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The dynamics of cascaded-order Brillouin lasers make them ideal for applications such as rotation
sensing, highly coherent optical communications, and low-noise microwave signal synthesis. Remark-
ably, when implemented at the chip-scale, recent experimental studies have revealed that Brillouin
lasers can operate in the fundamental linewidth regime where optomechanical and quantum noise
sources dominate. To explore new opportunities for enhanced performance, we formulate a simple
model to describe the physics of cascaded Brillouin lasers based on the coupled mode dynamics
governed by electrostriction and the fluctuation-dissipation theorem. From this model, we obtain
analytical formulas describing the steady state power evolution and accompanying noise properties,
including expressions for phase noise, relative intensity noise and power spectra for beat notes of
cascaded laser orders. Our analysis reveals that cascading can enhance laser noise, resulting in a
broader emission linewidth and larger intensity fluctuations with increased power. Consequently,
higher-coherence laser emission can be achieved if indefinite cascading can be prevented. In addi-
tion, we derive a simple analytical expression that enables the Stokes linewidth to be obtained from
spectra of beat notes between distinct cascaded laser orders and their relative powers. We validate
our results using stochastic numerical simulations of the cascaded laser dynamics.

I. INTRODUCTION

Highly-coherent integrated photonic lasers will play an
increasingly important role in a wide range of applica-
tions including low-noise microwave photonics [1], atomic
clocks [2], optical frequency synthesis, spectroscopy and
rotation sensing [3–6], coherent fiber communications [7],
Doppler velocimetry [8] and high-resolution spectroscopy
[9]. Photonic integration of these high-performance lasers
is entering the era where it is feasible to implement
chip-level functionalities that push sub-Hz linewidths,
have low relative intensity noise (RIN), and have ex-
tremely low frequency jitter—performance typically re-
quiring lab-based systems. In spite of these impressive
demonstrations, the theoretical description of these inte-
grated lasers is not yet complete, and a full understanding
of the complex steady-state and fast laser dynamics that
determine the fundamental laser linewidth, RIN, center
frequency jitter and technical noise is lacking [10]. With a
more complete understanding of these dynamics, we can
develop tools to measure and optimize the performance
of these highly-coherent integrated lasers.

Semiconductor laser emission linewidths in the range
of 10 Hz to several-100 Hz are traditionally based on ex-
ternal cavity designs using discrete [11] or hybrid-chip
[12, 13] components in combination with frequency and
phase locking feedback control. These designs make it
possible to lower the fundamental laser linewidth, de-
fined by a small number of terms given in the Schawlow-
Townes linewidth [14], by combining techniques to in-

crease the total number of photons in the cavity, decrease
the cavity decay rate, and decrease the number of noise
modes.

Another class of high-performance lasers utilizes stim-
ulated Brillouin scattering (SBS). By leveraging unique
dynamics that inhibit pump noise transfer [15, 16] and
suppress RIN [17–19], these lasers are capable of sub-
Hz linewidth emission [15]. Early fiber Brillouin lasers
demonstrated < 30 Hz intrinsic linewidth [15] while Bril-
louin lasers utilizing externally coupled high-Q whisper-
ing gallery mode resonators (WGMR) [20–22] achieve fre-
quency noise indicative of sub-Hz intrinsic linewidths.
Integration of Brillouin lasers onto a waveguide plat-
form offers tremendous opportunities for reduced size,
lower cost, and improved performance. Integrated Bril-
louin lasers have been created using a hybrid chalco-
genide waveguide ring resonator bonded to a silicon pho-
tonic bus [23], and in engineered photonic-phononic sili-
con waveguides [24]. However, at present, the properties
of these lasers, with large Brillouin gain and relatively
large optical losses, produce modest linewidths (∼3 kHz-
5 MHz). Recently, an integrated Brillouin laser based
on a SiN waveguide with low Brillouin gain and low op-
tical losses has been reported [25]. By harnessing these
properties, this laser can produce sub-Hz fundamental
linewidth laser emission, bringing fiber-like performance
to the chip-scale [25].

Cascaded-order Brillouin lasers are particularly suited
to an array of technologies. These lasers produce mul-
tiple highly coherent emission lines that are spaced at
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microwave frequencies, making them ideal for microwave
photonics, sensing, navigation, and timing applications.
Cascading is produced when energy transfers from lower
to higher order emission lines, a process that can be made
more efficient by resonantly enhancing the Brillouin gain
or by using additional optical gain mechanisms [26, 27].
For example, compact Brillouin lasers using waveguide
resonators, or discrete microresonators, are highly effi-
cient at generating cascaded orders, due to high cavity Q
in combination with optical and/or acoustic confinement
[22, 25, 28]. The emergence of these high-performance
lasers, in addition to their value in applications, has cre-
ated a pressing need for models of noise dynamics in these
multi-order Brillouin laser systems.

In this paper, we present the first theoretical investi-
gation of lasing dynamics and fundamental noise proper-
ties of cascaded-order bulk, microcavity or photonic inte-
grated Brillouin lasers. This investigation is based on a
cascaded-order Brillouin laser model that builds on val-
idated theories of single-mode Brillouin lasers and cas-
caded Raman lasers [24, 28–32]. By assuming that the
acoustic fields decay rapidly in comparison to the opti-
cal fields, we derive an approximate set of coupled non-
linear stochastic equations that describe the cascaded-
order Brillouin laser dynamics. These laser equations
describe the energy transfer dynamics between the var-
ious optical modes and reveal rich noise dynamics gen-
erally described by colored multiplicative (spontaneous-
spontaneous) processes. In agreement with prior work
[22, 29], we find steady state energy exchange relations
between various cascaded orders that reveal threshold
and clamping behaviors as well as asymmetries for the
even and odd Stokes orders, with properties that are
reminiscent of the behavior of Raman lasers. By lin-
earizing about the steady-state for small amplitude, we
find a simple compact set of equations describing the
time-evolution of the phase and amplitude, and under
the condition of perfect phase-matching, these linearized
phase and amplitude dynamics decouple. These equa-
tions show that energy exchange between adjacent laser
orders leads to complex relaxation oscillation dynamics,
and besides reproducing the known behavior of single-
mode Brillouin lasers [28, 31, 32], we find power spectra
for cascaded order laser noise. Our model shows that
cascading increases the noise of intermediate laser orders,
broadening the linewidth by as much as a factor 3 and en-
hancing the RIN by as much as 30 dB at low frequencies.
This enhancement occurs when cascaded orders inject
spontaneous anti-Stokes photons into lower orders.

As an application of these phase dynamics, we calcu-
late the phase noise for beat notes between neighboring
laser orders, which to date has only been performed for
pump-Stokes beat notes [32]. This result can be used to
assess the coherence of microwave signals that are syn-
thesized using cascaded Brillouin lasers. In addition, we
show that measurements of the beat note phase noise and
the relative powers of the participating optical fields en-
able precise fundamental linewidth measurements of the

individual optical fields. Being insensitive to variations in
component fabrication parameters and changes to these
parameters as operating and environmental conditions
change, this result can enable high resolution linewidth
measurement of ultra-narrow linewidth lasers using het-
erodyne detection techniques.

This paper is structured as follows. In Sec. II, we de-
scribe the physics of cascaded Brillouin lasers. Sec. III
describes the laser model, given in terms of a Hamiltonian
describing the opto-acoustic interactions of a cascaded
Brillouin laser system, from which the laser dynamics
is described in terms of Heisenberg-Langevin equations
that include quantum and thermal fluctuations. The
equations of laser dynamics are simplified using adia-
batic phonon field approximation and the steady state
amplitude equations are analytically derived. Using this
formalism in Sec. IV, we derive a simple set of analytical
equations for threshold and clamped powers for a cas-
caded Brillouin laser system. In Sec. V, we formulate
the amplitude and phase dynamics of individual optical
modes and use these equations to find the power spectra
describing RIN and phase noise. We derive the phase
noise of a beat note between arbitrary Stokes orders and
show how it can be used to characterize the noise proper-
ties of individual Stokes tones. We corroborate our am-
plitude and noise models using stochastic simulations of
the Heisenberg-Langevin equations. Finally, we discuss
the future directions to our work.

II. CASCADED BRILLOUIN LASER PHYSICS

A. Brillouin coupling & lasing

Brillouin coupling, enabling light scattering from trav-
eling sound waves, is the key physics permitting Bril-
louin lasing [33]. By optically pumping a transparent
medium, Brillouin coupling can be used to create an op-
tical amplifier (see Fig. 1c). Through this nonlinear
optomechanical process, a high-frequency (pump) pho-
ton of frequency ω0 and wavevector k0, can decay into a
lower frequency (Stokes) photon and a phonon with re-
spective frequencies ω1,Ω0 and wavevectors k1,q0 (see
Fig. 1a & b). Provided that phase-matching is sat-
isfied, i.e. ω0 = ω1 + Ω0 (energy conservation) and
k0 = k1 + q0 (akin to momentum conservation), Bril-
louin coupling can efficiently transfer energy from the
pump mode to the Stokes mode. Similar to gain me-
dia for laser systems with inverted populations, a Stokes
photon can stimulate the decay of a pump photon into
a Stokes photon, thereby producing stimulated emission
and optical amplification. This amplification process oc-
curs within a narrow gain window, at a frequency de-
termined by the phase matching conditions, and with a
width given by the decay rate Γ0 of the participating
phonons (see Fig. 1d). For backward Brillouin scatter-
ing, where the Stokes wave propagates antiparallel to the
copropagating pump and phonon, phase matching places
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FIG. 1. (color online) Fundamentals of Brillouin lasing. (a)
Energy conservation and (b) wavevector phase matching re-
quirements. Brillouin coupling mediated (c) optical amplifier
and (d) energy transfer. (e) Ring resonator-based Brillouin
laser. Here, spatial growth and depletion of the optical fields
around the resonator are exaggerated for illustrative purposes;
this spatial growth must be small for the mean-field approxi-
mation to remain valid.

the gain window at ω1 ≈ (1− (2nv/c))ω0 where n and
v are the material’s index of refraction and longitudinal
sound speed and c is the speed of light [33]. For silica
glass, (2nv/c) ∼ 5 × 10−5, making ω0 − ω1 ∼ (2π)11
GHz for a pump wavelength of 1.5 µm. By pumping
an optical resonator that supports an optical mode at
the Stokes frequency, the Brillouin gain window overlaps
with ω1, and a Brillouin laser can be created (see Fig.
1e).

B. Cascaded Brillouin lasing

At high Stokes laser intensities, cascaded Brillouin las-
ing can occur (see Fig. 2). Under this condition, the
Stokes field (red of Fig. 2) acts as a pump for a counter-
propagating second Stokes (orange) order with frequency
ω2. This process is mediated by a distinct phonon, with
frequency Ω1 and propagating in the opposite direction
as the phonon participating in the pump to Stokes energy
transfer. Consequently, the pump-Stokes frequency dif-
ference is roughly ∼ (2π)600 kHz greater than the first
Stokes-second Stokes frequency difference in silica and
for a pump wave length of 1.5 µm. In high quality factor
resonators with evenly spaced modes, this frequency shift
can produce walk-off that can stifle further cascading.
However, provided that the resonator supports an opti-
cal mode near ω2 (or any successive order), i.e. within

FIG. 2. (color online) Illustration of a cascaded Brillouin
laser. A laser of frequency ωpump and linewidth ∆νpump

pumps an optical resonator. Light in the ω0-mode (blue) can
scatter to ω1 (red) by emitting a phonon. When lasing the
ω1-optical mode can act as a pump for higher Stokes orders.
Here, gm and γ̃m respectively quantify the Brillouin coupling
rate between the m and the (m+ 1)th modes and the optical
decay rate of the mth mode.

the gain window, cascaded lasing of the second, or higher
order, Stokes mode(s) can be produced. With sufficiently
high pump powers and given a resonator supporting op-
tical modes at higher order Stokes frequencies, cascad-
ing can continue to many orders, each cascaded order
pumped by the previous order and mediated by a dis-
tinct phonon.

This cascaded lasing behavior naturally occurs in
WGMR and ring resonators, where the optical modes are
regularly spaced by the cavity free-spectral range (FSR)
(see Fig. 1(e) and Fig. 2). For a range of systems, the
gain bandwidth and optical cavity linewidths are much
larger than the walk-off produced by successive phase-
matching as described above, and consequently these sys-
tems can produce cascaded lasing to many Stokes orders
[21, 22, 25, 34]. As concrete examples, we base the laser
modeling to follow on integrated waveguide-based Bril-
louin lasers of the type described above and similar to
the systems reported in Refs. [21, 22, 25, 34].

C. Brillouin laser noise

We show that the noise dynamics of Brillouin lasers
are distinct above and below the threshold for cascaded
Brillouin lasing. This is because cascaded lasing opens
new noise channels that are absent in uncascaded Bril-
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louin lasers. We explain the origin of this behavior in
Fig. 3, which considers energy transfer dynamics to and
from an optical mode a1.

Optomechanical coupling produces a nonlinear interac-
tion between three waves in a manner that is similar to
a mixer (see Fig. 3), where the mixer output frequency
is given by the sum and difference of the two injected
tones. Using this analogy, we can explain the optome-
chanical noise present in Brillouin lasers. For example,
when a coherent field in the optical mode a0 and a noisy
acoustic field b0 (due to thermal fluctuations) are injected
into neighboring mixer ports, the mixer output comprises
of a coherent carrier with two noisy sidebands. In a Bril-
louin laser, the frequency of the lower sideband is given
by ω1, and as a result this spontaneous Stokes scattering
process injects noise into the a1 mode. Likewise, a co-
herent field present in the optical mode a1 can also mix
with an acoustic field to produce a carrier with noisy side-
bands. However, in this case the frequency of the higher
sideband is given by ω0, thereby transferring noise from
the acoustic field to the a0 mode through spontaneous
anti-Stokes scattering (see Fig. 3(a)).

Below the cascaded lasing threshold, the optical mode
a2 is neither coherent nor occupied with a large number
of quanta. In other words, a2 is noisy and fluctuates in
amplitude around zero. While this noisy field, in addition
to a noisy acoustic field b1, can be injected into the two
ports of a mixer to produce multiplicative (spontaneous-
spontaneous) noise in the a1 mode, the magnitude of
this noise source is small because the thermal occupation
(quantifying the noise amplitude) of the optical mode a2

is essentially zero.
However, once cascaded lasing is achieved, the coher-

ent field now present in the a2 mode can efficiently trans-
fer noise from the acoustic mode b1 to a1 (as seen in
Fig. 3(b)), coupling the optical mode a1 to an addi-
tional heat bath. We find that these new noise channels,
introduced by cascading, enhance the phase and ampli-
tude noise, thereby producing contrasting behaviors from
single-mode Brillouin lasers [28, 31, 35]. For a lasing or-
der with a fixed emitted power, we find that presence of
additional laser orders (due to cascading) can alter the
laser linewidth by as much as a factor 3, and enhance the
relative intensity noise by nearly 30 dB at low frequen-
cies.

III. THEORY

Model Hamiltonian: The physics of a cascaded Bril-
louin laser can be described by the model Hamiltonian
H given by

H =~
∑
m

[ωma
†
mam + Ωmb

†
mbm

+ (gma
†
mam+1bm + H.c.)], (1)

and schematically represented in Figs. 2 & 3. This model
generalizes the treatment of optomechanical laser noise

FIG. 3. (color online) Illustration of noise dynamics in cas-
caded Brillouin lasers. Tiles represent optical and acoustic
modes. The mixer symbol represents the nonlinear optome-
chanical coupling between two optical and one acoustic mode.
(a) Below threshold for cascaded lasing, optomechanical cou-
pling enables noise transfer between the m = 0 and the m = 1
through spontaneous Brillouin scattering from the phonon
mode b0. (b) Above threshold for cascaded lasing, noise can
be injected into the m = 1 mode from spontaneous scattering
from thermal phonons in the b0 and b1 modes.

described in prior work [24, 28, 30–32] to include the
effects of cascaded lasing. Here, am and bm are the re-
spective annihilation operators for the mth optical and
phonon modes, with respective frequencies ωm and Ωm.
The mode index m labels the cascaded Stokes order,
m = 0 corresponding with the pump, m = 1 correspond-
ing with the first Stokes order, etc. In contrast with
linear waveguides, where mode amplitudes can change
along the system’s symmetry direction, our model treats
the field within the optical and acoustic resonator as in-
dependent of space, and essentially composed of a pure
k-vector mode (either traveling or standing), this aspect
of our model contrasts with the work of Debut et al. [35]
which accounts for the spatial dynamics of the optical
field throughout the laser resonator. This approximation
is valid so long as the loaded optical decay rate and the
gain bandwidth is much smaller than the free spectral
range of the resonator. The coupling rate gm quanti-
fies the Brillouin interaction between mth phonon mode
and the mth and (m+ 1)th optical modes, including the
effects of spatial phase matching. This coupling rate,
determined by the spatial overlap of the acoustic and op-
tical modes, is discussed in detail in Appendix A.

Finally, we point out that through the formulation of
this model, we neglect interactions produced by the Kerr
effect, such as self- and cross-phase modulation. This is
a good approximation in a variety of materials used to
create Brillouin lasers, where Brillouin coupling is much
larger than Kerr nonlinearities [20, 21, 23, 25, 34].

Kerr nonlinearities can shift the resonance conditions
for the laser resonator and mimic the effects of cascaded-
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order lasing by energy transfer through four-wave mixing
(FWM). When the pump laser is locked to the resonator,
the primary effect of Kerr-induced resonance frequency
shifts is to perturb the phase matching for Brillouin scat-
tering. These effects are negligible when the shift in fre-
quency is much less than the Brillouin gain bandwidth,
quantified by the inequality given by ωmn2I/(nΓ) � 1,
where n2 is the Kerr-induced second order refractive in-
dex, and I is the total optical intensity inside the res-
onator. For example, this inequality is well-satisfied for
the laser described by Tab. I (see Ref. [25]) over the
range of investigated powers (i.e. intracavity power much
less than 1500 W).

The relative importance of four-wave mixing (FWM)
can be quantified by taking the ratio of the bulk Bril-
louin gain gB to ωn2/c, representing the spatial rate of
energy transfer per W/m2 produced by the Kerr effect.
In high band gap materials, such as silica [28] and CaF2

[20], this ratio (cgB/(ωn2)) is ∼163 at 1.55 µm in silica
and ∼ 532 at 1.06 µm in CaF2 [20, 33, 36], illustrating
that FWM is perturbative in these systems. Moreover,
cascaded Brillouin lasing has been observed to nine or-
ders with negligible effects produced by Kerr nonlinear-
ities [28]. Combined, these results show that Kerr non-
linearities are negligible in these high bad gap systems.
In contrast, for high index materials such as silicon or
chalcogenide, cgB/(ωn2) of ∼22 at 1.55 µm for the sil-
icon laser reported in Ref. [24, 33] and ∼ 9 for As2S3

chalcogenide glass at 1.06 µm [33, 37]. Consequently, the
effects of Kerr nonlinearities must be carefully accounted
for in high-index materials and may be required for ac-
curate laser modeling at high powers.

Heisenberg-Langevin equations: The laser dynamics
are described by the Heisenberg-Langevin equations of
motion resulting from Eq. (1). In a frame rotating at
the resonance frequency of each field, we find

ȧm =− 1

2
γmam +

√
γextFpumpe

−iωmtδm0 + ηm (2)

− igmam+1bme
−i∆ωm+1t − ig∗m−1b

†
m−1am−1e

i∆ωmt

ḃm =− 1

2
Γmbm + ξm − ig∗ma

†
m+1ame

i∆ωm+1t. (3)

Here, we have added the decay rates, γm and Γm, for
the respective mth optical and acoustic modes, and the
Langevin forces ηm and ξm to equations of motion. These
terms describe the noise and dissipation present in each
degree of freedom. We require that these terms yield
a state of thermal equilibrium in the absence of elec-
trostrictive coupling, and physics consistent with the
fluctuation-dissipation realtion. Above, the parameter
∆ωm is the difference in resonance frequencies given by
ωm − ωm−1 + Ωm−1, and γext denotes the component
of the optical mode decay rate due to coupling of the
laser resonator to a bus waveguide that supplies power
to the laser. The time-dependent function Fpump, rep-
resenting the optical pump, supplies power to and as-
sumed to be locked to the m = 0 mode of the resonator.
This function is normalized such that |Fpump|2 is given

in units of photon flux, so that the power supplied to
the laser through the bus waveguide Ppump is given by
~ωpump|Fpump|2. In addition, we assume that the noise of
this source laser is dominated by phase noise, as a result
we assume that Ppump is time-independent and all of the
time-dependence of Fpump, aside from oscillation at the
carrier frequency, is described in terms of a random time-
dependent phase ϕpump. This randomly varying phase
models a pump laser with a finite linewidth ∆νpump (see
Fig. 2). The Langevin forces ηm and ξm quantify the
quantum and thermal fluctuation of the respective opti-
cal and acoustic fields. These Langevin forces are zero-
mean Gaussian random variables with white power spec-
tra [28, 30, 31], yielding the correlation properties given
by

〈η†m(t)ηm′(t
′)〉 = γmNmδ(t− t′)δmm′ (4)

〈ηm(t)η†m′(t
′)〉 = γm(Nm + 1)δ(t− t′)δmm′ (5)

〈ξ†m(t)ξm′(t
′)〉 = Γmnmδ(t− t′)δmm′ (6)

〈ξm(t)ξ†m′(t
′)〉 = Γm(nm + 1)δ(t− t′)δmm′ , (7)

where Nm and nm are the thermal occupation num-
bers of the mth optical and acoustic modes (i.e. Nm =
(exp{~ωm/kBT} − 1)−1 and nm = (exp{~Ωm/kBT} −
1)−1) and 〈...〉 denotes an ensemble average with respect
to the Langevin forces.

Adiabatic elimination of phonon fields: In many Bril-
louin lasers the decay rate of the relevant acoustic modes
is much larger than the decay rate of the participating
optical modes (i.e. Γm � γm and γm+1). For near-
resonant systems (i.e. ∆ωm � Γ) possessing this separa-
tion of time-scales, the phonon fields adiabatically follow
the electrostrictive forcing generated by the beat notes
of the various optical fields. In this limit, we find the
approximate solution for the phonon dynamics given by

bm ≈ −ig∗mχma
†
m+1am + b̂m, (8)

where χm ≡ (−i∆ωm+1 + Γm/2)−1 and b̂m, quantify-
ing the thermal and quantum fluctuations of the phonon
field, is given by

b̂m =

∫ t

−∞
dτe−

Γm
2 (t−τ)ξm(τ). (9)

Physically, this approximation is valid so long as the elec-
trostrictive forces produced by the optical fields change so
slowly in time that the phonon assumes its steady-state
amplitude at each instant.

By adiabatically eliminating the phonon field, we can
obtain a simplified set of equations describing the dy-
namics of a cascaded Brillouin laser. By combining the
approximate solution for bm with Eqs. (2) & (3), we
find the effective equation of motion for the optical field
amplitudes given by

ȧm =−
(
γ̃m
2

+ µma
†
m+1am+1 − µ∗m−1a

†
m−1am−1

)
am

+ hm +
√
γextFpumpe

−iωmtδm0, (10)
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where µm ≡ |gm|2χm and γ̃m ≡ γm + 2µm, and the

Langevin force hm, defined by hm = ηm − igmam+1b̂m −
ig∗m−1b̂

†
m−1am−1, describes the colored multiplicative

noise imparted to the optical fields through electrostric-
tive coupling in addition to quantum and thermal fluctu-
ations of the optical modes. The function µm is the non-
linear susceptibility associated with Brillouin scattering,
2Re[µm] yielding the Brillouin amplification rate per pho-
ton. This function can be related to the Brillouin gain
factor GB,m, quantifying the spatial rate of Brillouin-
mediated energy transfer per Watt of pump power along
a waveguide, through the relation

GB,m =
2Re[µm]L

~ωm−1vg,mvg,m−1
, (11)

where L is the resonator length and vg,m is the group
velocity of the mth optical mode. This gain factor GB,m

can also be expressed in terms of the bulk gain gB,m, in
units of meter per Watt, by multiplying by the effective
acousto-optic overlap area Aeff , i.e. gB,m = AeffGB,m.
Through energy transfer measurements of Brillouin scat-
tering in a waveguide segment with the same properties
as the waveguide used to create the laser resonator, the
gain factor GB,m can be obtained and the electrostrictive
coupling rate gm can be derived.

It is important to point out that adiabatic elimination
of the phonon modes can produce singular behavior in
very long optical resonators where many optical modes
fit within the gain bandwidth—a regime that produces
distinct pulsed laser dynamics [38]. However, by virtue of
the mean-field form of our laser model, this problematic
behavior is outside the regime of validity of our model
which requires the resonator FSR to be much bigger than
the Brillouin gain bandwidth (i.e the phonon linewidth).
In other words, one optical mode falls within the gain
bandwidth at most.

Equation (10) shows that the dynamics of the mth
mode exhibit laser threshold behavior. Namely, when

Re[µ∗m−1]a†m−1am−1 >
γ̃m
2 + Re[µm]a†m+1am+1 the mth

mode becomes unstable, and the mode amplitude can
grow in magnitude. When this laser threshold condition
is satisfied, a small fluctuation of am can be be ampli-
fied, creating strong coherent laser oscillation, so that
|am| acquires a nonvanishing mean value. This behav-
ior is analogous to a second order phase transition [39],
where the average amplitude plays the role of the order
parameter.

Above laser threshold, it is convenient to describe the
dynamics of am using the following decomposition

am = (αm + δαm)eiϕm . (12)

Here, αm is the time-independent steady-state laser am-
plitude, and δαm and ϕm are time-dependent fluctua-
tions of the respective amplitude and phase of the laser
emission from the mth optical mode. These fluctuating
quantities describe the laser noise properties, the zero-
mean amplitude fluctuation δαm describing the relative

intensity noise (RIN), and ϕm the phase noise. In the
following sections, we use the representation of am above
to derive the steady-state laser dynamics of the optical
modes and to describe the fundamental noise properties
of cascaded Brillouin lasers.

IV. STEADY-STATE LASER AMPLITUDES,
THRESHOLD, AND CASCADING

By inserting the representation of am given by Eq. (12)
into Eq. (10), dropping the Langevin forces, and taking
the modulus of the time average, we find the following
recursion relation between the various laser amplitudes
and the time-independent mean amplitude of the pump
field |Fpump|(
γ̃m
2

+ µ′mα
2
m+1 − µ′m−1α

2
m−1

)
αm =

√
γext|Fpump|δm0.

(13)

Here, µ′m = Re[µm] and we have dropped nonvanishing
terms of order δα2

m (away from threshold αm � |δαm|).
Equivalently, this recursion relation can be written in
terms of the coherent occupation numbers pm = α2

m

yielding the steady-state equations for the mode occu-
pation number given by(
γ̃m
2

+µ′mpm+1−µ′m−1pm−1

)
pm =

√
γext|Fpump|

√
pmδm0.

(14)

These recursion relations are reminiscent to prior results
for cascaded Raman lasers (see steady-state limit of Eq.
10 in Ref. [29]), which can be modeled by physics similar
to Eq. (1).

We can use these recursion relations to find the emitted
laser power for each mode. To obtain the emitted power
of the mth mode Pm, one first obtains the intracavity
power by multiplying the occupation number pm by the
energy stored in the resonator per photon ~ωmvg,m/L,
where L is the length of the resonator and vg,m is the
group velocity of the mth mode. By multiplying the in-
tracavity laser power by resonator-bus waveguide power
coupling factor κ, we obtain Pm given by

Pm =
~ωmvg,mκ

L
pm. (15)

To find the steady-state laser powers, we use the re-
cursion relation Eq. (13). When only k orders are lasing,
we know αk+1 = 0, and given that the anti-Stokes mode
to the pump cannot lase we know α−1 = 0. These two
conditions can be used with Eq. (13) to give(

γ̃0

2
+ µ′0α

2
1

)
α0 =

√
γext|Fpump| for m = 0 (16)

α2
k−1 =

γ̃k
2µ′k−1

(17)

α2
m−1 =

µ′m
µ′m−1

α2
m+1 +

γ̃m
2µ′m−1

for k > m > 0. (18)
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There are a number of important results that can be
drawn from these equations. First, for kth order cascad-
ing, the k−1 mode is clamped. As a result, the recursion
relation Eq. (18) implies that the k−3, k−5, k−7..... are
clamped as well. This behavior is illustrated in Fig. 4
which shows the emitted powers of each Stokes order as
function of power supplied to the laser Ppump. In other
words, if k is even, all odd orders are clamped, and if k
is odd all even orders are clamped.

Combining the results of Eqs. (16), (17), and (18),
the power in the 2mth and the (2m + 1)th orders are
respectively given in terms of the α0 and α1 as

α2
2m = C(e)

m (α2
0 − S(e)

m ) (19)

α2
2m+1 = C(o)

m (α2
1 − S(o)

m ) (20)

where we the recursion formulas for the steady-state am-
plitudes yield

C(e)
m =

m∏
j=1

µ′2j−2

µ′2j−1

(21)

S(e)
m =

1

µ′0

m∑
j=1

1

2
γ̃2j−1C

(o)
j−1 (22)

C(o)
m =

m∏
j=1

µ′2j−1

µ′2j
(23)

S(o)
m =

1

µ′0

m∑
j=1

1

2
γ̃2jC

(e)
j . (24)

A. Laser thresholds and powers

Using the analysis given above, we obtain the power
emitted from each mode and threshold powers for each
order of cascaded lasing. We find the expressions for the
emitted power, in terms of P0 and P1, given by

P2m = C(e)
m

ω2mvg,2m
ω0vg,0

[
P0 −

~ω0vg,0κ

L
S(e)
m

]
(25)

P2m+1 = C(o)
m

ω2m+1vg,2m+1

ω1vg,1

[
P1 −

~ω1vg,1κ

L
S(o)
m

]
, (26)

which can be used to calculate the power emitted from
any mode in terms of P0 and P1. To find P0 and P1, we
must separately consider the cases when an even and odd
number of Stokes orders are lasing.

B. Cascading to 2k + 1 orders (odd number of
Stokes orders)

First, we consider the case when an odd number of
Stokes order are lasing. In this case, the powers of all
even orders are clamped. Using Eqs. (25), (16) and (15),

we find

P0 =
~ω0vg,0κ

L
S

(e)
k+1 (27)

P1 =
~ω1vg,1κ

L

1

µ′0

(√
γextPpump

~ωpumpS
(e)
k+1

− γ̃0

2

)
. (28)

C. Cascading to 2k orders (even number of Stokes
orders)

In contrast, for an even number of Stokes orders all
odd orders are clamped. Again, using Eqs. (25), (16)
and (15), we find

P0 =
ω0vg,0κ

Lωpump

(
γ̃0

2
+ µ′0S

(o)
k

)−2

γextPpump (29)

P1 =
~ω1vg,1κ

L
S

(o)
k . (30)

Using the relations above we can determine the threshold
power for cascading at an arbitrary order. Threshold for
the kth order is met when the power in the (k − 1)th be-
comes clamped. Using Eqs. (17) and (15), this clamped
power is given by

Pk−1 =
~ωk−1vg,k−1κ

L

γ̃k
2µ′k−1

, (31)

yielding the threshold power for the kth mode P th
k given

by

P th
k =

~ωpump

γext

{
S

(e)
k/2(µ′0S

(e)
k/2 + γ̃0/2)2 k even

S
(e)
(k+1)/2(µ′0S

(o)
(k−1)/2 + γ̃0/2)2 k odd.

(32)

D. Special case: γ̃m = γ̃, µ′m = µ′, and vg,m = vg

Up to this point, we have accounted for the possibility
that the gain and loss properties of the resonator may
vary mode by mode. However, in many Brillouin laser
resonators these properties are approximately constant
over a large frequency range. In this short section we
explore the steady-state laser physics for the case where
γ̃m = γ̃, µ′m = µ′, and vg,m = vg, yielding a dramatic
simplification of the analysis. Under these conditions

C
(e)
m = C

(o)
m = 1 and S

(e)
m = S

(o)
m = (γ̃/2µ′)m, leading

to the emitted powers given by

P2m = ω2m

[
P0

ω0
− ~γ̃γext

2µ′
m

]
(33)

P2m+1 = ω2m+1

[
P1

ω1
− ~γ̃γext

2µ′
m

]
, (34)

and the threshold powers given by

P th
j =

~ωpumpγ̃
3

64µ′γext

{
j(j + 2)2 j even
(j + 1)3 j odd,

(35)



8

where we have used γext = vgκ/L. Next, we find the
power emitted by each order.

1. Cascaded lasing of 2k + 1 orders only

When an odd number 2k+1 of cascaded orders are las-
ing, we find the following expressions for the laser power
emitted by the even 2m and odd 2m+ 1 orders

P2m =
~ω2mγextγ̃

2µ′
(k + 1−m) (36)

P2m+1 =
4ω2m+1γ

2
ext

ωpumpγ̃2

m+1

(k+1)3

[√
P th

2k+1Ppump
k+1

m+1
−P th

2k+1

]
.

2. Cascaded lasing of 2k orders only

When an even number 2k of Stokes orders are lasing
the emitted powers given by

P2m =
4ω2mγ

2
ext

ωpumpγ̃2

1

(k + 1)2

[
Ppump −

m

k
P th

2k

]
(37)

P2m+1 =
~ω2m+1γextγ̃

2µ′
(k −m).

Under the appropriate assumptions, these formulas re-
produce the results of previous works on cascaded Raman
and Brillouin lasers [29, 40, 41].

In Fig. 4, we plot the emitted laser powers described by
Eqs. (36) and (37), and compare with the emitted pow-
ers obtained through stochastic simulations of Eqs. (2) &
(3). The results displayed in Fig. 4 show that these an-
alytical expressions accurately capture the steady-state
laser dynamics.

FIG. 4. (color online) Steady-state laser power for the laser
parameters given in Tab. I. Solid lines represent theoretical
predictions for the steady-state powers given by Eqs. (36) and
(37), and solid points denote the steady-state powers obtained
from stochastic simulations of Eqs. (2) & (3). From top to
bottom, the power curves are P0, P1, P2, P3, P4, and P5.

TABLE I. Cascaded Brillouin laser simulation parameters
(based on Ref. [25]). The coupling rate g, optical decay
rate γ̃, and the acoustic decay rate Γ are the same for all
considered orders.

g 1.54 kHz electrostictive coupling rate
Γ (2π)200 MHz phonon decay rate
γ̃ (2π)6.88 MHz optical decay rate

ωpump (2π)195.3 THz pump laser frequency
GB 0.1(Wm)−1 Brillouin gain
κ 0.0025 power coupling
L 0.0743 m resonator length
vg 2.08×108 m/s optical group velocity
γext (2π)1.11 MHz external optical loss rate

∆νpump (2π)100 Hz. pump laser linewidth
µ 3.8 mHz. 1/2×Bril. ampl. rate per photon

V. LASER NOISE DYNAMICS

In this section we explore the amplitude and phase
noise dynamics of cascaded Brillouin lasers. We base
this analysis on the effective dynamics described by Eq.
(10). Consequently our results differ slightly from Loh et
al. [31] who included non-adiabatic effects of the phonon
mode(s) but neglected quantum fluctuations. To explore
the phase and amplitude dynamics of a cascaded order
Brillouin laser, we explicitly solve Eq. (10), linearized for
small δαm. To obtain the desired equations of motion,
we combine Eq. (12) with Eq. (10), keep terms to linear
order in δαm, take the real and imaginary parts, and use
the relations between the steady-state amplitudes to find

˙δαm =− 2(µ′mαm+1δαm+1 − µ′m−1αm−1δαm−1)αm

+ Re[h̃m]− 1

αm

√
γext|Fpump|δm0δαm

+
√
γext(Re[F̃pump]− |Fpump|)δm0 (38)

αmϕ̇m =− 2(µ′′mαm+1δαm+1 + µ′′m−1αm−1δαm−1)αm

− δωm(1 + δαm/αm) + Im[h̃m]

+
√
γextIm[F̃pump]δm0 (39)

where µ′′m = Im[µm] and δωm = (µ′′mα
2
m+1 +

µ′′m−1α
2
m−1)αm. To obtain the equation above,

we have multiplied Fpump as well as the Langevin

forces by exp{−iϕm}, yielding the definitions h̃m ≡
hm exp{−iϕm} and F̃pump ≡ Fpump exp{−iϕm}.

The cascaded Brillouin laser noise dynamics described
by the equations above share two important features with
typical laser systems. Generally, the laser phase noise
and RIN couple, and the dynamics of the various cas-
caded orders couples. When phase matching is precisely
satisfied µ′′m = 0 and the laser phase and amplitude de-
couple. However, the amplitudes of adjacent laser orders
continue to interact, resulting complex relaxation oscil-
lation dynamics.
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To begin our discussion of laser noise, we explore the
dynamics of the a0 (m = 0 mode). This mode acts as
the pump for the Brillouin laser and has distinct dynam-
ics from those of the other optical modes. Among these
distinctions, the m = 0 mode does not undergo a las-
ing transition, and it is driven by a noisy external pump
laser, noise that is directly transferred to the pump mode
and can be fed into cascaded Stokes orders.

A. Pump dynamics

In this section we analyze the dynamics of the m = 0
optical mode, playing the role of the pump, beginning
with the phase. To obtain the time-dependence of the
pump (m = 0 optical mode) we assume that the external
pump laser is given by

Fpump = |Fpump| exp{i(∆ωt+ ϕpump)} (40)

where ∆ω ≡ ωpump−ω0 is the difference between the ex-
ternal pump laser frequency and the resonance frequency
of the pump (m = 0) mode (see Fig. 2). As discussed
above, we assume the source laser is phase noise domi-
nated, that the amplitude |Fpump| is time-independent,
and the phase ϕpump is randomly fluctuating in time
with a variance determined by the external pump laser
linewidth ∆νpump (see Fig. 2). We model the behav-
ior of ϕpump using the phase diffusion model [35]. These
assumptions yield the equation for ϕ0 given by

α0ϕ̇0 =− 2µ′′0α1α0δα1 − δω0(1 + δα0/α0)

+ Im[h̃0] +
√
γext|Fpump| sin(∆ωt+ ϕpump − ϕ0)

(41)

where δω0 is defined just after Eq. (39). To find the
dynamics of ϕ0, we assume that precise phase matching
is satisfied (i.e. the electrostrictive coupling parameter
µm is real and µ′′m = 0), that the pump mode is driven

on resonance (∆ω = 0), that
√
γext|Fpump| � |h̃0|, and

that γ̃0 � 2π∆νpump. In other words, the last condi-
tion means that the optical pumping of our system is
not Lorentz limited. Under these conditions, the pump
phase decouples from the laser amplitudes and adiabati-
cally follows the phase of the external source laser ϕpump,
yielding

ϕ0 ≈ ϕpump. (42)

This behavior is illustrated in Fig. 5 where the time evo-
lution of ϕpump and ϕ0, obtained from stochastic sim-
ulations of Eqs. (2) & (3), is shown. Under the same
assumptions given above, we find the pump amplitude
dynamics given by

˙δα0 ≈ −2µ′0α1α0δα1 −
1

α0

√
γext|Fpump|δα0 + Re[h̃0]

(43)

FIG. 5. (color online) Simulated pump phase ϕ0 and external
pump phase ϕpump as a function of time for Ppump = 50 mW.
Simulation parameters given in Tab. I

where, justified by the dynamics of ϕ0, we have dropped a
term proportional Re[F̃ext]−|Fpump|. In the following, we
will use these equations, along with equations describing
the steady-state powers, to find the RIN and the phase
noise in cascaded Brillouin lasers.

B. Cascaded Brillouin laser noise in phase matched
systems

While the development presented up to this point is
general, here we restrict our analysis to perfectly phase
matched systems. Under such conditions the laser dy-
namics dramatically simplifies. As discussed in Sec. IIB,
it is important to note that the Brillouin frequency shift is
distinct for each cascaded order (e.g. decreasing by ∼600
kHz in silica for a pump of 1.55 µm for each cascaded or-
der). Consequently, in laser resonators with a constant
FSR, the peak of the Brillouin gain will slowly walk-off
from resonance with increasing Stokes orders, and perfect
phase matching is only approximately satisfied. This ef-
fect can decrease the Brillouin coupling for higher Stokes
orders, yield a larger threshold [42], lead to amplitude
and phase coupling, and produce frequency pulling [40].
For the lasers with a gain bandwidth that is much larger
than this shift from perfect phase matching, these effects
produce a perturbative effect on the phase noise. In the
future, a variety dispersion engineering techniques, such
as atomic layer deposition, nanostructuring, coupling to
resonators, and modifying the waveguide shape may en-
able group velocity dispersion that precisely aligns a large
number of cascaded Stokes orders with resonator modes.

By utilizing these simplifying assumptions, we calcu-
late the laser noise for a range of examples. For the ex-
amples considered here, satisfying strict phase matching
for all cascaded orders, the coupling parameters are real,
i.e. µm = µ′m and µ′′m = 0, and the linearized dynamics
of the various laser phases decouple from the amplitudes,
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yielding the laser dynamics described by

˙δαm = −2µmαm+1αmδαm+1 + 2µm−1αm−1αmδαm−1

− 1

α0

√
γext|Fpump|δm0δαm + Re[h̃m] (44)

αmϕ̇m = Im[h̃m]. (45)

Let us take a moment to address a subtlety of the de-
coupling between the amplitude and the phase dynamics.
Recall that the Langevin forces given above are multi-
plied by factors of the form exp{−iϕm} (see below Eq.
(39)), and therefore, the amplitude and phase dynamics
are coupled, in contrast with the claims above. However,
when the correlation time for hm is short compared to
that of the laser phases (which is well-satisfied in typical

systems), the correlation properties of hm and h̃m are
indistinguishable (see Appendix B), and the amplitude
and phase dynamics become effectively decoupled. This
decoupling enables the laser amplitude and phase noise
to be analyzed independently.

We begin our analysis of laser noise by calculating the
RIN. Unlike the laser phases, Eq. (44) shows that the
amplitudes of the various laser orders couple together.
This coupling can produce relaxation oscillation dynam-
ics with multiple resonant frequencies, depending on the
number of lasing modes. Consequently, the RIN must be
analyzed case by case.

1. Relative intensity noise

In this section, we use the decoupled equations Eq.
(44) to find the relative intensity noise (RIN) of a cas-
caded Brillouin laser, quantifying the relative stability of
the emitted laser power. For the mth laser mode, the
RIN SRIN

m [ω] is defined by the two-sided power spectrum
of the relative laser power fluctuations

SRIN
m [ω] =

1

P 2
m

∫ ∞
−∞

dτ eiωτ 〈δPm(t+ τ)δPm(t)〉, (46)

where δPm represents the time-dependent variation of
the laser power from its steady-state value. By us-
ing (Pm + δPm) ∝ (αm + δαm)2 and assuming that
|δαm| � αm, we can express the power spectrum for
relative intensity noise in terms of the laser amplitude
fluctuations as

SRIN
m [ω] =

4

α2
m

∫ ∞
−∞

dτ eiωτ 〈δαm(t+ τ)δαm(t)〉. (47)

Here, we have neglected subleading terms of order δα4.

In the following, we solve the laser equations for the
amplitude dynamics and use Eq. (47) to find explicit
expressions for the RIN that depend on the number of
cascaded lasing orders.

2. RIN: first order cascading

We begin by finding the RIN when threshold for the
m = 2 mode has not been met. In this limit, the laser
amplitude equations reduce to

˙δα0 = − 1

α0

√
γext|Fpump|δα0 − 2µ0α1α0δα1 + Re[h̃0]

(48)

˙δα1 = 2µ0α0α1δα0 + Re[h̃1]. (49)

As has been described in Ref. [31], the amplitude cou-
pling between the pump and first Stokes modes described
above leads to relaxation oscillations of energy between
the modes, with a frequency given by ωrel

0 ≡ 2µ0α0α1

and a damping rate ΓRIN ≡
√
γext|Fpump|/α0.

We solve this coupled set of linear differential equations
by Fourier transform, yielding the solution for δα1 given
by

δα1(t) =

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dt1 e
−iω(t−t1)χRIN(ω)

×
(
ωrel

0 Re[h̃0(t1)] + (−iω + ΓRIN)Re[h̃1(t1)]

)
(50)

where χRIN(ω) = (−ω2 − iΓRINω + ωrel
0

2
)−1. Using

the correlation properties for h̃m (see Appendix B), we
find the two-time correlation function for the amplitude
〈δα1(t+ τ)δα1(t)〉, the Fourier transform of this correla-
tion function can be used to find the power spectrum for
the RIN of a single-mode Brillouin laser, yielding

SRIN
1 [ω] =|χRIN(ω)|2

[
1

2
ωrel

0

2
γ̃0(N0 + 1/2)

+
1

2
(ω2 + Γ2

RIN)γ̃1(N1 + 1/2)

+
1

2
|g0|2(n0 + 1/2)

(
ωrel

0

2
α2

1

− 2ωrel
0 ΓRINα1α0

+ (ω2 + Γ2
RIN)α2

0

)
Γ0

ω2 + Γ2
0/4

]
. (51)

Equation (51) reproduces the RIN in Brillouin lasers de-
scribed by Loh et al. [31], when quantum noise is ne-
glected and when Γ0 � γ̃0 is assumed. In Fig. 6a, we
compare Eq. (51) to the RIN power spectrum obtained
from stochastic simulations of Eqs. (2) & (3), both calcu-
lations use Tab. (I) for input parameters. The agreement
between Eq. (51) and the laser simulations, shown in Fig.
6a, justifies the various approximations that led to our
analytic expressions describing the RIN. In the next sec-
tion, we consider RIN in cascaded Brillouin lasers.
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FIG. 6. (color online) Relative intensity noise of the first Stokes order (a) prior to cascaded lasing (point (a) of inset), (b)
cascaded lasing to two Stokes orders (point (b) of inset), and (c) cascaded lasing to three Stokes orders (point (c) of inset).
Gray dashed line (c) is the theory curve from (a), included from comparison.

3. RIN: Higher order cascading

Here, we derive general expressions for the RIN for
Brillouin lasers that have cascaded to k orders. To for-
mulate this general problem, it is convenient to express
the amplitude dynamics in terms of a vector differential
equation given by

˙δα = −M · δα + Re[h̃] (52)

where · denotes matrix multiplication. Here δα and h̃
are column vectors composed of the respective amplitude
fluctuations and Langevin forces for each order

δα =


δαk
δαk−1

...
δα1

δα0

 h̃ =


h̃k
h̃k−1

...

h̃1

h̃0

 , (53)

and the k×k matrix M, encoding the amplitude coupling
among the various orders, is given by

M =



0 −ωrel
k−1 . . .

ωrel
k−1 0
...

. . .
...

0 −ωrel
2 0 0

ωrel
2 0 −ωrel

1 0
0 ωrel

1 0 −ωrel
0

. . . 0 0 ωrel
0 ΓRIN


(54)

where ωrel
j ≡ 2µjαjαj+1.

This vector differential equation is a compact represen-
tation of the dynamics described by Eq. (44). We obtain
the following solution for Eq. (52) given by

δα(t) =

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dt′ e−iω(t−t′)G[ω] · Re[h̃(t′)]

(55)

where G[ω] ≡ [−iωI+M]−1 (-1 denotes matrix inverse),
and I is the k × k identity matrix. The two-sided power

spectrum SRIN
j [ω] for the RIN of the jth mode can be

obtained by computing the Fourier transform of the two-
time amplitude correlation function in Eq. (47). From
the analysis detailed in Appendix C, we find

SRIN
j [ω] =

4

α2
j

(G[ω] · C[ω] ·G†[ω])jj (56)

where the suffix jj denotes the jj (diago-
nal) matrix element of G[ω] · C[ω] ·G†[ω], and
C[ω] is a dyadic with matrix elements given by

Cmn[ω] =
∫∞
−∞ dτ eiωτ 〈Re[h̃m(t+ τ)]Re[h̃n(t)]〉. To find

the RIN for a general case, one finds G[ω] for the
relevant number of cascaded orders k, and then uses
Eq. (56). We give explicit expressions for G[ω] and
C[ω] for a variety cascaded orders in Appendix C. This
new expression for the RIN of a cascaded Brillouin laser
represents the first major result of this paper.

In Fig. 6, we display SRIN
1 [ω], calculated using Tab. (I)

(and the results of Appendix C), for a range of powers
and cascaded orders, the solid black lines are calculated
from Eq. (56), and the red dots denote the RIN ex-
tracted from simulations of Eqs. (2) & (3). Figure 6(b)
shows the RIN for the first Stokes order just prior to
threshold for cascading to 3 orders. Although the emit-
ted power for the first Stokes mode is nearly identical
for Fig. 6(a) and Fig. 6(b), the additional noise channel
opened by lasing in the second Stokes order enhances the
RIN by nearly 30 dB at low frequencies. As cascading
proceeds to higher orders, energy transfer between the
cascaded orders produces complex relaxation oscillation
dynamics. For example, after third order cascading, the
amplitude coupling between the optical modes produces
the multipeaked spectra seen in Fig. 6(c).

4. Phase Noise

Continuing our discussion of noise in cascaded Bril-
louin lasers, we now explore the phase noise of individual
Stokes orders, quantifying the laser frequency stability.
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Following the conventions of Halford et al. [43], we quan-
tify the phase noise of the mth laser order with the power
spectrum of phase fluctuations Lm(f) defined by

Lm(f) =

∫ ∞
−∞

dτ ei2πfτ 〈ϕm(t+ τ)ϕm(t)〉. (57)

By integrating Eq. (45) and using the correlation prop-

erties of the Langevin force h̃m detailed in Appendix B,
we find the phase noise given by

Lm(f) ≡ 1

2πf2
∆νm

=
1

8π2α2
mf

2

[
γ̃m

(
Nm+

1

2

)
+|gm|2α2

m+1

(
nm+

1

2

)
Γm

(2πf)2+Γ2
m/4

+|gm−1|2α2
m−1

(
nm−1+

1

2

)
Γm−1

(2πf)2+Γ2
m−1/4

]
(58)

where, in the top line, we have introduced ∆νm, the fun-
damental linewidth of the mth laser mode. From left
to right, the first term in the brackets originates from
thermal and quantum fluctuations of the optical mode,
the second term represents the contribution to the phase
noise from spontaneous anti-Stokes scattering from of the
m+1 optical mode, and the last term describes the noise
injected into the mth mode by spontaneous Stokes scat-
tering from them−1 mode. This result shows that Lm(f)
is insensitive to the phase noise of the pump laser. This
insensitivity is due to a compression of the phase diffusion
transferred to the Stokes modes from the pump and is a
property of the phase noise in Brillouin lasers where the
phonon decay rate is large compared to the optical decay
rates and pump laser linewidth [35]. Brillouin lasers sat-
isfying these properties can be viewed as “noise eaters”.
In spite of this property, some pump noise transfers to
the Brillouin laser emission, and in certain systems can
dominate the laser linewidth. For the model parameters
given in given in Tab. I, we find that the pump con-
tributes ∼0.1 Hz to the laser linewidth (see Appendix B
for further details).

This new result, quantifying the contribution from
spontaneous anti-Stokes scattering to the phase noise is
one of the central results of this paper. We illustrate
the impact of spontaneous anti-Stokes scattering on the
phase noise in Fig. 7, showing the phase noise for the
first Stokes order below (point A) and above (point B)
threshold for cascaded lasing. Due to power clamping,
the emitted power for the first Stokes order at point A
and point B is the same, yet, in distinction with insights
drawn from the behavior of first order Brillouin lasers,
the phase noise is different. The origin of this difference
in the phase noise magnitude is due to spontaneous anti-
Stokes scattering produced by the second Stokes order.

FIG. 7. (color online) Comparison of the phase noise of the
first Stokes order, above and below threshold for cascaded
lasing. The solid lines are calculated using Eq. (58), and the
points represent simulated phase noise, open circles for point
B of the inset and red points for point A. The emitted laser
power is P1 = 5.2 mW for both curves, whereas the power
supplied to the laser is respectively 197 mW and 369 mW.

5. Phase noise of beat notes between cascaded Stokes orders

In this section, we calculate the coherence properties
of microwave signals synthesized using cascaded Bril-
louin lasers. Cascaded Brillouin lasers offer a compelling
method to synthesize high-coherence microwaves [34].
During cascaded operation, a Brillouin laser can co-emit
a number of high-coherence laser tones that are spaced
by ∼ 10s of GHz in frequency. By photomixing this laser
emission on a high-speed receiver, a coherent electrical
signal is produced at the beat frequencies of the various
Stokes orders.

To quantify the coherence of microwave signals syn-
thesized using cascaded Brillouin lasers, we calculate the
phase noise power spectrum of the beat note between
two distinct Stokes orders. We represent such a beatnote
βmm′ , between the mth and m′th modes, by

βmm′ = a†mam′ = (αm + δαm)(αm′ + δαm′)e
−iϕmeiϕm′ .

(59)
If m 6= m′ ± 1 then the exponents can be combined (i.e.
these phases commute as quantum operators) to yield

e−iϕmeiϕm′ = e−i(ϕm−ϕm′ ), (60)

which gives the beat note phase ∆ϕmm′ ≡ ϕm − ϕm′ .
We calculate the m-m′ beatnote phase noise power

spectrum Lm,m′(f) by taking the Fourier transform of
the two-time beatnote phase correlation function. Given
that the phases of the two cascaded laser orders are un-
correlated, the beat note phase correlation function is
given by the sum of the phase correlation functions of
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the individual orders

〈∆ϕmm′(t+ τ)∆ϕmm′(t)〉 =〈ϕm(t+ τ)ϕm(t)〉
+ 〈ϕm′(t+ τ)ϕm′(t)〉,

(61)

yielding the power spectrum for the beat note phase given
by

Lm,m′(f) =Lm(f) + Lm′(f). (62)

This result, combined with Eq. (58), shows us that the
linewidth of the beatnote ∆νm,m′ is an upper bound on
the linewidths of the individual tones (i.e. ∆νm,m′ ≥
∆νm,∆νm,m′ ≥ ∆νm′). In the low frequency limit, i.e.
2πf � Γm,Γm′ , and by using the recursion relations for
the power (Eq. (13)), Lm,m′(f) becomes

Lm,m′(f) ≈
∑

j=m,m′

1

8π2α2
jf

2

[
γ̃j(Nj + nj−1 + 1)

+ 2µjα
2
j+1(nj + nj−1 + 1)

]
. (63)

This expression, quantifying the phase noise of beat notes
between distinct cascaded laser orders, is the third major
result of this paper.

As a concrete example, we give the phase noise of the
beat note between the first and third Stokes orders for a
laser that has cascaded to 3 orders. Assuming that the
Brillouin coupling and optical decay rates for the 1st and
3rd modes are the same, we find

L1,3(f) ≈ γ̃

8π2f2

[
1

α2
1

(N1+2n0+2+n1)+
1

α2
3

(N3+n2+1)

]
(64)

where the clamped value for α2 has been used. Note
that because α1 and α3 are connected by the recursion
relation Eq. (13), a measurement of the emitted power
of either order is sufficient to predict the phase noise of
the beat note.

Figure 8 compares Eq. (64) to the beatnote phase noise
obtained by simulating Eqs. (2) & (3), showing excellent
agreement between the theory and simulation.

As another key result of this paper, Eq. (64) enables
the linewidth of the individual optical tones to be quan-
tified by measuring the phase noise of the beatnote and
the relative powers of the relevant emitted orders. This
analysis can be done by using the theoretical form for
the laser linewidths. For a Brillouin laser cascaded to 3
orders and having equal optical decay rates and Brillouin
couplings, Eq. (58) gives the linewidths of the first and
third Stokes orders as

∆ν1 =
γ̃

4πα2
1

(N1 + 2n0 + 2 + n1) (65)

∆ν3 =
γ̃

4πα2
3

(N3 + n2 + 1). (66)

FIG. 8. (color online) Phase noise of beat note of the first and
third Stokes laser orders for parameters given in Tab. (I). The
power spectrum given by Eq. (64), is represented as the solid
line. The gray dots represent the simulated beat note phase
noise power spectrum obtained by numerically solving Eqs.
(10). The on-chip pump power is 756 mW.

Using these relations, we find

∆ν3 =
(N3 + n2 + 1)

(N1 + 2n0 + 2 + n1)

α2
1

α2
3

∆ν1. (67)

For a Brillouin laser operating at room temperature, the
thermal occupation of the optical modes is much less
than one, while the phonon modes are highly excited
n0 ≈ n1 ≈ n2 � 1. For these conditions, we find
∆ν3 ≈ P1/(3P3)∆ν1 which yields the following relation-
ship between the beatnote linewidth and the linewidth of
the first Stokes for the specific example considered here

∆ν1,3 ≈ [1 + P1/(3P3)]∆ν1. (68)

Equation (68) is a useful result for designing and
characterizing cascaded-order Brillouin lasers. This ex-
pression provides a method to assess the Stokes order
linewidths without knowing values that have high mea-
surement uncertainty (e.g., fiber coupled power, res-
onator coupling and ringdown under thermal variations
and non-cold cavity conditions). Consequently, an inde-
pendent measurement of the beat note phase noise and
the relative emitted optical powers of the lasing orders
can be used to determine the optical linewidths.

6. Linewidth power dynamics in cascaded Brillouin lasers

Thus far, we have shown how the noise depends upon
the powers of each of the laser orders. Here, we combine
these noise results with the steady state power dynamics
of Sec. IV to describe the evolution of the laser linewidth
with the power supplied to the laser.

Figure 9 shows the evolution of the linewidth of the
first and third Stokes orders as well as their beatnote as
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FIG. 9. (color online) Power dynamics of the first Stokes
(red, left), third Stokes (green, bottom right), and first-third
beatnote (gray, top right) linewidth.

a function of power supplied to the laser. Beginning at
powers below threshold for the second Stokes order, the
linewidth ∆ν1 (blue curve) decreases inversely with the
emitted power P1. Once the threshold power is met for
the second Stokers order P th

2 , Fig. 9 shows a sharp rise
in ∆ν1. This rise is due to the excess noise injected into
the first Stokes order by spontaneous anti-Stokes scat-
tering from the m = 2 mode. The third Stokes order
and the beatnote display similar behavior to that of the
first order. Figure (9) shows that the linewidth of the
beatnote and various laser tones exhibits highly nontriv-
ial power dynamics, and, in contrast with single-mode
Brillouin lasers, intermediate powers may be preferable
for the purpose of producing highly coherent optical or
microwave signals. Viewed differently, these results show
that cascading can degrade Brillouin laser performance
by producing a broadened emission linewidth and that
improved noise properties can be achieved by engineer-
ing the laser physics to inhibit cascading.

VI. CONCLUSION

In this paper, we explored the power and noise dy-
namics of cascaded Brillouin lasers. We based this explo-
ration on analytical and numerical studies of a coupled-
mode laser model that captures the critical features of
cascaded Brillouin lasers. To streamline our theoretical
analyses, we investigated the physics of this model under
the following simplifying conditions, (1) that the tempo-
ral decay rate of the acoustic fields is much faster than
the optical fields, and (2) that phase matching is satisfied
for all optical fields participating in cascaded lasing. Un-
der these conditions, we showed that the laser dynamics
can be described by a set of nonlinear stochastic differ-
ential equations driven by colored multiplicative noise,
and when linearized for small fluctuations around steady-
state, the amplitude and phase dynamics decouple. Uti-

lizing this drastic simplification, we found the steady-
state laser power, and the phase and amplitude dynamics
under a variety lasing conditions, yielding the laser RIN
and phase noise, as well as the phase noise of beatnotes
between distinct laser orders. To corroborate these ana-
lytical calculations, we performed stochastic simulations
of the full laser model (without the assumptions listed
above), and compared the output of these simulations to
our theoretical results.

In contrast with single mode Brillouin lasers, we
showed that cascaded operation can degrade laser per-
formance at higher powers. This contrasting behavior
originates from new noise channels opened by cascaded
lasing. We demonstrated that these new noise channels
can dramatically enhance the noise of a given laser or-
der (e.g. see Fig. 6), modifying the laser linewidth and
enhancing the RIN. These results show that better noise
performance can be obtained with laser designs that in-
hibit cascading.

We have also presented a simple method to extract
Stokes order linewidths, by knowing only the microwave
beat-note phase noise and relative optical Stokes order
powers. This technique will prove invaluable for assess-
ing sub-Hz linewidths, and optimizing performance for
optical and microwave applications.

In the future, we anticipate that these results will pro-
vide a valuable toolset to assess the performance or sensi-
tivity of applications of cascaded Brillouin lasers ranging
from optical gyroscopes to coherent microwave genera-
tion.
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Appendix A: Optomechanical coupling rate

The coupling rate gm is quantified by the spatial over-
lap of the acoustic and optical modes that participate in
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Brillouin scattering. For a laser based on backward Bril-
louin scattering in a ring resonator, the coupling rate is
given approximately by

gm ≈ −i

√
~ωmωm+1

2ρΩmL

ωm
vp,m

(ε− 1)

∫
WG

d2x EmE∗m+1Um

(A1)

where Em and Um are respective mode profiles of the
optical and acoustic fields, ε is the relative permittivity
of the waveguide material, and the suffix WG denotes
integration across the waveguide cross section. These
profiles are normalized across the resonator waveguide
cross section, so that

∫
WG

d2x |Em|2 = 1

∫
WG

d2x |Um| = 1. (A2)

To calculate the coupling rate above, we have treated
the optical resonator as a linear waveguide with peri-
odic boundary conditions along the propagation direc-
tion. This expression must be generalized to describe
resonators with a radius of curvature that is comparable
to the mode field diameter. In such systems, the phase
accumulated by the inner and outer extreme of the opti-
cal mode envelope can be significantly different, leading
to the failure of the approximation described above.

Appendix B: Comparison of Brillouin laser
linewidth contributions from transferred pump noise

and fundamental noise

Transferred noise from the pump laser contributes to
the Brillouin laser linewidth. In the analysis above, the
chosen model parameters enable this contribution to be
neglected. However, for different systems, e.g. those hav-
ing a broader pump laser linewidth, the transferred pump
noise can dominate the Brillouin laser linewidth.

In this Appendix, we quantitatively compare the fun-
damental and transferred pump noise, determining the
dominant contribution to the Brillouin laser linewidth.
The contributions to the Brillouin laser linewidth depend
upon the dynamical properties of the optical and acous-
tic fields, the external coupling rate for the Stokes field,
the emitted laser power, the temperature, and the pump
laser linewidth.

In the limit where transferred pump noise dominates
the laser noise, the first Stokes order linewidth ∆νtr.

1 (tr.

for transferred) is given by [35]

∆νtr.
1 =

1

(1 + Γ0/γ1)2
∆νpump. (B1)

We can quantify the relative importance of the funda-
mental and pump transferred noise by taking the ratio
of the fundamental linewidth of the first Stokes order of
∆ν1 (for a 1st order laser) to Eq. (B1). This ratio gives

∆ν1

∆νtr.
1

=

~ω1γγext

4πP1
(N1 + n0 + 1)

1
(1+Γ0/γ1)2 ∆νpump

. (B2)

At room temperature and for typical Brillouin frequen-
cies (i.e. 10s of GHz), (N1 + n0 + 1) ≈ kBT/~Ω0 giving

∆ν1

∆νtr.
1

≈ γ1γextkBT

4πP1∆νpump

ω1

Ω0

(
1 +

Γ0

γ1

)2

(B3)

showing that the transferred pump noise and the fun-
damental noise are comparable when P1∆νpump = 1591
mW Hz for a laser with the parameters given Tab. I.
Transferred pump noise must be taken into account when
∆ν1/∆ν

tr.
1 . 1.

Appendix C: Correlation functions for the phonon
fields and the Langevin forces

In this section, we evaluate the correlation properties
of all of the Langevin forces that are required to calculate
the laser noise. First, we begin by finding the two-time

correlation function for b̂m.

1. Two-time phonon correlation functions

Using the solution for b̂m given in Eq. (9) and the
properties ξm, we find the two-time phonon correlation
functions given by

〈b̂†m(t)b̂m′(t
′)〉 =δmm′nme

−Γm
2 |t−t

′| (C1)

〈b̂m(t)b̂†m′(t
′)〉 =δmm′(nm + 1)e−

Γm
2 |t−t

′|, (C2)

giving the appropriate equal time expectation value for
the phonon number operator and preserving the equal
time commutation relations for phonon annihilation and
creation operators.

2. Correlation properties of the Langevin force h̃m

By using the correlation properties described in Eq.

(4) along with the correlation properties of b̂m, we find
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〈h̃m(t)h̃†m′(t
′)〉 =〈[ηm(t)− igmαm+1e

iϕm+1(t)b̂m(t)− ig∗m−1b̂
†
m−1(t)αm−1e

iϕm−1(t)]eiϕm(t)

× e−iϕm′ (t
′)[η†m′(t

′) + ig∗m′αm′+1e
−iϕm′+1(t′)b̂†m′(t

′) + igm′−1b̂m′−1(t′)αm′−1e
−iϕm′−1(t′)]〉

=〈ηm(t)η†m′(t
′)〉+ |gm|2α2

m+1〈b̂m(t)b̂†m′(t
′)〉〈eiϕm+1(t)eiϕm(t)e−iϕm′ (t

′)e−iϕm′+1(t′)〉

+ |gm−1|2α2
m−1〈b̂

†
m−1(t)b̂m′−1(t′)〉〈eiϕm−1(t)eiϕm(t)e−iϕm′ (t

′)e−iϕm′−1(t′)〉

≈δmm′
[
γ̃m(Nm + 1)δ(t− t′) + |gm|2α2

m+1(nm + 1)e−
Γm
2 |t−t

′| + |gm−1|2α2
m−1nm−1e

−Γm−1
2 |t−t′|

]
.

(C3)

In the last line we have assumed that the correlation time for the phases is long compared to the phonons. To
understand this approximation, assume that the phase noise is described by a Gaussian process, so that we can
evaluate the following expectation value as

〈eiϕm−1(t)eiϕm(t)e−iϕm(t′)e−iϕm−1(t′)〉 ∼ e− 1
2γφ|t−t

′| (C4)

where 1/γφ the characterizes the correlation time for the phases, and directly relates to the laser linewidths. For

typical Brillouin lasers Γm � γφ, giving 〈eiϕm−1(t)eiϕm(t)e−iϕm(t′)e−iϕm−1(t′)〉 ≈ 1 when multiplied by the relatively
rapidly decaying function exp{−Γ|t− t′|/2}, resulting in the last line of Eq. (C3). This result shows when and why
the phase noise of the pump laser does not contribute to the Brillouin laser noise.

We can obtain 〈h̃†m(t)h̃m′(t
′)〉 by replacing Nm + 1→ Nm, nm + 1→ nm and nm−1 → nm−1 + 1 in Eq. (C3).

In addition, we find

〈h̃m(t)h̃m′(t
′)〉 ≈〈[ηm(t)− igmαm+1b̂m(t)− ig∗m−1b̂

†
m−1(t)αm−1][ηm′(t

′)− igm′αm′+1b̂m′(t
′)− ig∗m′−1b̂

†
m′−1(t′)αm′−1]〉

=− |gm|2αm+1αm〈b̂m(t)b̂†m(t′)〉δm,m′−1 − |gm−1|2αm−1αm〈b̂m−1(t)b̂†m−1(t′)〉δm,m′+1

=−
[
|gm|2αm+1αm(nm + 1)e−

Γm
2 |t−t

′|δm,m′−1 + |gm−1|2αm−1αmnm−1e
−Γm−1

2 |t−t′|δm,m′+1

]
, (C5)

where we have used the same argument regarding the laser phases given above. A similar calculation yields

〈h̃†m(t)h̃†m′(t
′)〉 ≈ −

[
|gm|2αm+1αmnme

−Γm
2 |t−t

′|δm,m′−1 + |gm−1|2αm−1αm(nm−1 + 1)e−
Γm−1

2 |t−t′|δm,m′+1

]
. (C6)

Using the expressions above, we can find the correlation properties of 〈Re[h̃m(t)]Re[h̃†m′(t
′)]〉, 〈Re[h̃m(t)]Im[h̃†m′(t

′)]〉,
and 〈Im[h̃m(t)]Im[h̃†m′(t

′)]〉 which are relevant to the amplitude and phase noise. Defining Re[h̃m(t)] = (h̃m(t) +

h̃†m(t))/2 and Im[h̃m(t)] = (h̃m(t)− h̃†m(t))/(2i), we find

〈Re[h̃m(t)]Re[h̃m′(t
′)]〉 =

1

4

[
〈h̃m(t)h̃m′(t

′)〉+ 〈h̃†m(t)h̃m′(t
′)〉+ 〈h̃m(t)h̃†m′(t

′)〉+ 〈h̃†m(t)h̃†m′(t
′)〉
]

(C7)

〈Im[h̃m(t)]Re[h̃m′(t
′)]〉 =

1

4i

[
〈h̃m(t)h̃m′(t

′)〉 − 〈h̃†m(t)h̃m′(t
′)〉+ 〈h̃m(t)h̃†m′(t

′)〉 − 〈h̃†m(t)h̃†m′(t
′)〉
]

(C8)

〈Im[h̃m(t)]Im[h̃m′(t
′)]〉 = −1

4

[
〈h̃m(t)h̃m′(t

′)〉 − 〈h̃†m(t)h̃m′(t
′)〉 − 〈h̃m(t)h̃†m′(t

′)〉+ 〈h̃†m(t)h̃†m′(t
′)〉
]
. (C9)

3. Phase noise for Brillouin laser

In this section we evaluate the correlation function for the phase of an individual laser tone. Representing the
solution to Eq. (45) for the phase in Fourier space we find

ϕm(t) = lim
ε→0

1

αm

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dt1
e−iω(t−t1)

−i(ω + iε)
Im[h̃m(t1)] (C10)
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where the parameter ε is included to enforce causality. This expression can be used to find the two-time phase
correlation function, giving

〈ϕm(t+ τ)ϕm(t)〉 = − lim
ε→0

1

α2
m

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dt1

∫ ∞
−∞

dω′

2π

∫ ∞
−∞

dt2
e−iω(t+τ−t1)e−iω

′(t−t2)

(ω + iε)(ω′ + iε)
〈Im[h̃m(t1)]Im[h̃m(t2)]〉

(C11)

= lim
ε→0

1

α2
m

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dτ ′
e−iωτeiωτ

′

ω2 + ε2
〈Im[h̃m(τ ′)]Im[h̃m(0)]〉 (C12)

= lim
ε→0

1

α2
m

∫ ∞
−∞

dω

2π

e−iωτ

2(ω2 + ε2)

[
γ̃m(Nm + 1/2) + |gm|2α2

m+1(nm + 1/2)
Γm

ω2 + Γ2
m/4

+ |gm−1|2α2
m−1(nm−1 + 1/2)

Γm−1

ω2 + Γ2
m−1/4

]
(C13)

where we have used the stationarity of the noise correlation function 〈Im[h̃m(t1)]Im[h̃m(t2)]〉 = 〈Im[h̃m(t1 −
t2)]Im[h̃m(0)]〉 in the second line and made a change of variables τ ′ = t1 − t2. From this expression, we can read off
the phase-noise power spectrum Lm(f), defined in Eq. (57) [43], (where f is ω/2π) for the mth laser tone

Lm(f) =
1

8π2α2
mf

2

[
γ̃m(Nm+1/2)+|gm|2α2

m+1(nm+1/2)
Γm

(2πf)2 + Γ2
m/4

+|gm−1|2α2
m−1(nm−1+1/2)

Γm−1

(2πf)2 + Γ2
m−1/4

]
.

(C14)
This expression can be dramatically simplified in the low-frequency limit, i.e. 2πf � Γm, by using the recursion
formula for the steady-state laser powers. In this low-frequency limit, the phase noise reduces to

Lm(f) ≈ 1

2πf2

1

4πα2
m

[
γ̃m(Nm + nm−1 + 1) + 2µmα

2
m+1(nm + nm−1 + 1)

]
︸ ︷︷ ︸

∆νm

(C15)

which defines the generalized Schawlow-Townes-like linewidth ∆νm for the mth order of a cascaded Brillouin laser.

Appendix D: RIN for cascaded Brillouin lasers

Here, we derive the RIN for a Brillouin laser that has cascaded to k orders. Using Eq. (55) we compute the two-time
correlation function for δαj

〈δαj(t+ τ)δαj′(t)〉 =

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dt1

∫ ∞
−∞

dω′

2π

∫ ∞
−∞

dt2 e
−iω(t+τ−t1) e−iω

′(t−t2)Gjm[ω]Gj′n[ω′]Cmn(t1, t2) (D1)

where Cmn(t1, t2) ≡ 〈Re[h̃m(t1)]Re[h̃n(t2)]〉, Gjn = ([−iω′I + M]−1)jn is the jn matrix element of [−iω′I + M]−1,
and the Einstein summation convention is used for repeated indices.

We can simplify this expression by using the properties of h̃m given above. These properties show that Cmn(t1, t2)
is time-stationary, i.e. the correlation function Cmn(t1, t2) = Cmn(t1 − t2). Using this stationary property, the change
of variables given by t2 → t1 − t′ can be made, the t1 integral can be done to give (2π)δ(ω + ω′), allowing the ω′

integral to be done. These steps give

〈δαj(t+ τ)δαj(t)〉 =

∫ ∞
−∞

dω

2π
e−iωτGjm[ω]Gjn[−ω]Cmn[ω] (D2)

where Cmn[ω] =
∫∞
−∞ dt′ eiωt

′Cmn(t′). We obtain SRIN
j [ω] given in Eq. (56) by taking the Fourier transform of

〈δαj(t+ τ)δαj(t)〉.
Using the results from Appendix B, we find the explicit form for the dyadic matrix C

Cmn[ω] =

[
1

2
γ̃m(Nm + 1/2) + α2

m+1Lm(ω) + α2
m−1Lm−1(ω)

]
δmn − αm+1αmLmδm,n−1 − αmαm−1Lm−1δm,n+1

(D3)

where Lm(ω) is defined by

Lm(ω) =
1

2
|gm|2(nm + 1/2)

Γm
ω2 + Γ2

m/4
. (D4)
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1. Explicit forms for G and C

In matrix form, and by adopting the shorthand Λj ≡ 1
2 γ̃j(Nj+1/2)+α2

j+1Lj+α2
j−1Lj−1, we can express C generally

as

C =



1
2 γ̃k(Nk + 1/2) + α2

k−1Lk−1 −αkαk−1Lk−1 . . .
−αkαk−1Lk−1 Λk−1

...
. . .

...
Λ3 −α3α2L2 0 0

−α3α2L2 Λ2 −α2α1L1 0
0 −α2α1L1 Λ1 −α1α0L0

. . . 0 0 −α1α0L0
1
2 γ̃0(N0 + 1/2) + α2

1L0


.

(D5)
In contrast, the matrix G must be obtained separately for a given number of cascaded laser orders. Below we give
the explicit form for G for 0,1, and 2 cascaded orders.

2. 1 lasing order, 0 cascaded orders

G[ω] =
1

det(iωI + M)

(
−iω + ΓRIN ωrel

0

−ωrel
0 −iω

)
(D6)

det(iωI + M) = −ω2 − iΓRINω + ωrel
0

2
(D7)

3. 2 lasing orders, first order cascading

G[ω] =
1

det(iωI + M)

ωrel
0

2 − iΓRINω − ω2 ωrel
1 (ΓRIN − iω) ωrel

0 ωrel
1

−ωrel
1 (ΓRIN − iω) −iω(ΓRIN − iω) −iωrel

0 ω

ωrel
0 ωrel

1 iωrel
0 ω ωrel

1
2 − ω2

 (D8)

det(iωI + M) = iω3 − ΓRINω
2 − i(ωrel

0

2
+ ωrel

1

2
)ω + ωrel

1

2
ΓRIN (D9)

4. Three lasing orders, second order cascading

G[ω]=
1

X


−iωrel

0
2
ω+(ωrel

1
2−ω2)(ΓRIN−iω) ωrel

0
2
ωrel

2 −iωωrel
2 (ΓRIN−iω) ωrel

1 ωrel
2 (ΓRIN−iω) ωrel

0 ωrel
1 ωrel

2

−(ωrel
0

2
ωrel

2 −iωωrel
2 (ΓRIN − iω)) −iωrel

0
2
ω−ω2(ΓRIN−iω) −iωωrel

1 (ΓRIN − iω) −iωrel
0 ωrel

1 ω

ωrel
1 ωrel

2 (ΓRIN−iω) iωωrel
1 (ΓRIN − iω) (ΓRIN−iω)(ωrel

2
2−ω2) ωrel

0 (ωrel
2

2−ω2)

−ωrel
0 ωrel

1 ωrel
2 −iωrel

0 ωrel
1 ω −ωrel

0 (ωrel
2

2−ω2) −iω(ωrel
1

2
+ωrel

2
2−ω2)


(D10)

X ≡ det(iωI + M) = ωrel
0

2
ωrel

2

2 − iΓRIN(ωrel
1

2
+ ωrel

2

2
)ω − (ωrel

0

2
+ ωrel

1

2
+ ωrel

2

2
)ω2 + iΓRINω

3 + ω4 (D11)
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