
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Exchange interactions and itinerant ferromagnetism in
ultracold Fermi gases

Enya Vermeyen, Carlos A. R. Sá de Melo, and Jacques Tempere
Phys. Rev. A 98, 023635 — Published 31 August 2018

DOI: 10.1103/PhysRevA.98.023635

http://dx.doi.org/10.1103/PhysRevA.98.023635


Exchange interactions and itinerant ferromagnetism

in ultracold Fermi gases

Enya Vermeyen∗

TQC, Universiteit Antwerpen, B-2610 Antwerpen, Belgium

Carlos A. R. Sá de Melo
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Abstract

In the 1930’s, two main paradigms for the theoretical description of ferromagnetism were de-

veloped: Heisenberg ferromagnetism of localized fermions (e.g. in a lattice), and Bloch or Stoner

ferromagnetism of non-localized fermions (i.e. in a gas), also called itinerant ferromagnetism. De-

spite many theoretical predictions, itinerant ferromagnetism has remained elusive in experiments.

This ferromagnetic state is predicted to occur for strong repulsive interactions, corresponding to

a regime that is very challenging to describe theoretically, because there are multiple competing

physical effects, including superfluid pairing. In this paper, we point out that the problem of

itinerant ferromagnetism for atomic Fermi gases is different from that of electron gases in metals,

due to the short-ranged nature of the interatomic interactions. We also show that the standard

saddle-point used to describe itinerant ferromagnetism of the electron gas in metals does not apply,

because in the short-range limit of this approximation the Pauli exclusion principle is violated. As

a remedy, we introduce a modified interaction pseudopotential for ultracold gases, which includes

both local (Hartree) and non-local (Fock) terms while preserving the Pauli exclusion principle in

the zero-range regime. Furthermore, we demonstrate the usefulness of this method to study the

existence and stability of itinerant ferromagnetism in ultracold atomic gases. Lastly, we obtain the

critical temperature for the ferromagnetic transition as a function of the opposite-spin interaction

strength and find a rather good agreement with recent experimental results.
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I. INTRODUCTION

In 1929, Bloch suggested that in a system of spin-1/2 fermions, strong repulsive inter-

actions can lead to spontaneous spin polarization even though the interaction potential is

spin independent [1], overcoming the cost in kinetic energy for the Fermi system. This

phenomenon is called itinerant ferromagnetism, in contrast to the “localized” or Heisenberg

ferromagnetism arising from spins on a lattice [2]. The original context of Bloch’s work

was electrons in a metal, where the (bare) Coulomb interactions between the electrons are

long-ranged. Using Wick’s theorem, the interaction between a fermion of spin state σ1 and

a fermion of spin state σ2 can be decoupled as follows

〈
ψ†
σ1
(r)ψ†

σ2
(r′)ψσ2

(r′)ψσ1
(r)
〉
≃
〈
ψ†
σ1
(r)ψσ1

(r)
〉 〈
ψ†
σ2
(r′)ψσ2

(r′)
〉

︸ ︷︷ ︸

Hartree

−
〈
ψ†
σ1
(r)ψσ2

(r′)
〉 〈
ψ†
σ2
(r′)ψσ1

(r)
〉

︸ ︷︷ ︸

Fock

(1)

The contribution of the direct (Hartree) interaction is canceled by the positive “Jellium”

background, and it is the energy lowering that occurs through the exchange (Fock) inter-

action that drives the spin polarization. By including band and finite temperature effects,

Stoner extended Bloch’s results [3]. However, subsequent theoretical work by Wigner[4] has

revealed that correlation effects beyond Hartree-Fock can suppress the ferromagnetic insta-

bility. Moreover, Monte-Carlo simulations [5] found a polarized electron liquid only close to

the Wigner crystal phase. The instabilities that do survive after correlations are taken into

account are charge and spin density waves [6] and also phase separation. It is well known

that CDW and SDW instabilities do not occur in 3D systems with spherical Fermi surfaces

because nesting is suppressed, given that there are no flat regions on the Fermi surface that

can be connected by a single nesting vector [7]. However, in one and two dimensions, or in

three dimensional systems with deformed Fermi surfaces that allow for nesting, CDW/SDW

are important competing instabilities to the formation of domains. Hence, there is no indi-

cation of itinerant ferromagnetism in jellium models at this level of approximation. Indeed,

pure itinerant ferromagnetism has not yet been found in solids.

Ultracold atomic gases have been proposed as an alternative model system for the real-

ization of pure itinerant ferromagnetism [8–12]. Using Feshbach resonances the interaction

strength can be tuned, enabling the realization of strong repulsive interactions, where itin-
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erant ferromagnetism is expected to occur. Contrary to Bloch’s original context, in neutral

atomic gases there is no Jellium background and interactions are short-ranged. Due to the

absence of the Jellium background, the direct (Hartree) contribution to the interaction en-

ergy is no longer canceled for fermions of opposite spin. In the particular case where the

system has only s-wave contact interactions (zero-ranged), the direct contribution is per-

fectly canceled by the exchange contribution for same-spin fermions (fig. 1). Indeed, the

fermionic antisymmetry requirement does not allow for contact s-wave interactions between

same-spin fermions. Nevertheless, spin polarization still reduces the overall interaction en-

ergy for repulsive interactions. Whereas in Bloch’s context spin polarization causes the

exchange energy to become more strongly negative, in the context of quantum gases spin

polarization causes the remaining (positive) interspecies direct energy to become smaller.

Thus, increasing the interaction strength, a transition towards a spin-polarized state is the-

oretically expected also in quantum gases.

The theoretical expectation just described motivated a recent experiment, in which Ket-

terle and co-workers were able to probe the regime where itinerant ferromagnetism is ex-

Electron gas in metals

Direct ↑↓ and ↓↑ (+) Direct ↑↑ and ↓↓ (+)

Exchange ↑↑ and ↓↓ (-)

Ultracold Fermi gas

Direct ↑↓ and ↓↑ (+) Direct ↑↑ and ↓↓ (+)

Exchange ↑↑ and ↓↓ (-)Jellium model: 

compensated by

posi!ve background  direct ≈ exchange

(= for s-wave contact

interac!ons)

FIG. 1. A comparison of the direct (Hartree) and exchange (Fock) contributions for electrons

and ultracold Fermi gases. For free electrons in a material, the total direct interaction energy

is compensated by the positive background (Jellium model) and only the exchange energy has

to be explicitly written. For an ultracold Fermi gas interacting through an s-wave contact po-

tential, the intraspecies direct and exchange interaction energies cancel each other and only the

direct interspecies interaction energy has to be written down explicitly. Despite these vastly dif-

ferent expressions for the interaction energy, in both cases the spin-polarization is driven by the

spin-dependency of the exchange interactions. The total direct interaction energy remains spin-

independent as long as the original interaction potential is spin-independent.
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pected in an ultracold gas of lithium-6 atoms[13]. However, fast molecular pairing due

to the instability of the repulsive branch of the Feshbach resonance prevented the forma-

tion of any equilibrium state (precluding formation of the itinerant ferromangetic state)

[14–18]. In response, there have been many proposals for minimizing the effects of this ex-

perimental instability[19–23], including making use of mixtures[24], spin-orbit coupling[25],

reduced dimensionality[26, 27] and optical lattices[28, 29]. However, it still remains to be

seen whether the itinerant ferromagnetic state itself is stable[30–34]. This has prompted

new experiments[35] to investigate itinerant ferromagnetism by studying the dynamics of

spin diffusion between initially prepared spin-polarized domains, as this quantity reveals

ferromagnetic correlations even if the itinerant ferromagnetic state itself remains unstable.

The current experiments with ultracold Fermi gases remain in a regime where the in-

teractions are captured by a contact s-wave pseudopotential. However, efforts are under

way to probe new interaction potentials, most notably dipolar interactions[36–42], but also

p-wave interactions[43, 44]. In that case, exchange effects in quantum gases will no longer

be limited to suppressing the interaction between same-spin fermions (in contrast to the

situation in fig. 1) and the intraspecies interactions will have to be written down explicitly.

Consequently, in our theoretical description it is important to take into account correctly

both direct and exchange contributions to the interaction energy coming from equal-spin

and opposite-spin scattering. Itinerant ferromagnetism has been studied in the functional

integral formalism[45, 46], based on the Ward-Takahashi identities, in attempts to clarify the

role of electron-magnon interactions on the Stoner instability. Subsequent work[47] within

this formalism introduced collective quantum fields corresponding to the spin density to

theoretically study the onset of itinerant ferromagnetism in metals.

The use of collective quantum fields, from which an order parameter for the itinerant

ferromagnetic state can be deduced, is now the mainstream method to study the electron

liquid with functional integrals[48, 49]. In the case of ultracold Fermi gases, we show that

care must be exercised in analyzing the regime of short-ranged interactions. Since the Fock

term is non-local, using a strictly zero-ranged interaction potential does not capture its

contribution[50]. In contrast to electrons in a metal, this problem is relevant for ultracold

Fermi gases since short-ranged potentials are widely used to model interatomic interactions.

The main aim of this paper is to propose a limiting procedure that includes the Fock con-

tribution correctly when the interactions become very short-ranged.
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Possible alternative approaches that do not rely on Hubbard-Stratonovich fields, might

be applied to describe itinerant ferromagnetism. For example, a variational perturbation

method proposed by Kleinert[48, 51, 52] avoids the use of collective quantum fields in favor

of classical collective fields. Another method that does not rely on the Hubbard-Stratonovich

transform, is a dynamical mean-field theory for lattice calculations[53]. However, as our goal

is to point out a difficulty with the often used saddle-point expansion of the effective action

following a Hubbard-Stratonovich transform, we focus on correcting the problem within that

framework and obtain a phase diagram for the uniform ferromagnetic state.

In this context, the collective quantum field is expanded up to quadratic fluctuations

around the field configuration that extremizes the effective action for the collective field.

These fluctuations describe the low-energy excitations of the system such as sound and spin

waves. Previously[30], we have shown that for a contact potential the extremum of the action

functional for the collective quantum fields representing the spin densities is not a minimum

but represents an unstable state, invalidating the use of gaussian fluctuations in the Hubbard-

Stratonovich scheme. The present treatment allows to look at more general potentials

with finite-ranged s-wave and p-wave interactions, and we derive the region in interaction

parameter space where the instability remains present. In the region(s) where the extremum

represents a stable state, we classify the nature of the saddle-point as unpolarized, partially

polarized or fully polarized. Furthermore, assuming a uniform (single domain) ferromagnet,

we also describe the ferromagnetic transition temperature versus s-wave scattering length

and correlate it to an experimental phase diagram that probes the ferromagnetic phase

transition through its domain structure [35].

The remainder of the paper is structured as follows. In Sec. II, we first show that

applying a naive saddle-point approximation in the Hubbard-Stratonovich formalism leads

to a violation of the Pauli exclusion principle for short-ranged interactions. Still in Sec. II,

we propose a remedy for this problem by introducing a modified interaction pseudopotential,

which is applied in Sec. III to analyze itinerant ferromagnetism in the context of ultracold

atomic gases. Finally, conclusions are drawn in Sec. VI.
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II. FORMALISM

In subsection IIA, we first discuss the problems that arise when one combines the

Hubbard-Stratonovich transformation with the saddle-point approximation for Fermi gases

with short-ranged interactions. In subsection IIB, we provide a remedy in order to describe

correctly itinerant ferromagnetism at the saddle-point and beyond. In subsection IIC, we

use our method at the saddle-point level.

A. The trouble with Hubbard-Stratonovich

To obtain a phase diagram requires the calculation of the thermodynamic grand potential

per unit volume Ω = − ln (Z) /βV of the (pseudo)spin-1/2 Fermi gas, with Z the partition

sum, β = 1/kBT proportional to the inverse temperature and V the volume. In the path-

integral formalism, the grand-canonical partition sum can be calculated by summing over

all possible configurations of the fermionic Grassmann fields ψ↑,x,τ and ψ↓,x,τ (and their con-

jugated counterparts ψ̄↑ and ψ̄↓), weighted by the Euclidean action S of each configuration:

Z =
∏

σ=↑,↓

∫
Dψ̄σ

∫
Dψσ exp

(
−S

[
ψ̄, ψ

])
. The action of the system (in units ~ = 1, kB = 1,

the mass of the particles m = 1/2 and the Fermi wave vector kF = 1) is given by

S
[
ψ̄, ψ

]
=
∑

σ1=↑,↓

β∫

0

dτ

∫

dx

[

ψ̄σ1,x,τ

(
∂

∂τ
−∇2

x
− µσ1

)

ψσ1,x,τ

+
∑

σ2=↑,↓

∫

dx′gσ1σ2
(∆x)

2
ψ̄σ1,x,τψσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ

]

, (2)

with τ the imaginary time, µσ the spin-σ chemical potential, gσ1σ2
(∆x) the interaction

potential and ∆x = x− x′. For symmetry reasons, we will assume g↑↓ (∆x) = g↓↑ (−∆x).

Due to the presence of the interaction term in the action, the path integral cannot be

calculated exactly for a general case. Instead, the interaction term is decoupled into several

terms quadratic in the fermionic fields by introducing an auxiliary bosonic field through the

Hubbard-Stratonovich transformation. To study superfluidity, the quartic product is split

in a product of the pairs ψ̄σ1,x,τ ψ̄σ2,x′,τ and ψσ1,x,τψσ2,x′,τ , the so-called Bogoliubov channel.

Here, we keep ψ̄σ1,x,τψσ1,x,τ and ψ̄σ2,x′,τψσ2,x′,τ as quadratic products together, thus using

the Hartree channel. The Hubbard-Stratonovich transformation for this channel is given by
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exp

[

−
∑

σ1,σ2=↑,↓

∫

dV
gσ1σ2

(∆x)

2
ψ̄σ1,x,τψσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ

]

=
1

Zρ

∫

Dρ↑
∫

Dρ↓× (3)

exp

[
∑

σ1,σ2=↑,↓

∫

dV
gσ1σ2

(∆x)

2

(
ρσ1,x,τρσ2,x′,τ − ρσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ − ψ̄σ1,x,τψσ1,x,τρσ2,x′,τ

)

]

with
∫
dV =

∫ β

0
dτ
∫
dx
∫
dx′. In the functional integral identity above, two real-valued

collective quantum fields ρ↑ and ρ↓ are introduced as auxiliary variables and are integrated

over. The prefactor Zρ shifts the zero point of the thermodynamic grand potential and will be

taken as our energy reference. First, notice that even though this decomposition is called the

Hartree channel, it is an exact relation and thus contains all contributions to the interaction

energy : Hartree, Fock and Bogoliubov energy contributions are accounted for through the

full functional integration over the quantum fields ρ↑ and ρ↓. Of course, approximations to

the full functional integral may lose or neglect some of these contributions. In the Hartree

channel, this may lead to a loss of the exchange interactions.

To clarify this point, consider the Grassmann algebra generated by two Grassmann ele-

ments ψ̄α and ψα. In the Grassmann-Berezin integral

I =

∫

Dψ exp
(
εαψ̄αψα + gψ̄αψαψ̄αψα

)
= εα, (4)

where
∫
Dψ =

∫
dψ̄α

∫
dψα, it is clear that the quartic term in the exponential does not

contribute, since it contains squares of Grassmann variables. Regardless, we can apply the

Hubbard-Stratonovich trick to rewrite this quartic part:

exp
(
gψ̄αψαψ̄αψα

)
=

1

gπ

∫

C

dz exp

(

−|z|2
g

− zψ̄αψα − z∗ψ̄αψα

)

. (5)

In our simple example, the auxiliary quantum field is reduced to a single complex number

z, that needs to be integrated over. Substituting this one obtains

I =
1

gπ

∫

C

dz exp

(

−|z|2
g

)
∫

Dψ exp
(
εαψ̄αψα − zψ̄αψα − z∗ψ̄αψα

)
. (6)

Performing the Grassmann-Berezin integrations first now yields

I =
1

gπ

∫

C

dz (εα − Re [z]) exp

(

−|z|2
g

)

. (7)
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As long as the integration over z is performed exactly, the term with Re [z] = x vanishes.

However, the saddle-point approximation results in a term
∫

dx exp
(
−x2/g + log(x)

)
≈
√
πg

2
xsp exp

(
−x2sp/g

)
(8)

with xsp =
√

g/2, so that in this approximation the term gψ̄αψαψ̄αψα contributes to the

energy, violating the exclusion principle.

B. The remedy for the missing exchange

As remarked above, in quantum gases contact interactions V (∆x) = gδ(∆x) do not affect

spin-polarized Fermi gases. However, as the simplified example shows, after the Hubbard-

Stratonovich transformation, the saddle-point approximation for the density field ρx = ρ0

no longer forces the terms with ∆x = 0 and equal spin to vanish. The decoupling discussed

in Eq. (3) has been used to treat the ferromagnetic instability in the electron gas in a

solid (see ref. [49]), where the long-range part of the potential is important, and no major

difficulty with the Hartree channel arises. However, for atomic gases, the effective potential

is short-ranged and the saddle-point approximation in the Hartree channel leads to large

inaccuracies, including the violation of the Pauli exclusion principle.

The interaction energy in the Hartree-Fock approximation for a system can be written as

EHF =
1

2

∑

σ1σ2

∫

dx

∫

dx′gσ1σ2
(∆x) [ρσ1

(x)ρσ2
(x′)− ζσ1,σ2

(x,x′)ζσ2,σ1
(x′,x)] , (9)

where we denote

ρσ1
(x) =

〈
ψ†
σ1
(x)ψσ1

(x)
〉
, (10)

ζσ1,σ2
(x,x′) =

〈
ψ†
σ1
(x)ψσ2

(x′)
〉
. (11)

The saddle-point approximation for short-ranged interactions, on the other hand, results in

a saddle-point energy

Esp =
1

2

∑

σ1σ2

∫

dx

∫

dx′gσ1σ2
(∆x)ρσ1

(x)ρσ2
(x′). (12)

Now, notice that the Hartree-Fock energy can be rewritten as

EHF =
1

2

∑

σ1σ2

∫

dx

∫

dx′g̃σ1σ2
(∆x)ρσ1

(x)ρσ2
(x′), (13)
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with

g̃σ1σ2
(∆x) = gσ1σ2

(∆x)

(

1− ζσ1,σ2
(x,x′)

ρσ1
(x)

ζσ2,σ1
(x′,x)

ρσ2
(x′)

δσ1,σ2

)

, (14)

where δσ1,σ2
is the Kronecker delta. This is obtained by simply dividing and multiplying the

Fock term by the product of two densities. Recall that the product ζσ1,σ2
(x,x′)ζσ2,σ1

(x′,x)

is the result of the Wick decomposition of a two-particle correlator that varies spatially on a

scale corresponding to the exchange correlation length ξex. This implies that ζσ,σ(x,x+∆x)

also goes to zero when |∆x|/ξex → ∞, whereas it is equal to ρσ(x) when |∆x|/ξex → 0.

When the density varies slowly in comparison to ξex, then

fσ(∆x) :=
ζσ,σ(x,x+∆x)

ρσ(x)
(15)

is independent of x. Moreover, the following limit applies:

lim
∆x→0

fσ(∆x) = 1. (16)

However, as |∆x| ≫ ξex, fσ (∆x) decreases to zero. Then, we can model this exchange hole

through the effective interaction

g̃σ1σ2
(∆x) ≈ gσ1σ2

(∆x)
[
1− f 2

σ1
(∆x) δσ1,σ2

]
, (17)

where f 2
σ (∆x) can be interpreted as a “shielding” function, equal to 1 for ∆x = 0 and which

can be set to zero for |∆x| ≫ ξex. When one uses expression (17) instead of gσ1σ2
(∆x) in

the functional integral formalism, the resulting saddle-point energy expression (12) will be

equal to the Hartree-Fock result (13). Hence this provides a way of correctly taking into

account the Fock contribution, by fixing the problem at ∆x = 0.

After the Hubbard-Stratonovich transformation, a new effective action is defined, which

is Fourier transformed in order to remove the derivatives from the kinetic energy. If

g̃σ1σ2
(∆x) = g̃σ1σ2

(−∆x), one obtains

Seff

[
ψ̄, ψ, ρ

]
=
∑

σ1=↑,↓

∑

k,k′

ψ̄σ1,k

[
−G−1

σ1
(k, k′)

]
ψσ1,k′ −

√
V

2

∑

σ1,σ2=↑,↓

∑

Q

g̃σ1σ2
(Q) ρσ1,−Qρσ2,Q,

(18)

where k = (k, ωn) and Q = (Q,Ωm) are four-vectors , ωn and Ωm are the fermionic and

bosonic Matsubara frequencies, respectively, while

−G−1
σ1

(k, k′) =
(
−iωn + k2 − µσ1

)
δ (∆k) +

1√
β

∑

σ2=↑,↓

g̃σ1σ2
(∆k) ρσ2,∆k (19)
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is the inverse Green’s function, δ (∆k) is the Dirac delta function with ∆k = k − k′. After

performing the fermionic path integral, the partition sum is given by

Z =

∫

Dρ↑
∫

Dρ↓ exp
(√

V

2

∑

σ1,σ2=↑,↓

∑

Q

g̃σ1σ2
(Q) ρσ1,−Qρσ2,Q +

∑

σ1=↑,↓

Tr
{
ln
[
−G−1

σ1
(k, k′)

]}

)

.

(20)

As we show in the next section, the long-wavelength (Q → 0) limit of Eq. (20) leads to the

preservation of equal-spin correlations. The regularized pseudopotential forces the system

to remember that these correlations come from finite-ranged interactions.

C. Saddle-point approximation

The remaining bosonic path integral in Eq. (20) cannot be calculated exactly for a general

case. In the saddle-point approximation, the densities are assumed to be constant: ρσ,Q =
√
βV δ (Q) ρσ. This results in the following expression for the saddle-point thermodynamic

grand potential as a function of (β, µ↑, µ↓; ρ↑, ρ↓) in D dimensions:

Ωsp = −1

2

∑

σ1,σ2=↑,↓

g̃σ1σ2
ρσ1

ρσ2
+ Ωsp,kin

(
β, µ′

↑, µ
′
↓

)
, (21)

where we defined new interaction parameters

g̃σ1σ2
=

√
V g̃σ1σ2

(Q = 0) =

∫

V

d (∆x) g̃σ1σ2
(∆x) (22)

and an effective chemical potential

µ′
σ1

= µσ1
−
∑

σ2=↑,↓

g̃σ1σ2
ρσ2

. (23)

We would like to emphasize that both the bare gσ1σ2
(∆x) and the renormalized g̃σ1σ2

(∆x)

interactions for equal spins as well as opposite spins are assumed to have a finite range from

the onset. As can be seen from Eq. (22), the interaction parameters g̃σ1σ2
are spatial averages

and depend on the interaction range. It is only in the later sections, when we perform a

comparison with experiments that we take the s-wave interaction between opposite spins

to have zero range (with scattering length as), and the p-wave interaction between equal

spins to have spatial range rp > 0 (with scattering volume ap). The first term in Eq. (21)

represents the interaction energy, while the second one represents the kinetic energy,

Ωsp,kin

(
β, µ′

↑, µ
′
↓

)
= −

∑

σ1=↑,↓

∫
dDk

(2π)D

(
1

β
ln
{
1 + exp

[
β
(
k2 − µ′

σ1

)]}
− k2 + µ′

σ1

)

. (24)
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It has the same form as the kinetic energy of the non-interacting gas, but its chemical

potentials are shifted by the interactions.

In Eqs. (21) and (23), the values of ρ↑ and ρ↓ are determined using the saddle-point

equations,
∂Ωsp (β, µ↑, µ↓; ρ↑, ρ↓)

∂ρσ

∣
∣
∣
∣
β,µ↑,µ↓;ρ−σ

= 0, (25)

while the particle number density of each spin state σ is given by the number equations

nσ = − ∂Ωsp (β, µ↑, µ↓)

∂µσ

∣
∣
∣
∣
β,µ−σ

. (26)

The saddle-point condition defined in Eq. (25) can be used to find a spin-dependent uni-

form density solution ρσ = nσ. From these results, we obtain next the polarization P =

(n↑ − n↓) / (n↑ + n↓) as a function of interaction strength and temperature to characterize

the regions of phase space where itinerant ferromagnetism emerges.

III. HESSIAN MATRIX AT THE SADDLE POINT

A solution to the saddle-point equations (hereafter called a saddle point) is physical only

if it is also a minimum of the saddle-point thermodynamic grand potential Ωsp as a function

of ρ↑ and ρ↓. If it is not a minimum, it is unstable to (uniform) density fluctuations. The

stability of saddle point solutions can be tested by studying its Hessian matrix H of second

derivatives of Ωsp with respect to ρ↑ and ρ↓. If H has two positive eigenvalues, that is, if both

its trace and determinant are positive, a saddle point is also a minimum and thus stable

against (uniform) density fluctuations. In this section, we derive the stability conditions

and the corresponding polarization of saddle-point solutions for the particular example of

exchange-induced itinerant ferromagnetism in three dimensions (3D). We also obtain the

temperature versus interaction phase diagram for a uniform (single-domain) ferromagnetic

state.

In order to exclude other sources of polarization, we limit ourselves to the case g̃↓↓ =

g̃↑↑ = g̃eq and use units such that kF = (3π2n)3/2 (with n = n↑ + n↓) is equal to one. This

means that the saddle-point equations have to be solved in conjunction with the equation

for the chemical potential µ that fixes the total density to n = 1/3π2. Hence, the parameter

space for the phase diagrams are the intraspecies interaction strength g̃eq, the interspecies

interaction strength g̃↑↓, and the inverse temperature β. Note that the chosen example
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represents a uniform system in the grand-canonical ensemble, which is different from the

case of ultracold atoms confined in a trap, where the number of particles is fixed, the density

is inhomogeneous, and itinerant ferromagnetism is exhibited through phase separation in

magnetic domains. Our description is more suitable for a system of cold atoms in a box

potential, where uniform and single-domain ferromagnetic solutions may arise.

For a given polarization P and inverse temperature β, the remaining number and the

saddle-point equations are used to calculate the effective chemical potentials µ′
↑ and µ′

↓,

which differ from the actual chemical potentials µ↑ and µ↓ as shown in Eq. (23). When

these values are substituted in Ωsp (β, µ↑, µ↓;n↑, n↓), the Hessian matrix becomes

H = −




g̃↑↑ g̃↑↓

g̃↑↓ g̃↓↓



−




g̃2↑↑I↑ + g̃2↑↓I↓ g̃↑↓ (g̃↑↑I↑ + g̃↓↓I↓)

g̃↑↓ (g̃↑↑I↑ + g̃↓↓I↓) g̃2↑↓I↑ + g̃2↓↓I↓



 , (27)

where the positive functions I↑ and I↓ are given by

Iσ (β, µ
′
σ) = − ∂2Ωsp,kin

(∂µ′
σ)

2

∣
∣
∣
∣
β,µ′

−σ

=
β

2

∫
dDk

(2π)D

{
1

1 + cosh [β (k2 − µ′
σ)]

}

. (28)

Subsequently, the conditions TrH ≥ 0 and detH ≥ 0 are used to derive the stability

condition, which can be written in terms of the rescaled interaction parameters Geq = Itotg̃eq

and G↑↓ = Itotg̃↑↓ (with Itot = I↑ + I↓) as

− |G↑↓| ≥ Geq ≥ −2

z
+

√

4 (1− z)

z2
+G2

↑↓, (29)

with z = 4I↑I↓/I
2
tot ∈ [0, 1].

The functions Itot and z decrease monotonously with increasing polarization and temper-

ature, as shown in Fig. 2(a) and 2(b). While the scaling function Itot determines the size of

the stability region in the original interaction parameter space, the parameter z determines

the shape of the stability area (see Fig. 2(c)). The value of z is strongly tied to the polariza-

tion of the saddle points: z = 1 for P = 0 and z = 0 for P = 1. However, for intermediate

polarizations, z still depends on the inverse temperature β as shown in Fig. 2(b).

Within the stability region defined by Eq. (29) and shown in Fig. 2(c), solutions to the

saddle-point equations are minima and thus stable, provided that they exist. So far, we have

presumed that a solution with a particular polarization P exists at a specific inverse temper-

ature β and we calculated the corresponding effective chemical potentials µ′
σ. However, the

corresponding value of the chemical potential µσ still needs to be calculated from Eq. (23)

13



(a) (c)

(b)

FP UP

FIG. 2. (a) and (b): The parameters Itot (a) and z (b) as a function of the polarization P , for

different values of the inverse temperature: β → +∞ (T = 0, black solid line), β = 10 (blue

dashed line), β = 3.5 (purple dot-dashed line) and β = 1 (red dotted line). (c) The regions

where the Hessian is positive definite are shown for different values of z as a function of the

scaled interaction parameters G↑↓ = Itotg̃↑↓ and Geq = Itotg̃eq. The black dashed line is the upper

boundary (independent of z), while the colored solid lines (for different values of z) are the lower

boundaries of the regions where the Hessian is positive definite.

that defines the effective chemical potential. If no value of µσ can be found that satisfies

Eq. (23), no saddle points exist for the chosen values of β, P , g↑↓ and geq. As a next step in

our calculation, we establish the existence conditions of the saddle point solutions regardless

of their stability. These existence conditions are divided in three categories, depending on

the polarization of the corresponding saddle-points: unpolarized (UP), partially polarized

(PP) and fully polarized (FP). Finally the stability and existence conditions are combined

to produce stability-existence phase diagrams.

For the UP saddle points (P = 0), Eq. (23) becomes µ′ = µ− g̃eq/6π2 and a valid solution

can always be found by adapting µ. Consequently, unpolarized saddle points exist for all

14



FIG. 3. The ratio χdiff/χtot between the differential and total susceptibility as a function of the

polarization P for different values of the inverse temperature: β → +∞ (T = 0, black solid line),

β = 10 (blue dashed line), β = 3.5 (purple dot-dashed line) and β = 1 (red dotted line).

values of the inverse temperature β and in all parts of the (g↑↓, geq)-plane. This implies that

the unpolarized stability region is equal to its stability-existence region.

For the partially polarized (PP) solutions (0 < |P | < 1), Eq. (23) corresponds to a system

of two equations, that can be rewritten into the existence condition Geq = G↑↓−6π2ζ ′Itot/P

with ζ ′ =
(
µ′
↑ − µ′

↓

)
/2 being equal to half of the effective chemical potential difference. This

represents a straight line in the (G↑↓, Geq)-plane, which may intersect the corresponding

stability area if the condition 0 ≤ 3π2ζ ′Itot/P ≤ 1 is satisfied. The parameter 3π2ζ ′Itot/P

has a physical meaning: it can be rewritten as the ratio χdiff/χtot between the differential

susceptibility χdiff = ∂ (δn) /∂ζ ′|β,µ′ = Itot and the total susceptibility χtot = δn/ζ ′, where

δn = n↑ − n↓. These quantities are defined in analogy to their magnetic counterparts. In

Fig. 3, χdiff/χtot is shown for different values of β. For finite values of β, χdiff/χtot → +∞
if P → 1. At low temperatures, PP saddle points can only be stable up to a maximum

polarization Pmax, which decreases as a function of temperature as shown in Fig. 4. For

β . 1.715, none of the PP saddle points are stable.

Fully polarized (FP) saddle points only exist at zero temperature, because nσ = 0 can

only be achieved in the limit µσ → +∞ at non-zero temperatures. This is an important

qualitative difference between zero and nonzero temperatures. At zero temperature, FP

solutions to the number equations exist for ζ ′ ≥ 2−1/3. For the PP solutions, only one

value of ζ ′ corresponds to each value of P and the resulting existence condition represents a

straight line in the (G↑↓, Geq)-plane. For the FP solutions at zero temperature, each possible

value of ζ ′ corresponds to a similar existence condition in the form of a straight line in the
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FIG. 4. The maximum value Pmax of the polarization P for which PP (and FP) saddle points can

be stable as a function of the temperature T = 1/β. Polarized saddle points can only be stable for

T & 0.583 (or β . 1.715).

(G↑↓, Geq)-plane. This infinite collection of straight lines forms an existence plane, defined

by the condition Geq ≤ G↑↓ − 3π222/3Itot.

By combining the existence and stability conditions, we obtain finite temperature phase

diagrams as a function of the modified interaction parameters g̃eq and g̃↑↓ as shown in Fig.

5. Stable saddle points are only found in the lowest quadrant (g̃eq ≤ |g̃↑↓|). The UP stability

region is a square which increases in size as a function of temperature. The FP and PP

stability regions shrink and become less polarized as a function of temperature, until they

are completely absorbed by the growing UP area. If |g̃eq| or |g̃↑↓| are too large, the system

is susceptible to density fluctuations and none of the saddle points is stable. This greatly

reduces the itinerant ferromagnetic (PP and FP) areas in the phase diagram, which may

explain why itinerant ferromagnetism is so notoriously hard to find experimentally.

IV. CONNECTION TO EXPERIMENT

The results shown in Fig. 5 can be related to experiments in ultracold atomic gases using

g̃↑↓ = 8πkFas, where as is the s-wave scattering length. The parameter g̃eq describes the

strength of the equal-spin correlations, and can be estimated as g̃eq = −8πkFap/r
2
p where

ap is the p-wave scattering volume and rp is the spatial interaction range. Here, we set

g̃eq = −31, close to the largest negative value it can take for the ferromagnetic state to be

stable. Then, we track the existence-stability range of g̃↑↓ as a function of temperature for
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FIG. 5. The regions where the Hessian matrix at the saddle point is positive are shown as a function

of the modified interaction parameters g̃eq and g̃↑↓ for different values of the inverse temperature:

β → +∞ (T = 0), β = 10, β = 3.5 and β = 1. The area where the unpolarized (UP) state is the

saddle point has blue borders and diagonal blue hatching. The area with green borders and darker

green horizontal and vertical hatching shows where the fully polarized (FP) state is the saddle

point. Finally, in the colored area the partially polarized (PP) state is the saddle point, and color

indicates the polarization.

the combined FP and PP phases.

In Fig. 6, we show the resulting critical temperature as a function of kFas as black dots

connected by solid black curves. There is a critical interaction strength above which the

saddle-point solution is no longer stable, as indicated by the black dash-dotted line. We
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FIG. 6. [color online] The critical temperature for itinerant ferromagnetism is plotted as a function

of kFas (where as the the scattering length determining the dimensionless parameter g̃↑↓, from

Fig. 5). The red squares are experimental results from Valtolina et al., Ref. [35]. The red dashed

curve is the result of a fit of a square-root power law to the experimental data, also from [35]. The

black dots joined by the black curve are the result from the present theory, for a fixed value of the

(unknown) Fock contribution strength (g̃eq = −31). The black dash-dotted line indicates the value

of kFas above which the single-domain, uniform saddle point is unstable.

defer the discussion of the upper critical interaction strength to the next paragraph and

first compare the results below that value to experimental results. The red squares are

experimental results[35] and the red dashed curve is a square-root fit also discussed in that

work. We find that the minimum interaction strength for the onset of ferromagnetism is

kFas = 0.65. In experiments[35], the value kFas = 0.8 was obtained, in agreement with

Monte-Carlo simulations[54]. Both values are substantially smaller than that of the Stoner

criterion kFas = π/2, even when second order corrections[12] lower the value of kFas from

π/2 to 1.05. Given that the present theory does not take into account fluctuations, which

tend to lower the critical temperature and increase the critical kFas value, the qualitative

agreement with the experimental data is rather good.

Note that the experiment corresponds to an essentially non-equilibrium measurement,

from which equilibrium properties are inferred. In the experiment[35], there are two types

of metastability involved: metastability with respect to spin diffusion, and metastability

associated with staying on the upper energy branch of the scattering states. Itinerant
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ferromagnetism occurs only in the upper branch, so it is intrinsically limited in lifetime by

the decay to the lower branch due to inelastic collisions[35]. In our work, we do not consider

this type of decay, that is, we assume that the scattering states in the upper branch have

infinite lifetime.

In our theoretical description, we investigate within the manifold of uniform states

whether an extremum of the free energy is a minimum or not. If we were to include the

lower branch in the manifold of states, this would give our minimum a pathway to decay

into the lower energy branch. In the absence of this pathway, the states that we identify can

be called stable. Of course, we agree that this does not imply that such states are always

stable in current experiments, where an initially prepared non-equilibrium configuration can

be used to probe a much larger manifold of states, including those where there is a decay

into the lower branch.

V. DISCUSSION

Whereas the lower critical interaction strength discussed above is suitable to describe

the transition between the normal and ferromagnetic states, the upper critical interaction

value kFas = 1.23 indicates another instability that occurs in our model when g̃↑↓ = −g̃eq.
In contrast to our result, current experimental data suggests a continuation of the ferro-

magnetic phase beyond kFas = 1.23. Notice that the experimental setup starts from a

two-domain magnetic phase out of equilibrium, from which spin-diffusion across the domain

boundary is measured as the system relaxes towards equilibrium. This situation is differ-

ent from the one we model: within the manifold of states described by the density fields

introduced in the Hartree channel, the present method only investigates uniform densities

and equilibrium physics. Since no stable saddle-point solution with such a uniform density

exists, this indicates that the true minimum within this particular manifold corresponds to a

non-uniform state. Hence, if ferromagnetism survives beyond the region where the uniform

saddle point is stable, this suggests that multi-domain configurations may be more stable

than single-domain states for large values of kFas.

A simplified argument showing that an increase of kFas leads to the appearance of non-

uniform states can be formulated as follows. The polarization P = (N↑ −N↓) / (N↑ +N↓) is

a function of temperature, and for any non-zero temperature |P | < 1. In the uniform state,
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the spin-up and spin-down clouds interpenetrate by definition and fill the entire volume V

of a box. For fixed number of particles N and fixed polarization P , the ground state energy

of the system is

E

(3/5)NEF

=
1

2

[

(1 + P )5/3 + (1− P )5/3
]

− α(1 + P 2) + γ
(
1− P 2

)
, (30)

where EF = (~2/2m) (3π2N/V )
2/3

is the Fermi energy and

α =
5

(6π)2
(8πkF |aeq|) , (31)

γ =
5

(6π)2
(8πkFa↑↓) , (32)

are the ratios between the interaction energies at P = 0 and the kinetic energy at P = 0.

The parameter α describes the equal-spin interactions with aeq = ap/r
2
p, where ap is the

p-wave scattering volume and rp is the spatial interaction range. The parameter γ describes

the opposite-spin interaction with a↑↓ = as, where as is the s-wave scattering length. The

kinetic energy [1st term in Eq. (30)] favors states where both spins can coexist with zero

polarization. Both interaction energies [2nd and 3rd terms in Eq. (30)] favor states with

larger polarization. However, for any given polarization P , the equal-spin interaction lowers

the energy (equal spins attract), whereas the opposite-spin interaction increases the energy

(opposite spins repel).

Now consider a nonuniform state with the same N and P values, but which is completely

phase separated. The total volume remains equal to that of the uniform state, so each spin

species occupies one half of the volume. The energy becomes

E

(3/5)NEF

= (1 + P )5/3 + (1− P )5/3 − 2α(1 + P 2). (33)

The first term (the kinetic energy) and the second term (the equal-spin interaction energy)

remain present and double in value, but the opposite-spin interaction energy vanishes. Since

in Eq. (33) the energy is independent of γ, whereas in Eq. (30) the energy grows linearly

with γ, this means that there exists a critical value γcr such that the non-uniform state

is lower in energy. In the argument above, we compared two simple situations which did

not include effects such as domain wall structure. Therefore, the exact result for the critical

value γcr can not be found from this simple argument, however, it is clear that such a critical

value must exist. The inclusion of more detailed structure in variational spin density profiles
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would only reduce the energy in eq. (33), leading to a smaller value of γcr. The adaptation of

the current formalism to non-uniform itinerant ferromagnetic phases, including in particular

domain wall physics, is left for future analysis.

The itinerant ferromagnetic phase is predicted in regimes where the interaction energy is

comparable to the kinetic energy, and hence competing strongly correlated phases need to

be discussed. We begin our discussion by reminding the reader that the issue of itinerant

ferromagnetism is qualititavely different from that in the context of quantum gases. The

existence of possible competing phases depend strongly on the interaction form (range,

strength, anisotropy, etc) and on whether the fermions are charged or neutral. Next, let us

highlight and contrast some of these phases.

One of the major differences is that in a dilute isotropic 3D quantum gas with short-

ranged repulsive interactions, even when the interaction energy dominates the kinetic energy,

Wigner crystallization does not occur, while for charged particles this phase is expected

theoretically in the low density regime and has been experimentally observed.

Another possibility, already mentioned above, is a competing phase involving spin or

charge density waves. As we discussed, we do not expect the CDW and SDW instabilities

to occur here since in 3D systems with spherical Fermi surfaces nesting is suppressed [7].

A p-wave superfluid phase can exist in the absence of repulsive s-wave interactions, but

the p-wave interaction strengths considered here are approximately k3Fap ≈ 10−4 for an

interaction range in real space given by kF rp ≈ 10−2. For a fixed interaction range, this leads

to a critical temperature[55] that is exponentially small, Tc ∝ TF exp {−π/ (k3F |ap|)}, and
hence much lower than the temperatures that can be achieved experimentally. In addition

the inclusion of s-wave repulsive interactions tends to suppress the p-wave superfluid state

even at these very low temperatures.

Therefore we are left with the possibility of phase separation and domain formation

whenever the uniform ferromagnetic state is no longer a minimum of the free energy.

VI. CONCLUSION

In this paper, we have shown that itinerant ferromagnetism for atomic Fermi gases is

different from that of electron gases in metals, due to the short-range nature of atomic

interactions. We have demonstrated that the Pauli exclusion principle may be violated

21



when performing a naive saddle-point approximation to the effective action resulting from

the Hubbard-Stratonovich transformation in the Hartree channel. As a remedy, we have

proposed to use a modified density-density pseudopotential that correctly describes both the

local (Hartree) and the non-local (Fock) terms and preserves the Pauli exclusion principle.

Furthermore, we demonstrated that this new approach leads to a good saddle-point de-

scription of the ferromagnetic transition. We studied the existence-stability region for the

saddle points in the plane of equal- versus opposite-spin interaction strengths. Lastly, we ob-

tained the critical temperature for itinerant ferromagnetism as a function of the interaction

parameter kFas and compared it with the results of a recent experiment[35]. Our analysis

was performed for single-domain, uniform ferromagnetic phases, which become unstable for

larger values of the opposite-spin scattering parameter, possibly leading to a non-uniform

itinerant ferromagnetic state.
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