support is limited to the region [−π/Ω, π/Ω], the phase can
also be recovered through a concatenation approach [23]. This
method is more suitable for spectral phase profiles that are
non-analytic in ω about the center frequency ω0 or contain
high-order polynomial contributions in ω that would not be
reconstructed by the above approach. This approach begins
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FIG. 2. Experimental setup for single-photon generation, shaping and EOSI detection (see text for detailed description). Ti:Sa: Titanium-
Sapphire femtosecond oscillator; BS: beamsplitter; PD: photodiode; DM: dichroic mirror; PBS: polarizing beam-splitter; APD: single-mode-
fiber-pigtailed avalanche photodiode; DG: diffraction grating; SLM: spatial light modulator; PMF: polarization-maintaining fiber; EOM:
electro-optic phase modulator; RF: radio-frequency signal; BSC: Babinet-Soleil compensator; λ/2: half-waveplate; SP: spectrometer; CFBG:
chirped fiber Bragg grating; SPCM: single photon counting module; TRSPS: time-resolved single-photon spectrometer.

by setting the spectral phase at some value φ(ω0) to be some
constant arbitrary value, typically zero, and then iteratively
reconstructing the phase at every point ω + nΩ for integer n,
such that

φ(ω0 + (n+ 1)Ω) = φ(ω0 + nΩ)

+θ(ω0 + nΩ,Ω, τ)− Ωτ (18)

According to the Shannon theorem, this concatenation ap-
proach suffices to completely characterize the pulse if it has no
temporal support outside the range [−π/Ω, π/Ω] [8]. If this
condition is not met, however, a disadvantage of this method
is that it only provides the phase relationships between points
separated by an integer multiple of the shear, which is often
a more coarse sampling than that allowed by the spectrome-
ter resolution. Therefore, whilst this process gives the exact
phase relationship between discrete sets of frequencies sepa-
rated by integer multiples of the shear, the phase differences
between points offset by amounts other than an integer mul-
tiple of the shear is not directly determined. One approach to
solving this is to use each series to determine the profile of
a mode in the time domain, then average these pulses. The
resulting pulse profile contains information from all the con-
tributing frequency measurements, and can be Fourier trans-
formed back into the spectral domain to provide the complete
set of phase relationships [23].

When processing the EOSI interferogram, care must be
taken since most spectrometers will sample the intensity pro-
file in wavelength, rather than frequency. For narrowband
pulses it is acceptable to assume that the bandwidth of the
pulse is sufficiently smaller than the central wavelength so that
a linear relationship is sufficient to translate the spectrum from

the wavelength domain to the frequency domains. However
this approximation is not valid in our demonstration and thor-
oughly corrupts the extracted spectral phase if implemented
[24]. In our implementation we corrected for the problem by
using Fourier transform interpolation, which functions well
even up to fringe spacing at the Nyquist limit.

II. SOURCE OF SHAPED SINGLE PHOTONS

The full experimental setup is depicted by Fig. 2. The
laser source is a commercial femtosecond oscillator (Spectra-
Physics Tsunami) delivering pulses of 100 fs full width at half
maximum (FWHM) at a repetition rate of 80 MHz, corre-
sponding to a spectrum centered at 830 nm and a bandwidth of
10 nm FWHM. An internal fast photodiode is used to generate
from the repetition rate the clock signal that is used throughout
the experiment. Second harmonic generation is achieved in a
1 mm-long BiBO crystal, generating a 3 nm FWHM spectrum
at 415 nm. Heralded single photons are generated by collinear,
type-II spontaneous parametric down conversion (SPDC) in
an 8 mm-long potassium dihydrogen phosphate (KDP) crystal
[25]. The orthogonally-polarized signal and idler fields with,
respectively, 12 nm and 3 nm bandwidths are separated at a
polarizing beam splitter (PBS), with a photodetection event in
the idler mode heralding the creation of a photon in the sig-
nal mode. The phasematching of the source was chosen such
that the complex joint amplitude of the two-photon state pro-
duced by the source would be separable, so that detection of
a heralding photon in the idler arm projects the signal into a
spectrally-pure single-photon state [26]. The downconverted



5

photon pairs therefore does not exhibit any of the usual spec-
tral correlations from a parametric down conversion source,
and spectrally pure single photons are produced without the
need to filter the herald. Multiple pairs of photons are shown
to be negligible compared to single-photon events by mea-
surement of the conditional degree of second-order coherence,
g(2)(0) = 0.06± 0.04, which also indicates the non-classical
nature of the state [27]. Note that this value of g(2) was mea-
sured at the very output of the setup, i.e. after the last beam-
splitter before the spectrometers on Fig.2, which ensures that
the retrieved values properly describes single photons states
in the correct spectral-temporal mode.

To test the EOSI with a range of spectral phase profiles,
the signal photon is then directed to a fiber-coupled pulse
shaper capable of performing arbitrary spectral phase opera-
tions [28]. The shaper consists of a standard 4-f line built with
a 2000 lines/mm diffraction grating (Spectrogon) and 200 mm
focal length cylindrical lens (Thorlabs) with a 2D phase mask
(Hamamatsu SLM, 1272 × 1024 pixel mask) and is capable
of achieving arbitrary spectral phase shaping with a resolution
of 0.04 nm/pixel and near-uniform spectral intensity transmis-
sion of ≈ 60%. Losses are equally distributed between the
diffraction grating efficiency and the insertion losses in fiber
coupling at the output of the device.

The shaper is calibrated by leaving the phase profile of the
SLM uniform except for a single pixel with a π phase shift
scanned across the mask. This creates a spatial discontinu-
ity in the phase over an aperture comparable in size to the
wavelength, which causes diffraction at the wavelength cor-
responding to the pixel position. The pixel position of the
SLM can therefore be mapped to the wavelength by sending
in bright classical pulses through the SLM and then into a con-
ventional spectrometer (Shamrock 303i monochromator, 1200
mm−1 grating, Andor) and then monitoring the position of the
dip in the spectral intensity caused by diffraction around the
phase-shifted aperture.

Since the shaper itself introduces spectral phase, it needed
to be calibrated. The exact phase introduced by the shaper
in its unmodulated state was determined by standard spec-
tral interferometry. A second, free-space beam path was built
around the pulse shaper to form a Mach-Zehnder interfer-
ometer with the shaper in one arm, into which bright clas-
sical pulses were sent. The relative spectral phase in the two
arms introduced by the pulse shaper was then extracted us-
ing Fourier algorithms [7]. This was eventually used to create
a default mask for the SLM, designed to compensate for the
nonuniform spectral phase introduced by the device itself and
to therefore allow complete control and manipulation of the
spectral phase.

The SLM is polarization-sensitive, so it is important that
only light linearly polarized in the correct orientation is sent
into the pulse shaper. However, due to slight misalignment
and imperfection in the grating, a small amount of the other
polarization appears in the line. A polarizing beamsplitter was
added to remove the unwanted polarization and to ensure that
no interference fringes due to polarization, which could af-
fect the phase reconstruction, are observed at the output of
the pulse shaper. Note that the device is also capable of ad-

justing the spectral amplitude [29] which is used to reduce
the bandwidth by the signal photon from 12 to 8 nm in order
to fit within the acceptance window of the fiber Bragg grat-
ing used in our single-photon spectrometer (see Sec.V). The
amplitude shaping of the device is achieved by writing a saw-
tooth diffraction grating on the SLM mask across the vertical
dimension. This creates an additional beam at the output of
the device, separated by a few micrometers from the zero-th
order. Varying the depth of the diffraction grating allows to
address the amount of energy in a given spectral band in the
first diffraction order. That beam is usually separated from
the fundamental by using a pinhole, but since our setup is
fibre-coupled, that separation is achieved by simply moving
the output fibre vertically. The resolution of the diffraction
grating was determined by increasing the number of grooves
while verifying that both beams were perfectly separated after
injection in the output fibre. This ensures that full attenuation
by the pulse shaper results in all the energy being contained
in the fundamental beam, which is not coupled into the output
fibre.

III. OBTAINING SPECTRAL SHEAR

To obtain the spectral shear we used an EOSpace LiNbO3-
waveguide electro-optic phase modulator (EOM). The modu-
lator is driven by a 10 GHz sinusoidal voltage emitted by a
parametric dielectric resonant oscillator (PDRO) and ampli-
fier (Aspen Electronics). The PDRO upconverts by a factor
of 125 the 80 MHz signal from the laser cavity photodiode,
ensuring that the 10 GHz output signal is phase-locked to the
optical pulse train. The modulator is designed such that an
applied radio-frequency (RF) signal propagates through the
device with phase velocity equal to the group velocity of an
optical pulse centered at 830 nm wavelength. A pulse trav-
eling through the device therefore acquires a time-dependent
phase φ(t), depending on the temporally locked RF field am-
plitude with which it co-propagates. This results in a tempo-
ral variation in the refractive index of the waveguide viewed
from the reference frame of the optical pulse. The voltage
difference necessary to achieve a relative phase shift of π be-
tween orthogonal polarization propagating through the EOM
is referred to as the half-wave voltage Vπ and depends on the
length of the modulator and the electro-optic coupling at a
given frequency.
The time-varying refractive index of the waveguide can then
be used for deterministic manipulation of the frequency spec-
trum of the pulse, such as spectral shear [15] and bandwidth
manipulation [30]. If the centre of the pulse co-propagates
with the steepest part of the sinusoidal RF waveform, then the
optical field at the output of the modulator when the input state
εin(t) is launched may be written

εout(t) = εin(t)exp
(
−iπVmax

Vπ
sin(2πft)

)
, (19)

where Vmax is the maximum voltage of the applied RF field,
f is the frequency of the RF signal and εin(t) ≈ |εin(t)|eiω0t

is the temporal profile of the incident pulse where ω0 is the
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central frequency of the wavepacket. If the pulse is short com-
pared to the period of the modulation (in our case, 100 ps),
then we can neglect higher-order terms in the expanded tem-
poral phase, resulting in

εout(t) = |εin(t)|exp
(
i

(
ω0 −

2π2fVmax
Vπ

)
t

)
. (20)

The result is therefore an effective frequency shift of Ω =
2π2fVmax/Vπ . Since the temporal support of the pulse must
be within the region where the RF signal is linear, there is a
limit on the maximum temporal duration of pulses to which
a uniform shift can be applied without modifying the spectral
envelope.

In practice, the phase-lock between the RF signal and the
optical pulse train will have some noise, resulting in each
pulse experiencing timing jitter with respect to the RF signal.
However, the effect of this is simply to reduce the visibility of
the fringes in the interferogram, and does not systematically
affect the calculated spectral phase [31].

The electro-optic response of the medium is much greater
in the crystal axis aligned with the applied electric field. For
light polarized along one of the eigenaxes of the crystal, the
coefficient of the electro-optic tensor has a magnitude of 33
pm/V, while their values are ≈ 3 pm/V for other polariza-
tion. Hence, light propagating in the orthogonal polarization
is less affected since the modulation of the index of refraction
is directly proportional to the electro-optic coefficient. By
propagating the unshifted pulse through the modulator in an
orthogonal polarization, it is possible to achieve a common
spatial path for the two pulses [24]. This common path ap-
proach has the advantage of making the set-up more resistant
to vibrational and thermal fluctuations in path length and so
improving interferences visibility, as well as minimizing the
relative spectral phase between the two arms of the interfer-
ometer. Overall in our set-up we were able to achieve a rela-
tive spectral shear of approximately 0.58 nm at 830 nm central
wavelength.

Generally, when the RF source is turned on, it will lock to
an arbitrary phase of the pulse train, meaning the pulse co-
propagates at a random point of the RF waveform. Further-
more, when the source is active, the phase lock is dependent
on thermal fluctuations which could result in a slow drift of the
lock point. It is therefore necessary to stabilize the tempera-
ture environment. The amplitude and phase of the RF signal
wave can be adjusted in real time through a variable time de-
lay and attenuator [15]. For bright classical light, it suffices to
send the beam (of the modulated polarization) into the EOM
and spectrally resolve the output, and then select the setting
of the RF phase control such that the center wavelength of the
pulse is extremized. However, the single photon signal pro-
duces far fewer counts, making reliable alignment in real time
vastly more challenging. To make the process easier, a bright
coherent beam line is coupled into the same beam path as
the downconverted light during the photon-source alignment.
This bright classical beam line was constructed such that the
delay in the pulse train relative to the single-photon pulses was
an exact integer multiple of the RF waveform period (100 ps).
By setting the delay to precisely 200 ps, it is known that the

bright coherent pulses are aligned with the same point of the
RF waveform as the single photon pulses, and therefore will
receive the same spectral shear. In this way it is possible to
ensure the single photons are spectrally shifted by inspecting
the spectrum of bright classical light.

IV. CALIBRATING THE INTERFEROMETER

Our implementation of the EOSI uses a polarization Mach-
Zehnder configuration. This has several advantages over a
spatial mode Mach-Zehnder or other interferometer designs:
lower losses, spatial-mode matching, common-path stability,
and a reduced need to account for internal spectral phase dif-
ferences within the interferometer. One minor disadvantage
is that the unmodulated pulse also passes through the mod-
ulator, making it susceptible to residual electro-optic effects.
This could affect the relative shear Ω or otherwise distort the
reference pulse and thus corrupt the extracted spectral phase,
although this proved negligible in our demonstration. Sev-
eral factors reduce the visibility of the interferogram: thermal
fluctuations in the interferometer, the timing jitter of the RF
signal with respect to the optical pulse train, the mixedness of
the single-photon state arising from optical fluctuations in the
pump and pulse shaper, and mixedness arising from imperfect
separability of the two-photon state and the tracing over the
state of the herald photon. Besides optical effects, the limited
resolution caused by the point-spread function of the spec-
trometers also creates the appearance of reduced visibility.

The value of τ must be chosen such that the spectral fringe
spacing is well below the sampling limit of the spectrome-
ter (corresponding to τ ≈ 27 ps) to provide an interferogram
with good visibility, but large enough such that the interfer-
ence term is clearly separable from the DC signal and that
spectral fringes appear with sufficient density to extract the
phase to high order. In the experiments, a time delay of τ ≈ 5
ps was chosen.

After passing through the pulse shaper, the signal photon
is prepared by a half wave plate, acting as the input of the
polarization Mach-Zehnder interferometer (PMZI), at 45◦

polarization to the optical axis of the PM-fiber coupled
electro-optic modulator into which it is directed. The single
photon is thus in a superposition of polarization states, one
of which experiences a constant spectral translation (the
EOM applies only a marginal spectral shear on the ordinary
ray). The pulses were then directed into a free-space path
containing birefringent calcite wedges (a Babinet-Soleil
compensator, or BSC), which introduce a variable relative
delay between the two polarizations. In practice the PM
fiber, which is highly birefringent, and the modulator itself
introduce more than enough delay to resolve the interference
terms and the role of the calcite wedges is to easily set the
spectral interference fringe spacing to below the sampling
limit of the spectrometer. The two pulses are then rotated in
polarization by a final half wave plate oriented at 22.5◦ to
their polarizations and interfered at a polarizing beam splitter
(closing the PMZI), with the resulting spectral interference
patterns resolved on time-resolved single photon spectrome-
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FIG. 3. a) Temporal cross-correlation pattern of unsheared classi-
cal wavepackets with the calibrated time axis; dashed: envelope of
the cross-correlations obtained by Hilbert transform. b) Compari-
son of the envelope of the cross-correlation pattern for an unsheared
(dashed) and sheared (plain) classical wavepacket, showing a delay
introduced by the group velocity change of approximately 200 fs.
c) Superposition of carrier-wave fringes showing difference in fre-
quency caused by the spectral shear Ω.

ters (see Sec. V).

To reconstruct the spectral phase, it is necessary to have pre-
cise knowledge of certain parameters of the interferometer. In
particular the birefringent time delay τ , which must be known
to much higher accuracy than the chirp-induced effective de-
lay Ωφ2 for accurate reconstruction, and the spectral shear Ω.
The value of Ω can be chosen and measured by sending classi-
cal light of the modulated and unmodulated polarizations into

the interferometer and resolving the spectrum. However, the
value of τ is more challenging to determine and much more
important to the accuracy of the reconstruction. The error of
the value of τ that would lead to errors in the reconstructed
phase comparable to the typical values one would wish to
measure is on the order of several hundred femtoseconds, out
of an absolute value of approximately 5 ps. It is therefore not
possible to perform direct measurements of τ to satisfactory
accuracy with a conventional photodiode. Attempts to cal-
culate the value of τ theoretically are challenging due to the
several processes within the modulator that contribute to the
delay. The main contribution to τ is from the birefringence of
the LiNbO3 in the modulator, which is strongly temperature
dependent. Furthermore, LiNbO3 is a highly dispersive ma-
terial, and so the difference in group velocity of the sheared
and unsheared pulses and, again, the temperature dependence
thereof, would need to be taken into account. One would also
need to simulate how the group velocity of the sheared pulse
varied as its spectrum was translated during its propagation
through the modulator. We therefore used an interferometric
means of directly measuring τ .

Calibration of the calcite wedges is done by injecting bright
classical pulses derived from the laser into the interferometer
with the EOM switched off and measuring with a silicon pho-
todiode the intensity at the output whilst scanning the position
of the calcite wedges. This method only requires knowledge
of the carrier frequency of the incident light to map the wedge
position to delay. Firstly it is necessary to create a mapping
of wedge position onto relative time delay introduced by the
birefringence of the calcite. The interference signal at one
output of the interferometer is given by:

Iout =
1

2

∫
dω I0(ω) cos (φrel(ω)), (21)

where I0 is the spectral intensity of the incident field and φrel
is the relative spectral phase within the PMZI. With the EOM
off, the relative phase φrel(ω) only contains a linear term that
corresponds to a global delay τ between the polarizations, and
so it is possible to approximate the signal as:

Iout(τ) = Icc(τ) cos (ω0τ), (22)

where Icc is the envelope of the cross-correlation and ω0 is
the carrier frequency of the pulse. It contains all the de-
lay from propagation through the EOM and the polarization-
maintaining fiber, and is also directly proportional to the
length of calcite through which light travels. The latter allows
to control the delay between the two polarizations. Hence,
the first moment of the envelope gives the point of zero delay,
while the fringe spacing gives the temporal delay as a function
of wedge position, as shown by Fig. 3 a). To maximize over-
lap between the pulses in the two polarizations, this time-axis
calibration would ideally be done with the EOM switched off.
However, due to the aforementioned thermal effects on the
refractive indices of the modulator, the axes can only be cali-
brated across the range of interest with the EOM being driven.
Therefore, the phase of the RF relative to the optical pulse
train was chosen such that the pulse sits at the extremum of
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the refractive index modulation. This leaves the center wave-
length of the pulse unchanged, allowing extraction of the time
delay by the method described above. Note that any change in
fringe spacing due to mismatch of higher order spectral phase,
such as dispersion, will only appear in the wings of the inter-
ferogram, and can be easily accounted for with Fourier anal-
ysis. This method then allows to unambiguously calibrate the
temporal delay caused by the calcite wedge.

With the axis calibration in hand it is then possible to ex-
tract the time delay τ of the interferometer. Since the pulse re-
construction experiment involves spectrally shearing one arm
within the interferometer, this results in a change in the time
delay τ between the two polarizations due to group delay dis-
persion. In this case, the cross-correlation signal is given by

Icc(τ) = Icc(τ − τ0)cos [(ω0 + Ω/2)(τ − τ0)] , (23)

where τ0 is the contribution to the delay caused by group de-
lay dispersion of the sheared pulse as derived in Eq. (15). The
interferogram measured when the EOM is shearing is then de-
layed by a constant value τ0, and the difference in fringe spac-
ing also allows measurement of the spectral shear. As shown
in Fig. 3b), the zero-delay point is shifted by about 200 fs
when maximum shear is applied on the EOM. The sign of
this delay depends on the sign of the shear (positive for lower
wavelength), which is consistent with the index progression (n
decreases when λ increases). By defining the zero delay point
as the new reference, the stage position is then fully calibrated
and the time delay τ between the two arms of the interferom-
eter is fully characterized. The advantage of this calibration
method is that it does not require any ultrafast detection: the
sampling rate of the acquisition simply has to be sufficient to
resolve temporal fringes created by the movement of the stage,
which is typically have a period on the order of a few kHz. It
does however require phase stability, but this is obtained di-
rectly from the common-path polarization interferometer. Fi-
nally, as depicted by Fig. 3 c), when the two interferograms
(shear vs no shear) are superimposed, the difference in op-
tical frequency due to the difference in wavelength can be
clearly seen. Performing the scan multiple times and averag-
ing the phase extracted from the Fourier analysis conclusively
allows the extraction of the shear Ω. Though directly mea-
suring the shear using a spectrometer is more robust, in the
absence of a high-resolution conventional spectrometer the
cross-correlation method allows a direct measurement at the
output of the interferometer, taking into account every optical
element.

V. SPECTRALLY-RESOLVED DETECTION

Since spectral-shearing interferometry requires spectrally-
resolved measurement, it is necessary to simultaneously
gather enough single photon counts in multiple spectral chan-
nels before contrast is lost in the interferometer. Conven-
tional spectrometers often work by coupling spectral modes
into some other basis, such as spatial modes, by means of
a prism or diffraction grating, and monitoring each of those

modes with a separate detector. However, spectrometers capa-
ble of concurrently monitoring multiple spectral modes with
single-photon level intensity resolution have been difficult
to realize due to the size and expense of arrays of multi-
ple single-photon counting detectors. One solution for short
pulsed modes with a well-characterized repetition rate is dis-
persive Fourier-transform spectroscopy, whereby the pulse
undergoes frequency-to-time mapping in a dispersive medium
such that the temporal envelope of the output pulse corre-
sponds to the spectral envelope of the original pulse [32–34].
Temporally-resolved detection with just one single photon
counting module (SPCM) then provides spectrally-resolved
detection. The spectrometers implemented here use extremely
high dispersion fiber Bragg gratings to map the frequency of
a temporally-short optical pulse onto the temporal envelope
of the output pulse. We have recently shown that by using
state-of-the-art chirped fiber Bragg grating (CFBG) as the dis-
persive element and low-timing jitter single-photon detectors,
high resolution spectrometers can be built [17].

The optical component of the TRSPS, consisting of a
chirped fiber Bragg grating (Teraxion) spliced onto port 2 of
an optical circulator (see inset of Fig. 2), has a transmission
efficiency of approximately 10%. The CFBG introduces a fre-
quency dependent delay of approximately 950 ps/nm on the
photon, which is then detected by a fast SPCM (PDM, Micro
Photon Devices) with approximately ∆t = 30 ps timing res-
olution. The SPCM signal is processed by a time-to-digital
converter (TDC, Pico- Quant, HydraHarp 400) triggered by a
fast photodiode signal that samples the laser pulse train acting
as the experiment clock. The TDC has timing resolution down
to 12 ps, below the detector timing resolution. The trigger
photodiode (Alphalas, UPD-15- IR2-FC) has approximately
15 ps rise time and timing variation less than 1 ps. Since the
spectral resolution is ultimately limited by the timing resolu-
tion of the SPCM, the device is able to detect single photons
with approximately 55 pm spectral resolution at 830 nm. The
Bragg grating is written to reflect light across a wavelength
range of 825–835 nm and therefore for broadband pulses also
acts as a bandpass filter.

VI. RESULTS

A. Data acquisition

The procedure for a typical experimental single-photon
state characterization is depicted by Fig. 4. An acquisition
consists of accumulating a spectrogram at the output of the
TRSPS over approximately 20 seconds (see Fig. 4 a). Her-
alded single photon count rates at the detection stage are typ-
ically around 120 Hz across the Bragg grating reflection win-
dow. An acquisition therefore consists of several thousand
events, which was found to be a sufficiently long acquisition
time for precise phase extraction given the final coincidence
count rates. The visibility of the interference fringes is typ-
ically greater than 70% and is limited by phase instabilities
within the interferometer and the resolution of the spectrome-
ter. Performing the Fourier analysis detailed in Sec. I then al-



9

2.26 2.27 2.28
0

10

20

30

Optical frequency (fs- 1)

C
ou
nt
s

Interferogram

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Delay (ps)

N
or
m
al
iz
ed
am
pl
it
ud
e

Fourier domain

2.26 2.27 2.28

-
4

0

4

-
2

0

2

Optical frequency (fs- 1)

P
ha
se
gr
ad
ie
nt
(r
ad
)

R
ec
on
st
ru
ct
ed
ph
as
e
(r
ad
)

a) b) c)

FIG. 4. Phase extraction process for an unshaped heralded single photon. a) output of the interferometer, showing a 20 seconds acquisition.
b) Fourier transform of the interferogram, showing a peak centered around the delay τ of 5 ps. Overlay: filter used to isolate the sideband. c)
argument of the inverse Fourier transform of the filtered sideband (plain) and reconstructed phase (dashed). The delay τ has been removed,
showing a linear slope due to the quadratic phase accumulated through fiber propagation.

lows extraction of the phase gradient θ shown in Fig. 4c from
the sideband in the Fourier domain (Fig. 4b). The spectral
phase information is finally obtained by following the algo-
rithm from Sec.I A. Note that the spectral range over which
the phase is reconstructed must be restricted to the region
of the spectrum in which fringes are observed, since the ex-
tracted phase outside of this region is not recoverable, see the
edge of Fig. 4 c).

To build statistics, this procedure is repeated for multiple
acquisitions, each consisting of 20 seconds of data, and the
extracted phases are averaged. However, the individual in-
terferograms themselves may not always be summed because
long-term instabilities, such as slow temperature drifts, result
in a slow shift of the global phase of the interference fringes
and so reduce the contrast of the resultant interferogram. In-
terferograms that do not reach a threshold contrast of 50% are
discarded and do not contribute to the final reconstruction.

B. Reconstruction of phase that is polynomial in frequency

The experiment was conducted with various spectral phase
profiles imprinted on the pulse shaper in order to test the fi-
delity of the reconstruction. In the absence of deliberately ap-
plied spectral phase, the device recovers a spectral phase with
a quadratic coefficient of 87000 ± 1000 fs2 and a cubic of
(5± 1) · 105 fs3. This value is found to be in good agreement
with the theoretically predicted spectral phase the single pho-
tons in our experiment receive from their generation and prop-
agation, taking into account the approximately 2.5 meters of
polarization-maintaining fiber, the KDP crystal, and the rela-
tive phase within the interferometer (calcite wedges and EOM
waveguide). This is referred to as the “uncompensated phase”.

This quadratic spectral phase is then removed by applying
a compensating phase mask on the pulse shaper. The cu-
bic component is not compensated for. Similarly, additional
phases are tested, such as excess cubic or quartic phase, with
and without the compensation for the second-order phase. The
phases that are extracted from the interference pattern are all
shown on Fig. 5 for the different configurations of the pulse
shaper, as well as the reconstructed phases. In the first case,
without any applied phase on the shaper, we can see that the

extracted phase gradient, θ(ω,Ω), is mostly linear and nega-
tive and the reconstructed phase itself is quadratic and posi-
tive. The difference in sign comes from the sign of the spec-
tral shear, which was negative (i.e. positive in wavelength,
δλ = 0.58 nm), and extracted phase can be approximated
to the first order as the gradient of the real phase, hence a
quadratic phase has a linear gradient. This trend can be veri-
fied in all the different phases that are imprinted on the pulse
shaper. One can also verify that in the compensated case,
the remaining phase is quite small in comparison to the large
quadratic phase. A cubic component can be extracted, the
value of which is found to be equal to that recovered in the
uncompensated case, implying the expected additivity of the
applied phase.

Polynomial phase profiles up to quartic spectral phase were
imprinted on the single photon by the pulse shaper to test
the limit of the reconstruction, in every case with or without
compensation of the quadratic part. In each case, it can be
seen that the reconstruction is consistent with the phase ap-
plied on the shaper. The uncompensated cases always show
a quadratic part around the same value (∼ 90000 fs2), which
falls to zero in the compensated case, while the higher order
coefficients remain. The retrieved coefficient for cubic phase
is (2.5 ± 0.3) · 107 fs3 and (2.0 ± 1.0) · 109 fs4 for quartic
phase.

To further validate the calibration of the setup, we can com-
pare the phase reconstruction to the known phase that was im-
printed on the pulse shaper. This is achieved by computing the
relative phase between the shaped and unshaped pulse. The
results depicted by Fig. 6 show a good agreement between
the reconstruction and the original phase. The discrepancy
can be attributed to the inability of the pulse shaper to write
large polynomial coefficients, since the phase is too steep on
the edge of the spectrum, thus introducing errors. Indeed, it
can be seen that the reconstruction for quartic phase is more
unstable than the other cases, since such a phase shows very
steep phase gradient close to the wings of the spectrum. How-
ever, it can still be reconstructed with high accuracy even in
the uncompensated case where a large quadratic component
is mixed. It is worth noting that both algorithms described in
Sec. I A can be used to reconstruct polynomial phases, giving
similar results. This shows that the setup and the algorithm is
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FIG. 5. Left column: average of the extracted phase gradients cor-
rected for delay; right column: reconstructed phases from the left
column using the concatenation algorithm for a frequency shear
Ω < 0. Each row corresponds to a different phase profile writ-
ten on the pulse shaper’s mask: Uncompensated: blank; Compen-
sated: phase from the Uncompensated case; Excess Cubic: large
cubic spectral phase; Excess Cubic Compensated: Cubic + previ-
ous compensation phase; Quartic and Quartic Compensated: same
as previously, but with quartic spectral phase instead of cubic.The
error bars represent the standard deviation. The error is zero at the
center frequency since it is constrained by the algorithm. The left
column is approximately the derivative of the right one.
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(dashed) and the reconstructed phase (plain). The shaded area repre-
sents the standard deviation of the reconstruction, which is naturally
larger the further from ω0, where the phase is constrained. The inset
numbers represent the fidelity of the reconstruction.

single photon level.

C. Arbitrary phase reconstruction

A final set of measurements were achieved to test the recon-
struction capabilities of the setup when the phase that is im-
printed on the single photons may not be expanded on a poly-
nomial basis. As detailed in [16], two sets of arbitrary phases
were chosen, which resulted in similar spectral and tempo-
ral intensities, but actually formed two orthogonal modes.
They are defined by a linear spectral phase proportional to
± |ω − ω0|, where the positive (negative) linear phase is la-
belled V-phase (Λ-phase). The effect of such a phase on the
wavepacket is to delay or advance the long-wavelength part of
the spectrum in an opposite direction to the short-wavelength
part.

The value imprinted on the pulse shaper was±750 fs, and a
reconstruction was made. Creating phase profiles of this sort,
which present a non-continuous spatial derivative of the phase
on the mask of the SLM, can introduce diffraction, resulting
in a small hole in the spectrum at the non-analytic point. Sim-
ilarly to the previous section, these phases were reconstructed
with and without compensation of the dispersion. The ex-
tracted and reconstructed phases are shown in Fig. 7. The
extracted phase gradients ∆φ(ω,Ω) closely resemble a step
function where the steepness is determined by the value of the
shear, and the value of the plateau reflect the amount of lin-
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FIG. 7. Left column: average of the extracted phase gradients cor-
rected for delay; right column: reconstructed phases from the left
column using the concatenation algorithm for a frequency shear
Ω < 0. The error bars represent the standard deviation. The error is
zero at the center frequency since it is constrained by the algorithm.
The left column approximately shows the derivative of the right one.

ear phase. Furthermore, we can clearly see an additional lin-
ear phase gradient in the uncompensated cases, showing again
the presence of dispersion. The reconstructions show that the
setup is able to easily distinguish the two phases. Moreover,
a fit in the reconstruction gives an absolute linear phase of
+750 ± 25 fs for the V-phase and −775 ± 50 fs for the Λ-
phase, and the same quadratic phase found in the previous
section for the uncompensated and compensated phases. The
Λ-phase is more difficult to reconstruct compared to the pre-
vious phases due to the constraints put on the pulse shaper.
Indeed, this phase has a steep negative slope, and compensat-
ing for dispersion adds an extra negative quadratic phase on
the mask, resulting in additional wrappings.

D. Time-frequency distributions

With the phase now reconstructed, it is possible to cre-
ate time-frequency distributions to fully describe the spectral-
temporal wave function of the single photon. Indeed, as it is
the case with classical pulses, a complete description may be
obtained by showing how the spectral parts are mapped in the

time domain. Multiple ways to describe this distribution exist,
and we choose the chronocyclic Wigner function defined as

W (t, ω) =
1

2π

∫
〈ε̃∗(ω − ω′/2)ε̃(ω + ω′/2)〉 e−iω

′t dω′.

(24)

The chronocyclic Wigner function has the advantages that
it provides a complete characterization of the single-photon
spectral-temporal density matrix, is normalized and real-
valued everywhere, and the overlap of two states can be easily
calculated from the overlap of the respective Wigner functions
[35]. It is often referred to as a “quasiprobability distribution”
since its marginals correspond to the probability distributions
of measurement outcomes in those bases, although the func-
tion itself can locally take negative values. To compute such
distribution, one needs the complex spectral amplitude |ε̃(ω)|
in order to reconstruct the complete spectral wave function
with the phase that was measured. In principle this can be
directly measured during the acquisition by summing the two
outputs of the interferometer, which removes the interference
fringes, assuming equal efficiency detection at each output
port of the interferometer. The result is quite close to the true
spectrum for small values of the shear. It is also possible to
independently measure the amplitude directly without send-
ing pulses into the interferometer. The latter method was used
here. The center frequency of the spectrum (i.e. the first mo-
ment of the distribution) is used as the experimental value of
ω0 throughout the algorithm, notably to constrain the center
frequency of the phase concatenation and the fits. The time-
frequency distributions for the polynomial and the arbitrary
phases written with the pulse shaper are shown in Fig. 8.

Summing the distribution along one dimension yields ei-
ther the temporal or the spectral marginals. As expected for
polynomial phase, the temporal wave function of the uncom-
pensated single photon is much broader than that of the com-
pensated one, cubic phase creates replicas, and quartic phase
creates a pedestal. In the case of the V-phase and Λ-phase,
both marginals are similar, yet the two modes are orthogonal.
Computing the overlap between these modes yield a value of
0.06 ± 0.01, while the overlap of their marginal temporal in-
tensities is 0.95± 0.01 and the spectral overlap is unity.

VII. DISCUSSION

A. Characterization of single-mode fields

We have thus far considered the reconstruction of the pulse
mode occupied by a single photon excitation. However, this
technique is not limited to single-photon pulses and can be
used to reconstruct the pulse mode structure of a single mode
field of arbitrary excitation. This arises from the fact that
the approach presented here extracts the phase of the spectral
mode from a measurement of the first-order field correlation
function,

C(ω, ω′) =
〈
â†(ω′)â(ω)

〉
, (25)
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FIG. 8. Chronocyclic Wigner function for the phases that were im-
printed with the pulse shaper.

where â†(ω) and â(ω) are photon creation and annihilation
operators associated with the frequency mode ω and we drop
the electric field amplitudes choosing to work with photon
number instead. Considering a pulse mode ψ(t), with ψ̃(ω) =

F{ψ(t)}, where ψ̃(ω) is the Fourier transform of ψ(t), a gen-

eral state of the field is given by the density operator

ρ̂ψ =

∞∑
m,n=0

ρm,n |m〉ψ 〈n|ψ , (26)

where |n〉ψ is an n-photon state in the pulse mode ψ(t), and
ρm,n = 〈m|ψ ρ̂ψ |n〉ψ is a matrix element of the density op-
erator in the photon-number basis. In the remainder of this
section we drop the pulse-mode label ψ on the states to sim-
plify the notation. The first-order correlation function for the
general single-mode state is given by the average photon num-
ber of the state, n̄, multiplied by the product of the frequency-
representation of the mode function and its complex conjugate
evaluated at ω and ω′

C(ω, ω′) = n̄ψ̃(ω)ψ̃∗(ω′). (27)

This can be seen by noting that the first-order correlation func-
tion for the single-mode state can be written as

C(ω, ω′) =

∞∑
k=0

〈k| ρ̂â†(ω′)â(ω) |k〉 , (28)

where we use the fact that the state occupies a single field
mode to simplify the ensemble average. Inserting the general
expression for the state, Eq. (26), into the above expression
gives

C(ω, ω′) =

∞∑
k,m,n=0

ρm,n〈k|m〉 〈n| â†(ω′)â(ω) |k〉 . (29)

To simplify this further, first note that â(ω) |k〉 =√
kψ̃(ω) |k − 1〉, which arises from the commutation re-

lations between creation and annihilation operators for a
monochromatic mode, ω and pulse mode, ψ(t), [â(ω), â†ψ] =

ψ̃(ω) [27], where

â†ψ =

∫
ψ̃(ω)â†(ω)dω. (30)

This relation allows the simplification of Eq. (29) to give

C(ω, ω′) =

∞∑
k,m,n=0

ρm,nψ̃
∗(ω′)ψ̃(ω)

√
nkδn,kδm,k, (31)

where we use the result

〈n| â†(ω′)â(ω) |k〉 =
√
nkψ̃∗(ω′)ψ̃(ω)〈n− 1|k − 1〉, (32)

and the orthonormality of the single mode Fock states
〈m|n〉 = δm,n. Collapsing two of the sums down in Eq. (31)
leads to the final result

C(ω, ω′) = ψ̃∗(ω′)ψ̃(ω)

∞∑
k=0

ρk,kk = n̄ψ̃(ω)ψ̃∗(ω′), (33)

where the average photon number of the field is

n̄ =

∞∑
k=0

ρk,kk, (34)
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and pk = ρk,k is the probability for the field to have a photon
number of k. Thus we see that through measurement of the
first-order field correlation function, which can be extracted
for a single-mode field using the EOSI technique as in Eq.
(7), one can determine the pulse structure for any single-mode
field regardless of the photon number distribution. Indeed,
one would not be able to distinguish between a single-photon
source, an attenuated laser, or a weak thermal state of light
if they all occupy the same temporal mode using the EOSI
method. To distinguish between these sources, higher-order
correlation functions must be measured, e.g. the second-order
coherence function

g(2)(τ) =
〈â†(0)â†(τ)â(τ)â(0)〉
〈â†(0)â(0)〉〈â†(τ)â(τ)〉

, (35)

where â†(τ) is the photon creation operator in a delta-
function-like time bin at time τ . A single-photon state has
g(2)(0) = 0 indicating the source cannot emit more than one
photon at any given instance, whereas a coherent state dis-
plays g(2)(0) = 1 arising from the Poisson statistics of the
photon number distribution of the state and a thermal state has
g(2)(0) = 2, which is often termed photon bunching [27]. A
value of g(2)(0) ≤ 1 indicates the non-classical nature of the
field, which cannot arise from a purely wave theory of light
[27].

B. Mixed state reconstruction

The methods discussed thus far have been aimed at re-
construction of the pulse-mode state of pure single-photon
sources, i.e. single-photon sources that emit photons into
only one pulse mode. For sources that emit photons into a
mixture of pulsed modes, we must generalize the state recon-
struction process to enable characterization of the full density
operator ρ̂. Note that this density operator, which describes
the mode distribution of a single photon, should not be con-
fused with that of the previous section, Eq. (26), which there
describes the photon number distribution in a single-mode
field. The problem of characterizing a mixed state single-
photon source is similar to characterization of a partially-
coherent pulse train [36]. The result of a measurement with
the EOSI is defined as the quantum counterpart of Eq. (4) as
S±Ω,τ (ω) = Tr

[
ρ̂Π̂±Ω,τ (ω)

]
, where

{
Π̂±Ω,τ (ω), Π̂NC

}
is the

positive-operator valued measure (POVM) that describes the
EOSI measurement. The measurement operators in this set
are given by

Π̂±Ω,τ (ω) =
1

4

(
â†(ω)â(ω) + â†(ω + Ω)â(ω + Ω)

)
±
(
â†(ω)â(ω + Ω)eiωτ + â†(ω + Ω)â(ω)e−iωτ

)
,

(36)

where â†(ω) (â(ω)) is the single-photon creation (annihila-
tion) operator for frequency mode ω, and Π̂NC is the “no-
click” measurement outcome.

For a pure single-photon state |1〉ψ , in which the photon
occupies the field mode, ψ(t), it is straightforward to show

that this POVM results in measurement outcomes given by
Eq. (4), equivalent to the following expression

S±Ω,τ (ω) =
1

4
[S(ω) + S(ω + Ω)]

± 1

2
Re
{
ψ̃(ω)ψ̃∗(ω + Ω)eiωτ

}
, (37)

where S(ω) = |ψ̃(ω)|2 is the single-photon spectrum. For
a mixed single-photon state with spectral density operator ρ̂,
by defining ω′ = ω + Ω and scanning the shear, Ω, a 2-
dimensional spectral interference pattern is obtained

I±τ (ω, ω′) =
1

4
(ρ(ω, ω) + ρ(ω′, ω′))

± 1

2
Re
{
ρ(ω, ω′)eiωτ

}
, (38)

where ρ(ω, ω′) = 〈ω| ρ̂ |ω′〉 is the single-photon spectral
density matrix element, with |ω〉 = |1〉ω = â†(ω) |vac〉 a
single-photon state with frequency ω and |vac〉 the vacuum
state of the field. Hence, by scanning the spectral shift Ω, it
is possible to measure the spectral density matrix elements
ρ(ω, ω′) using 2D-Fourier analysis similar to the one pre-
sented in Sec. I. Moreover, it may be easier to use the signal
associated with the difference of the photodetection events at
the outputs of the interferometer Idiff

τ (ω, ω′) = I+
τ (ω, ω′) −

I−τ (ω, ω′) = 2 Re
{
ρ(ω, ω′)eiωτ

}
, which directly samples

the off-diagonal entries of the spectral density matrix assum-
ing balanced beam splitters and detectors. Note that adding
a π/2 phase shift in the interferometer yields an interference
term 2 Im

{
ρ(ω, ω′)eiωτ

}
, which allows full reconstruction of

the density matrix. Even though the full reconstruction would
prove more difficult due to the increase in dimension and need
to scan the spectral shift, it is still feasible with this method.

It is worth noting that this approach can only sample ele-
ments of the spectral density matrix within the range of spec-
tral shear values, Ω, accessible by the device. Full character-
ization of an unknown state would require scanning the fre-
quency shift over a range that is on the order of the spectral
bandwidth. With the current capabilities outlined in this pa-
per, a mixed state of approximately 0.5 nm bandwidth cen-
tered about a wavelength of 830 nm could in principle be re-
constructed by scanning the spectral shear.

C. Heralding

Another useful side of the experimental setup is the abil-
ity to herald spectrally-resolved single photons. Generally,
heralding is a way of removing noise from the signal, such as
electronic dark noise or thermal light. In the present case, the
single photon source is specially engineered to yield a pure,
non-entangled state. Consequently, the interferogram that one
would obtain without heralding is quite similar to the heralded
case, albeit with higher counts. Such a resemblance is de-
picted in Fig.9. We can see on this plot that the two cases
are indeed quite similar and show a slight difference in con-
trast. The ratio of the number of counts shows a heralding
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FIG. 9. Comparaison between unheralded (square markers) and her-
alded (round markers) spectrograms. Left: standard setup as pre-
sented throughout this article; Right: with added thermal noise.

efficiency of ∼ 30% which is limited mostly by the quantum
efficiency of the detectors. However, it is worth stressing that
the unheralded count rate is distributed between ∼ 200 Hz
of dark detector noise and ∼ 300 Hz of actual single photons
event. Consequently the unheralded interferogram does corre-
spond to a mixed state, although in that case it merely results
in a slight reduction of contrast that is not immediately visi-
ble. Hence applying the algorithm on both plots would yield
a similar result. That is again a direct consequence of source
engineering that delivers a pure, non-entangled state.

It is however quite easy to think of situations in which
heralding is mandatory. To illustrate, we replicated the pre-
vious interferogram measurement and added a source of spec-
trally incoherent background light, which can be easily ob-
tained by increasing the exposure of the set-up to the labora-
tory lighting. In this situation, the unheralded case shows a
clear difference from the heralded case, as shown by Fig.9.
We can see that the thermal light diminishes dramatically the
signal-to-noise, resulting in a large plateau in which the inter-
ference fringes are less visible. Such a drop in contrast leads
to a much less stable reconstruction because of noisier fringe
spacing. In that case, heralding allows projection in the single
photon pure state while removing the large contribution from
the thermal state. It worth noting that the example that is illus-
trated by Fig.9 is quite extreme, as the reduction in signal-to-
noise inevitably increases the amount of accidental heralding
events. There is however a clear increase in contrast due to
heralding, and a more careful control over the heralding win-
dow can bring the accidental events down.

Finally, our setup can be extended to the analysis of
frequency-entangled states whose joint spectrum may not be
described by the product of the two single photon mode-
functions. In that situation, if one were to characterise the
mode of one photon by heralding with a bucket detector, as
it was done in the present work, this would result in a mixed
state since the information about entanglement is lost. Al-
though the fore-knowledge of the intensity joint spectrum
would bring additional information, such a scheme would
miss other parameters, such as spectral phase correlations be-
tween the two daughter photons. Our setup can be conve-
niently modified to spectrally resolve the heralding photon,
thus allowing full characterisation of the two photons states.
One could also envision creating to routes both photons into
two separate PMZI and performing the phase reconstruction

algorithm in coincidences.

D. Practical considerations

While the general scheme depicted by Fig. 1 is not particu-
larly complex, the experimental implementation places some
limitations on the input that EOSI can realistically character-
ize. Altogether, these constraints are in general much more lax
for EOSI than those required by externally-referencing meth-
ods. Here, we detail these constraints, and discuss how to
choose the proper settings for a given experimental setup.

The device presented here is based on a polarization
Mach-Zehnder interferometric configuration, which requires
an input with well-defined polarization. Polarization filter-
ing may be employed to achieve this, but this incurs losses
and precludes the device being used to explore polarization-
time/frequency correlations. To overcome these difficulties
one could utilize a different interferometric scheme, such as
a spatial-mode Mach-Zehnder interferometer. However, such
an implementation would likely require active locking of the
interferometer to perform the single-photon measurements.

A main building block of the EOSI is a high-resolution
single-photon spectrometer, which we construct using
frequency-to-time conversion. While modern detectors pro-
vide sufficient temporal resolution, the methods for obtain-
ing large chirped pulses are still limited. It is not feasible to
stretch pulses sufficiently in free space to enable frequency-
to-time conversion, so a fiber setup is needed. In the near
infrared, optical fibers show typical dispersion on the order of
100 ps/nm/km and propagation losses of more than 3 dB/km,
rendering large chirp with fiber propagation impractical. CF-
BGs prove to be the most efficient way of achieving the disper-
sion needed by the setup, but typically act in reflection over a
limited spectral region, which is mainly defined by the length
of the fiber and the specified dispersion. Larger spectral win-
dows and larger chirp parameters could in principle be ob-
tained by concatenating CFBG together. The association of
the CFBG parameters and the timing jitter of the detectors
then limit both the spectral range and the spectral resolution
[17], thus requiring a priori knowledge of the center wave-
length and bandwidth of the unknown single-photon state.

The other main limitation comes from the EOM, with
which the spectral shift is obtained. Various methods can be
used to apply a high-power linear RF signal phase-locked to
the pulse train. While we use frequency multiplication and
a phase-lock loop, we note that it is possible to amplify the
bandpass-filtered signal from a large bandwidth photodiode
and use it as the RF-wave which is automatically locked to
the pulse train [37, 38]. As described by Eq. (20), the am-
plitude of the frequency shear is directly proportional to both
the frequency and the amplitude of the RF wave. The ampli-
tude is limited by the amplifiers and by the EOM itself, while
the frequency is bounded by the temporal width of the linear
region of the RF-wave. If the temporal duration of the pulse
is too large compared to this linear region of the RF signal,
the applied shear will no longer be constant across the pulse
and thus introduce errors into the reconstruction. Therefore
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the device input must be a train of single photons with well-
defined arrival times and it cannot be applied to continuous-
wave single-photon sources. Such a problem could be tack-
led by replacing the sinusoidal RF wave by a serrodyne wave
[39], which would not limit the temporal aperture of the de-
vice. The need for a large frequency shear is obvious from Eq.
(10), since it provides a larger amplitude of the phase gradient.
It also needs to be larger than the resolution of the spectrome-
ter. This parameter is however also bounded by the unknown
state, as any phase structure smaller than the shear cannot be
reconstructed. One could, in principle, concatenate several
modulators (or multi-pass a single modulator) to increase the
shear. However, this results in further insertion loss, timing
jitter and dispersion that will adversely affect the calibration.

VIII. CONCLUSIONS

In summary, we have demonstrated a self-referencing tech-
nique to reconstruct the spectral-temporal state of a pulsed
single photon. This method is applicable across a wide range
of wavelengths and pulse characteristics, and is determinis-
tic in that only technical losses prevent every photon enter-
ing the device from contributing to the final reconstruction.
The method can be readily extended to the characterization
of mixed state single-photon sources and, in conjunction with
correlation measurements, multi-photon systems. A key fea-
ture that distinguishes our approach from previous spectral-
shearing interferometric methods for pulse reconstruction lies

in the ability to perform spectrally-resolved measurements in
coincidence with a trigger event. This enables pulse charac-
terization of conditionally prepared single-photon states [40],
which could arise from a highly entangled biphoton state
[41]. In its present design our device has wide applications in
single-photon source and detector characterization and quan-
tum metrology. We anticipate that future experiments will
utilize this technology for more diverse purposes such as
spectral-temporal entanglement characterization and state pu-
rity determination.
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