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Abstract 

We explore the outcomes of detailed microscopic models by calculating second- and third-

harmonic generation from thin film surfaces with discontinuous free-electron densities. These 

circumstances can occur in structures consisting of a simple metal mirror, or arrangements 

composed of either different metals or a metal and a free electron system like a conducting 

oxide. Using a hydrodynamic approach we highlight the case of a gold mirror, and that of a two-

layer system containing indium tin oxide (ITO) and gold. We assume the gold mirror surface is 

characterized by a free-electron cloud of varying density that spills into the vacuum, which as a 

result of material dispersion exhibits epsilon-near-zero conditions and local field enhancement at 

the surface. For a bilayer consisting of a thin ITO and gold film, if the wave is incident from the 

ITO side the electromagnetic field is presented with a free-electron discontinuity at the ITO/gold 

interface, and wavelength-dependent, epsilon-near-zero conditions that enhance local fields and 

conversion efficiencies, and determine the surface’s emission properties. We evaluate the 

relative significance of additional nonlinear sources that arise when a free-electron discontinuity 

is present, and show that harmonic generation can be sensitive to the density of the screening 

free-electron cloud, and not its thickness. Our findings also suggest the possibility to control 

surface harmonic generation through surface charge engineering.  
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Introduction 

The study of second harmonic generation (SHG) from surfaces has remained active since the 

early days of nonlinear optics [1-8].  The list includes nanoscale surface structures that exhibit 

strong nonlinear chirality [6, 8].  Surface SHG is an ideal non-destructive tool to study surfaces 

with sensitivity at the sub-nanometer scale.  However, our understanding of the surface 

properties remains uncertain because while different theoretical models may yield similar 

angular dependence of the generated SH signal, there is disagreement on the magnitude of the 

predicted SH signal, with results sometimes differing by several orders of magnitude [1-

5,11,22,24 and references therein]. This apparent, model-dependent inconsistency is 

symptomatic of a combination of incomplete knowledge of the nanoscale surface composition 

and structure, and of the relative significance of a number of quantum-based physical 

phenomena.  For example, the effective electron mass is reported to be sensitive to the particular 

deposition method employed [9]. Through the detection of surface plasmon modes, it has also 

been shown that a simple metal layer may be denser on the substrate side compared to its air 

side, leading to a position dependent dielectric function [10], and large discrepancies between 

actual and tabulated values. At the same time, the dielectric constant itself may be a function of 

both frequency and wave vector via the excitation of nonlocal effects, e.g. electron gas pressure 

[11]. 

In addition to questions surrounding deposition processes and surface preparation, there are 

issues regarding the methods that are used to predict electrodynamic phenomena in nanoscale 

systems. Over the decades, technological progress has led to a steady miniaturization process 

that has resulted in structures having features with near-atomic size.  On the sub-nanometer 

scale, the applicability of classical electrodynamics is called into question: the theory is based on 

a process that turns the rapidly fluctuating microscopic fields found near individual atoms into 

macroscopic fields averaged over a volume of space that may contain countless atoms, or 

dipoles. The medium loses its granularity only to be described as a continuum that necessitates 

the mere application of boundary conditions at interfaces [12]. This simplified picture fails if the 

macroscopic theory is applied to systems with feature sizes that compare with the size of atoms 

[13]. This is already the case for typical nanowire and/or nanoparticle systems that are easily 

fabricated with features so small and so closely spaced that the electronic wave functions spilling 
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outside their respective surfaces may overlap. The electronic wave function diameter of a typical 

noble metal atom is approximately 3Å, while the electronic cloud forming and shielding a flat, 

noble metal surface may extend several Ås into free space (Fig. 1). 

The study of light interactions with optically thick metal layers below their plasma 

frequencies, where the dielectric constant is negative, had been limited to the study of reflection 

due to the large negative dielectric constant and the absence of propagation modes. At the 

nanometer scale, transmission through thick metal layers and structures that may contain 

hundreds of nanometers of metal has been shown to be possible by exploiting cavity/interference 

phenomena that localize the light inside the metal itself [5, 14], as well as surface plasmon 

excitation where the light is channeled through subwavelength apertures [15].  

The linear optical response of metals is almost always modelled using the Drude model, i.e. 

as a cloud of free electrons with a frequency dependent dielectric constant and fixed boundaries. 

This model is inadequate to describe experimental observations of light scattering from 

nanoscale systems, and so it is enhanced by hydrodynamic models that incorporate nonlocal 

effects through terms like electron gas pressure [16-21], and surface and bulk nonlinearities [22-

26]. Ultimately, the sub-nanometer gap between metals enables quantum tunneling [27-35], 

which may also easily be incorporated into dynamical, time domain models [29]. 

The absorption of free electron systems like ITO or cadmium oxide (CdO) is smaller 

compared to that of noble metals, especially in the range where the real part of the dielectric 

constant crosses the axis and takes on near-zero values. Materials used in the zero crossing 

region have been dubbed epsilon-near zero (ENZ) materials [36]. If the imaginary contribution to 

the permittivity also approaches zero then the refractive index also approaches zero. The so-

called zero index materials would propagate an electromagnetic wave from one side to the other 

with no phase delay. While there are interesting consequences of the peculiar dispersive linear 

optical properties of these materials, our interest is aimed at studying novel, low-intensity 

nonlinear optical phenomena that otherwise are observed only for high, local fields. ENZ 

materials contribute to enhanced optical harmonic generation and as such their study can shed 

new light on our fundamental understanding of both linear and nonlinear optical processes of 

free electron systems [37].  
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The nonlinear field enhancement mechanism is triggered by the requirement that the 

longitudinal component of the displacement vector of a TM-polarized field be continuous, which 

for homogeneous, flat structures is exemplified by the relationship: z z
in in out outE Eε ε= . ( )in outε is the 

dielectric constant inside (outside) the medium, and ( )
z
in outE  is the corresponding longitudinal 

component of the electric field amplitude inside (outside) the material. It follows that if 0inε ⇒ , 

then z
inE ⇒∞ . The field enhancement and the observation of nonlinear [38, 39] and nonlocal 

effects [40] is primarily limited by the imaginary contribution to the dielectric function of the 

ENZ material. Additionally, nonlocal effects in these materials can play a major role in noble 

metals, as both field penetration inside the medium and field derivatives are correspondingly 

more prominent, leading to significant deviations from the predictions of local electromagnetism. 

Quantum tunneling contributions and nonlocal effects are simultaneously accounted for in 

structures with sub-nanometer spacing in reference [29].  

The Model 

We illustrate our theoretical approach using a representative example, the seemingly simple 

problem of a gold film interface as seen from the atomic scale. In Fig. 1 (a) we depict a typical 

noble metal atom: a nearly-free, s-shell electron that orbits at an approximate distance rs ~ 1.5Å 

from the nucleus, and d-shell electrons whose orbits extend out approximately rd ~ 0.5Å from the 

nucleus [41,42]. The rudimentary picture that emerges even from a cursory look at Fig. 1 (b), 

which schematically represents atoms distributed at and just below the surface of a hypothetical 

metallic medium, is one of a negatively charged electron cloud that spills outside the ionic 

surface 
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Figure 1: (a) Schematic representation of a typical noble metal atom. The radii represent the maximum amplitude of 
orbital wave functions calculated using a many-body approach. (b) The dashed line represents the last row of atoms 
in a medium that extends to the left. This rudimentary picture suggests that a free-electron only patina of 
approximate thickness t shields a medium composed of both free and bound electrons. (c) Diagram of bound, d-shell 
electrons represented as Lorentz oscillators. 

(the dashed line in Fig. 1 (b)) and screens the inside portions of the metal. The figure also 

suggests that interior sections of the medium contain a combination of free and bound charges, 

which present their own surface to the incoming electromagnetic wave. Therefore, it is plausible 

to assume that some of the reasons for the discrepancies between experimental results and most 

theoretical models, and between theoretical models themselves, may to some extent reside in the 

failure to accurately describe the spatial distribution of the electrons that spill outside the 

medium’s ionic surface, and to account for all surfaces (free and bound electrons alike) in and 

around the transition region indicated by the dashed line. In addition, nonlinear optical 

phenomena due to anharmonic spring behavior (Fig. 1 (c)) is necessarily confined to the volume 

defined by the surface nuclei, i.e. to the left of the dashed line in Fig. 1 (b). The free electron gas 

spilling out of the surface beyond the nuclei shields nonlinear third order effects arising from 

bound electrons.  Measurements of this effect are referred to as the Metal-Induced Gap States or 

MIGS [43]. 
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Figure 2: Right Panel: depiction of two types of exponential decay of the electron cloud that covers the metal 
surface. Both decays yield a mean density approximately 10% of the value at the hard, ionic surface, i.e. the dashed 
line in Fig. 1. The main difference between the two density profiles is the spatial extension into vacuum, i.e. 2Å-5Å. 
Left Panel: Once the average density and spatial extension into vacuum have been chosen, the electromagnetic 
problem is solved by introducing two surfaces and an external layer that contains only free charges, resulting in a 
discontinuous free charge density and a screened internal medium composed of free and bound charges. The bulk, 
third order nonlinearity is assumed to originate only in bound charges, which are described as collections of Lorentz 
oscillators. 

Calculations have shown that for realistic metal surfaces the charge density decays 

exponentially with distance from the ionic surface [44]. Density functional theory has been used 

to describe SHG [45] originating from the charge density distribution outside a conductor in the 

presence of electrolytic solutions [45-47]. The liquid changes the surface charge density 

distribution and leads to significant differences in surface SHG compared to the bare metal. 

Therefore, we adopt a similar model, at first assuming some type of exponential decay of the free 

charge density from the surface (Fig. 2, right panel), and subsequently assigning average value 

and thickness to an external charge density that in our modified scheme forms a single, uniform 

layer composed only of free charges (Fig. 2, left panel). Fig. 2 shows the modified configuration 

of Fig. 1.  
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π
ω −=  is the plasma frequency and fγ  is the related damping coefficient. The 

local dielectric constant of the interior bulk section also contains a Drude portion that describes 

free electrons, and at least two Lorentz oscillator contributions that allows one to model a more 

accurate medium response for wavelengths down to approximately 200nm, that take into account 

the contribution to the dielectric constant by d-shell electrons, as follows:  
2 2 2

, 1 2
2 2 2 2 2

01 01 02 02
( ) 1 pf bulk p p

bulk
fi i i

ω ω ω
ε ω

ω γ ω ω ω γ ω ω ω γ ω
= − − −

+ − + − +
.   (2) 

1,2pω  are the bound electrons’ plasma frequencies and 01,2γ  the related damping coefficients. The 

ionic surface represented by the dashed line in Fig.1 demarcates both free and bound electron 

discontinuities and contains surface nonlinearities of its own [24, 25]. For simplicity we assume 

that free electrons found inside the volume have identical damping coefficients as free electrons 

in the spill-out layer, but may have different densities/plasma frequencies. A smaller damping 

coefficient in the outer, free-electron layer could lead to larger local fields and improved 

conversion efficiencies, without however influencing the qualitative aspects of our predictions.   

In addition to bound electrons, the total linear dielectric function is modified dynamically by a 

second order spatial derivative of the free electron polarization that describes electron gas 

pressure in the two relevant regions of space depicted in Fig. 2. For now we neglect nonlocal 

effects due to viscosity [40]. Most of what occurs at the surface and the evolution of the 

generated signals may, under the right circumstances, be determined entirely by the density of 

the thin, external layer of free charges.  The dynamical equation of motion that describes 

harmonic generation from the free electron gas portions, modified to account for a discontinuous 

charge density (i.e. a spatial derivative,) nonlocal pressure effects, magnetic contributions and 

convection may be written as follows [48]:  
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( ) ( ) ( ) ( ) ( )
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               (3) 
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where fP  is the free electron polarization; Eand H are the propagating electric and magnetic 

fields, respectively; *
em m=  is the free electron’s effective mass; 1410 rad/secfγ = is the damping 

coefficient; 22 3
0 5.8 10 / cmn = ×  is the background charge density with no applied field;

( )
2 2 / 32

0* 3 5eV
2FE n

m
π= ≈h  is the Fermi level of gold; c is the speed of light in vacuum. For the 

moment nonlinear, nonlocal effects are neglected [24], and note that the description of SHG and 

THG requires that Eq.(3) split into three coupled equations, each describing one of the harmonic 

fields [24]. The equation is scaled with respect to dimensionless time, longitudinal and transverse 

coordinates (2-D), 0/ ,ctτ λ= 0/ ,zξ λ= 0/ ,y y λ=%  respectively, where 0 1 mλ μ=  is chosen as a 

convenient reference wavelength. A discontinuous free charge density between the external and 

internal free electron distributions is equivalent to a metal/metal interface, and is described by 

the nonlinear term that appears inside the bracketed expression on the right hand side, i.e.

( )( )0 01/f fn n•∇P P& & . Eq.(3) represents a simple Drude model when ( )2 2 * 2
0 0 /n e m cλ E is the only 

driving term, augmented by a number of linear and nonlinear source terms as follows: the 

magnetic Lorentz force, ( )* 2
0 / fe m cλ ×P H& ; a Coulomb term, ( ) ( )* 2

0 / fe m cλ− ∇•E P describes 

redistribution of free charges at and near each boundary, according to the strength of the 

derivatives; convective terms, ( ) ( ) ( )( )0 01/f f f f f fn n⎡ ⎤∇• + •∇ + •∇⎣ ⎦P P P P P P& & & & & & ; and linear electron 

gas pressure terms proportional to ( )f∇ ∇•P and ( ) 0∇ • ∇f nP that lead to a k-dependent dielectric 

constant.  Similarly to Eq. (3), each species of bound electrons is described by a nonlinear 

oscillator equation of the following type [24, 25]: 

( )
2 2

2 01 0 0
1 01 1 01 1 1 1 1 1 1* 2 * 2

1 1b b

n e e
b

m c m c
λ λγ ω+ + − • = + ×P P P P P P E P H&& & & .    (4) 

We note that a similar equation describes the second bound electron species and that Eq.(4) 

requires further processing before surface phenomena due to bound electrons can be taken into 

account[24,25,48].  Bound electrons are characterized by effective mass *
1bm ; resonance angular 

frequency 01ω ; density 01n ; damping 01γ ; and third order nonlinear spring constant, 1b , which is 

generally proportional to (3)χ  and responsible for self-phase modulation and third harmonic 
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generation (THG) [49]. The bound electron masses and densities are assumed to be the same as 

for free electrons, and the following coefficients: ,1 ,2b bγ γ= = 2.2 μ 1015 rad/s, 0,1ω = 16πμ 1014 

rad/s for the first oscillator, and 0,2ω = 2.7π μ 1015 rad/s for the second oscillator.  Just as was the 

case for the damping coefficient that we chose for the external free-electron layer, choosing 

different effective, bound electron masses can modify overall nonlinear conversion efficiencies 

because the nonlinear driving terms are inversely proportional to the effective mass.  These 

oscillators, depicted in Fig. 1, directly generate a third harmonic signal. However, free electrons 

are also capable of generating a third harmonic signal via a cascaded process, i.e. sum-frequency 

up-conversion due to pump and second-harmonic mixing through any of the nonlinear source 

terms in Eq.(3) [48-50].  Ultimately, the material equations of motion yield a polarization that is 

the vectorial sum of each contribution, namely 1 2 ...Total f= + + +P P P P , which in turn is inserted 

into Maxwell’s equations to solve for the dynamics. Therefore, unlike most models, which 

routinely exclude valence electrons from the full dynamics, neglect the ionic surface, and assume 

the pump remains undepleted, our approach allows for self-phase modulation, pump depletion, 

band shifts, nonlocal effects, free and bound charge interfaces, and for linear and nonlinear, d-

shell electron contributions to the dielectric function. 

According to our prescription in Fig.2, a gold mirror may thus be thought of as a two-layer 

system characterized by a metal/metal interface: a free electron layer having a thickness between 

2Å-5Å that covers a medium containing a mix of free and bound electrons. A similar free-

electron layer should be considered on the right side of the mirror, but its effects are negligible 

for thick layers. The description then becomes a usual boundary value problem where the 

composition of individual layers and their thicknesses are chosen according to the quantization 

of atomic orbitals.  

Gold Mirror 
In reference [48] we presented the results of a study of SH and TH conversion efficiencies 

from a gold surface covered by a thin, Å-thick patina of free electrons of variable density, spill outn −

, that displays ENZ conditions. We demonstrated that: (i) reasonable conditions (densities) exist 

such that ( )spilloutε ω , (2 )spilloutε ω and (3 )spilloutε ω approach near-zero values, thus triggering resonant 

conditions for the fields and correspondingly high conversion efficiencies [51]; (ii) if the free 



10 
 

electron density is discontinuous, the term ( )( )0 01/f fn n•∇P P& & in Eq.(3) cannot be neglected as its 

presence can increase conversion efficiencies by several orders of magnitude compared to 

neglecting the spill-out effect; (iii) the thickness of the outer, free electron layer plays only a 

minor role on conversion efficiency. We also showed that under ENZ conditions, the intensity of 

the surface generated TH signal could overwhelm the TH signal originating in the bulk, turning 

THG into a surface phenomenon [48]. 

While it may be possible to engineer a surface charge density by technological means, it is 

perhaps more practical to exploit material dispersion to seek out resonant, ENZ conditions for a 

given density, an approach that we pursue below. For example, in Fig. 3 (a) we plot the 

wavelength for which the real part of the dielectric function of the external, free electron layer 

(Eq.1) becomes zero as a function of its density, normalized to the free electron density within 

the bulk. Each of  

 

Figure 3: (a) Wavelength vs. density of external free electron layer where Re(ε)=0. Three possible densities are 
highlighted: 0.075 ; 0.1 ; 0.125spill out bulk bulk bulkn n n n− = . These densities are close to the expected average 
density of the external free electron layer, as per the discussion surrounding Fig. 2. (b) SHG conversion efficiency 
vs. incident pump wavelength for each of the indicated densities, and for the case of no free electron patina. The 
SHG maxima occur where [ ]Re (2 ) 0ε ω ≈ . Additional maxima may occur at shorter wavelengths corresponding to 
zero-crossing of the real part of the internal portion dielectric constant, i.e. Eq.(2). The pump is incident a 45o and is 
TM polarized. 

the colored arrows in Fig. 3 (a) points to the free electron densities on the abscissa that connect 

to the wavelengths that correspond to the Re( ) 0spill outε − ≈ conditions on the ordinate, i.e. 

approximately 400nm, 450nm and 525nm. In Fig. 3 (b) we plot the predicted SHG conversion 
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efficiency vs. wavelength for these three fixed densities and 45� incident angle, and compare 

with the SHG efficiency without an external free electron layer. TM-polarized, incident pulses 

are approximately 50fs in duration, with peak intensities of order 2GW/cm2. The external free 

electron patina is assumed to be 0.25nm thick, although thickness seems to be unimportant [48], 

while the rest of the gold layer is 80nm thick. As pointed out in reference [51], conversion 

efficiencies for SHG are proportional to ( )2
21/ n nω ω , where nω and 2n ω refer to the indices of 

refraction, with a similar expression holding for THG.  While ENZ conditions at the pump 

wavelength are clearly more favorable, and a doubly-resonant system would be ideal, tuning at 

least one of the fields to the ENZ conditions has obvious advantages [48,51].  The figure thus 

suggests that for the plausible densities that we have chosen, a spectral analysis of the SH signal 

should reveal marked maxima at the ENZ conditions.  Alternatively, the presence of a peak in 

the SH spectrum similar to that reported in Fig. 3 could help determine the effective density of 

the free electron patina. Secondary maxima evolve at shorter wavelengths, most likely due to the 

ENZ conditions of the internal portions of the medium. 

ITO/Gold bilayer 
In practical terms the situation described above, namely a discontinuous, free charge 

density, may be replicated by considering a thin layer of a free electron system like ITO 

deposited on a gold layer. The known charge density of commercially available ITO is 

approximately 100 times smaller compared to that of noble metals, i.e. 20 35.8 10 / cmITOn ≈ × , with 

an ENZ condition [52] near 1246nm. These numbers may change depending on doping and 

annealing temperature. The model outlined above has been applied to study the nonlinear, high-

gain context of nested plasmonic resonances [53], where field intensity is enhanced by the 

overlap of the intrinsic ENZ condition in an ITO particle placed inside the plasmonic resonance 

of a metallic nanoantenna. 

 The first structure that we consider is a 20nm ITO layer on a 80nm-thick gold layer. The 

geometrical configuration is similar to the gold mirror depicted in Fig.1, except that the outer, 

free electron layer now consists of ITO (Fig.4). For ITO, the free electron parameters are:
* 0.5 ITO em m= , fγ =  2μ1013 rad/s and a corresponding EF ≈ 1 eV. These choices yield Fermi 

velocities that are similar for both gold and ITO, i.e. ~106 m/s. The bound electron response in 
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ITO (i.e., ε∞ ) is modelled with one Lorentz-type oscillator having the following coefficients: 

*
0bm =  me, 20 3

0 5.8 10 / cmbn ≈ × , 166 10 rad/sbγ π= × , 16
0 2 10 rad/sω π= × . For simplicity, the 

coefficient ( )2 2 2 2
0 0 0/ | |b bb n eω= r  [53] in Eq.(4) and is chosen to be bb =  1037 m4/A2 for both ITO 

and gold. In Fig.4 we plot SHG conversion efficiency vs. incident pump wavelength at fixed 

incident angle of 45�, to determine the importance of nonlocal terms and the additional 

nonlinear, convective source, 

 

Figure 4: Top inset: geometrical depiction of the ITO(20nm)/Au(80nm) bilayer. (a) Transmitted and (b) reflected 
SHG efficiencies vs. incident pump wavelength. The angle of incidence is fixed at 45�. Both spectra display 
measurable shifts due to nonlocal effects. The inclusion of additional convective term due to the spatial discontinuity 
of the free electron density leads to substantial qualitative and quantitative differences for the reflected SHG. 

( )( )0 01/f fn n•∇P P& & .  If we exclude all other nonlinear contributions, then the last two terms in 

Eq.(3), i.e. ( ) ( ) 0* 2 * 2
0

5 10 1
93

F F
f f

E E
n

nm c m c
∇ ∇ • + ∇ • ∇P P , comprise the linear, nonlocal response of the 

system. Therefore, by local one means that the calculation excludes those two terms, while the 

( )0
0

1
f fn

n
⎛ ⎞

•∇ ⎜ ⎟
⎝ ⎠

P P& &

0

2x10-7

4x10-7

6x10-7

800 950 1100 1250 1400 1550

400 470 540 610 680 750

Nonlocal
Without
Term

Nonlocal Local

Incident pump Wavelength (nm)

R
ef

le
ct

ed
 η

2ω

SH Wavelength (nm)

( )0
0

1
f fn

n
⎛ ⎞

•∇ ⎜ ⎟
⎝ ⎠

P P& &

0

1x10-10

2x10-10

3x10-10

800 950 1100 1250 1400 1550

400 470 540 610 680 750

Nonlocal
Without
Term

LocalNonlocal

Incident Pump Wavelength (nm)

Tr
an

sm
itt

ed
 η

2ω

SH Wavelength (nm)

(a) (b)

θi=45�

Au ITO

80nm

20nm



13 
 

by nonlocal one implies their inclusion. In Fig.(4) we first set out to establish the importance of 

local vs nonlocal by comparing red (solid-empty squares) and blue (dashed-empty circles) 

curves. A comparison of the blue and black (dashed-empty triangles) curves then establishes the 

importance including the nonlinear term, ( )( )0 01/f fn n•∇P P& & , in the calculation.  The figure thus 

shows that both the new, nonlinear convective term and nonlocal effects introduce significant 

qualitative and quantitative differences in both transmitted and reflected signals, although the 

transmitted SH signal is more than three orders of magnitude weaker than the corresponding 

reflected signal due to the thickness of the gold layer. 

As mentioned previously, there are two sources of THG: the bulk third order nonlinearity 

associated with the b coefficient in Eq.4, and the cascading process arising from surface and bulk 

terms in the free electron portions of both ITO and gold. In Fig.5 we plot the angular dependence 

of transmitted and reflected THG with ( 0b ≠ ) and without ( 0b = ) a bulk third order nonlinear 

coefficient for the ITO/Gold bilayer depicted in Fig. 4. It is evident that most of the reflected 

signal is independent of b, arising mostly from the free electron component of ITO tied to the 

ENZ condition [48]. On the other hand, the peak of the transmitted component shifts by 

approximately 15� and is significantly influenced by the fact that the transmitted signal has to 

traverse the medium, although transmission is strongly abated by the thickness of the gold layer.  

 

Figure 5: (a) Transmitted and (b) reflected THG efficiencies vs. incident angle for a pump wavelength of 1246nm, 
which coincides with the ENZ condition of ITO.  The fact that the reflected component is barely affected when b=0 
suggests that with these parameters the reflected TH signal originates mostly in the free electron (centrosymmetric) 
portions of the ITO. On the other hand, while the transmitted signal is orders of magnitude smaller than the reflected 
signal, the pulse crosses the sample before exciting, making transmittance more susceptible to bulk parameters.   
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We now examine the two-layer structure shown in Fig. 6, where ITO and gold layers have 

the same 20nm thickness, and light can be incident from either side. We focus on the ITO/Au 

transition region by neglecting any spill-out effect on either side. The limited thickness of gold 

insures that transmitted and reflected conversion efficiencies will be similar. In the figure we plot 

transmitted and reflected conversion efficiencies vs. incident angle for carrier wavelengths of 

1246nm and 1064nm, and for right-to-left (RTL) and left-to-right (LTR) propagation. When the 

field is incident from the ITO side  �  Figs.6 (a)  �  the maximum reflected SH conversion 

efficiency is practically identical to the reflected conversion efficiency reported in Fig. 4 (b), 

where the gold layer is 80nm thick. This underscores the fact that the precise thickness of gold is 

unimportant, as the field is able to exploit the ENZ condition at 1246nm, leading to larger 

reflected SHG conversion efficiencies and a peak near 60�. In contrast, for RTL incidence, Fig. 

6(b), the gold shields the ITO to the extent that the intensity inside the ITO is nearly one order of 

magnitude smaller compared to LTR incidence, shifting maxima closer to 70�, thus limiting 

conversion efficiencies with little or no influence from the ITO and mimicking a metal-only 

response [49].  

In Fig. 6(c) and (d) we plot our predictions of THG conversion efficiencies vs. incident 

angle for LTR (6c) and RTL (6d) directions of propagation for the two-layer system shown in 

Fig.6.  
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Figure 6: Reflected and transmitted SHG (a-b) and THG (c-d) conversion efficiencies for carrier wavelengths at 
1246nm (ITO’s ENZ condition) and 1064nm vs. incident angle for left-to-right (LTR) (a, c) and right-to-left (RTL) 
(b, d) incidence. The ITO’s ENZ condition is best exploited for LTR incidence, while for RTL incidence, the gold 
layer shields the ITO reducing its effectiveness, and shifting the SHG peaks to larger angles. THG in the case of 
RTL (d) incidence resembles the results from a thin, metal-only layer, as reported in reference [49]. LTR incidence 
(c) is more interesting primarily because conversion efficiency displays minima near 20� at the ENZ condition. 
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The b coefficient has been chosen to have similar magnitudes in both metal and ITO 

sections. However, the gold presents a resonant (3),
3

Au
ωχ  in the visible range, while the (3),

3
ITO

ωχ is 

designed to be resonant at much shorter wavelengths. Therefore, the bulk metal nonlinearity 

becomes more consequential for THG because the fields penetrate into both layers. The 

conversion efficiency profiles are thus strongly impacted by the direction of approach, and are 

more metal-like for the RTL direction of incidence [49]. Worthy of note are the THG minima 

that occur for both transmitted and reflected components near a 20� angle of incidence for LTR 

incidence, at the ENZ condition of ITO, which also appears for the ITO layer without gold 

backing.  Obviously here we are not interested in pursuing any optimization of conversion 

efficiencies, but rather in validating the complex model that we use to point out the physical 

characteristics of harmonic generation from adjacent layers of free electron gas systems also as a 

function of direction of incidence. Finally, we note that our calculations include the term

( )( )0 01/f fn n•∇P P& & , whose magnitude is largest, but shielded, for RTL propagation at the Au/ITO 

interface. For either direction of approach the magnitude of the derivative allows us for the 

moment to ignore the free electron patinas that extend into vacuum on either side of the stack.  

Summary 
We have analyzed several examples of harmonic generation from interfacial regions that 

display free electron discontinuities. Our results suggests that it is possible to observe a nonlinear 

signature of the ENZ region over the surface of a simple metallic gold mirror. SHG and THG 

signals display maxima as the pump wavelength is tuned through the ENZ region. Additionally, 

the nonlinear signals have distinct shapes at fixed pump wavelength as the incident angle is 

changed. Issues relating to two- and multi-photon luminescence [54] could be dealt with by 

limiting pulse durations to under 100fs, and peak intensities under a few GW/cm2.  In order to 

overcome the intrinsic limitations of a gold surface, materials like ITO or CdO could be used as 

free electron systems that are known to display ENZ conditions of their own. Our results indeed 

suggest significant discrimination for LTR and RTL directions of propagation for thin layers, and 

significant impact of both nonlocal and free electron discontinuities on the dynamics.  
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