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We report the realization of correlated, density-dependent tunneling for fermionic 40K atoms
trapped in an optical lattice. By appropriately tuning the frequency difference between a pair of
Raman beams applied to a spin-polarized gas, simultaneous spin transitions and tunneling events are
induced that depend on the relative occupations of neighboring lattice sites. This correlated spin-
flip tunneling (CSFT) is spectroscopically resolved using gases prepared in opposite spin states,
and the inferred Hubbard interaction energy is compared with a tight-binding prediction. We
measure the doublons created by the laser-induced correlated tunneling process using loss induced
by light-assisted collisions. Furthermore, by controllably introducing vacancies to a spin-polarized
gas, we demonstrate that correlated tunneling is suppressed when neighboring lattice sites are
unoccupied. We explain how the CSFT quench implemented here prepares and evolves a large
number of resonating-valence-bond (RVB) singlets in a Hubbard model, thus allowing exploration
of RVB dynamics.

I. INTRODUCTION

Measurements on ultracold atoms trapped in optical
lattices have emerged as a powerful approach to study-
ing quantum phase transitions and dynamics in strongly
correlated systems. Periodic driving forces and light-
induced tunneling combined with optical lattices have
enabled experiments to achieve physics beyond the mini-
mal Hubbard model (see Ref. 1 for a recent review). For
example, magnetic phase transitions have been probed
[2, 3], synthetic gauge fields realized [4–7], and non-trivial
band structures [8] have been created using periodic driv-
ing and external fields in lattices.

In this work, we use applied laser fields to demon-
strate and study the dynamics of correlated tunneling
that depends on density and spin for fermionic atoms.
Correlated tunneling, known in solids as a bond-charge
interaction, has been proposed to play a role in high-
temperature superconductivity [9] and lattice stiffening
in polyacetylene [10, 11]. The influence of correlated
tunneling on transport properties has also been inten-
sively investigated in quantum dots, where it can be
manipulated by gate voltages and applied electromag-
netic fields [12]. Beyond mimicking these effects in opti-
cal lattices, correlated tunneling for ultracold atoms has
attracted theoretical interest for inducing occupation-
dependent gauge fields [13], obtaining novel phases such
as holon and doublon superfluids [14], and realizing any-
onic Hubbard models [15]. Thus far, two-body correlated
tunneling has been realized in double wells for bosons
[16, 17] and fermions [18]. However, many-body density
dependent tunneling has been directly observed only for
bosonic atoms trapped in optical lattices [19, 20].

∗ now at:Department of Physics, Massachusetts Institute of Tech-
nology, 77 Massachusetts Ave, Cambridge, MA 021139, USA
† bdemarco@illinois.edu

Inspired by the theoretical proposals in Ref. 21, we im-
plement a new experimental approach to generate spin
and density-dependent tunneling for fermionic atoms.
This technique is fundamentally different from those al-
ready used to realize inter-site interactions in two key
ways. First, prior approaches [16–20, 22] conserve spin,
whereas the spin-flips induced via our method can lead
to more exotic physics. Second, the inter-site interaction
generated in our work is between fermionic atoms and
spans the entire lattice, which leads to challenging many-
body physics due to the fermion sign problem [23]. Our
method is therefore able to prepare quantum many-body
steady and excited states beyond the scope of previous
experiments and exceeding the capabilities of current un-
biased numerical modeling tools in two and three spatial
dimensions. Specifically, we show that CSFT effectively
creates singlet pairs to dynamically build RVB correla-
tions [24, 25] in a Hubbard model. Prior work created
RVB-singlets in four-site plaquettes in an optical super-
lattice [26]. Here we demonstrate a method to build up
RVB correlations in large numbers of singlet pairs, which
can be used to explore the many-body RVB states pro-
posed by Anderson in the context of lattice models of
high-temperature superconductivity.

To implement spin and density-dependent tunneling,
we apply a pair of Raman beams to a spin-polarized gas,
for which conventional tunneling is forbidden by the Pauli
exclusion principle. The Raman beams flip the atomic
spins and induce density-dependent tunneling. We spec-
troscopically resolve these CSFT events, and the corre-
sponding increase in doubly occupied sites is measured
using loss from light-assisted collisions. Moreover, by
varying the filling fraction in the lattice, we directly ver-
ify the density-dependence of spin transitions.

The paper is organized as follows: In Section II we
discuss the experimental setup used to observe CSFT. In
Section III we discuss modeling of CSFT in the leading
order dynamics. In Section IV we present measurements
of spin transfer fraction and double occupancy to observe
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CSFT, and we summarize and discuss potential improve-
ments to the experiment in Section V.

II. EXPERIMENTAL SETUP

These measurements are performed using a degenerate
Fermi gas composed of 40K atoms trapped in a cubic op-
tical lattice in a regime described by a single-band Fermi-
Hubbard model with tunneling energy t and interaction
energy U (see Appendix A for details of the experimen-
tal sequence). We work in the U/t & 12 regime, for
which the ground state of a spin-mixed trapped gas pos-
sesses a Mott-insulator core [27]. Overall confinement is
provided by a 1064 nm optical dipole trap. After cool-
ing the gas in the dipole trap and before slowly super-
imposing the lattice, the gas is spin polarized in either
the |F = 9/2,mF = 9/2〉 or |F = 9/2,mF = 7/2〉 state,
which we label |↑〉 and |↓〉. The atom number and con-
finement are tuned so that the central density is approxi-
mately one atom per site, with the Fermi energy EF ≈ 7t.

A pair of Raman beams with wavevectors ~k1 and ~k2 in-
tersecting at approximately 30◦ are focused onto the gas
and pulsed to drive spin transitions (Fig. 1). The fre-
quency difference ∆ω = ω1 − ω2 between the Raman
beams is tuned near to the |↑〉 → |↓〉 resonance. After
a Raman pulse, the number of atoms in each band and
spin state is measured using bandmapping with a mag-
netic field gradient applied during time-of-flight imaging.
Atom number loss and heating induced by the Raman
pulse are discussed in detail in Appendix A. We observe
an approximately 20% atom loss during a (typical) 50 ms
pulse due to off-resonant light scattering, which occurs at
a relatively high rate because of the limited tuning range
of the Raman laser. Heating from the Raman pulse is
comparable with that from other sources, and we do not
observe atoms excited to higher energy bands.

The Raman beams can drive two resonant processes
depending on ∆ω. If ∆ω is tuned to the energy differ-
ence between spin states (∆ω = ω↑↓), then on-site spin
rotations occur without induced tunneling and changes
in site occupancies (Fig. 1a). We define this process as
the carrier transition. By tuning the frequency difference
between the beams to include U (∆ω − ω↑↓ = ±U/~),
density-dependent tunneling is driven as a sideband to
the carrier (Fig. 1b). Other processes, such as inter-band
transitions, are far off-resonant for the experimental pa-
rameters (see Appendix A).

III. CORRELATED SPIN FLIP TUNNELING

To model the dynamics we consider an initially polar-
ized band insulator with driven spin-flip tunneling events.
Working in the large U limit, we use perturbation theory

(a)

(b)

FIG. 1. Schematic diagram of Raman transitions. A pair of
Raman beams, each detuned approximately 80 GHz from the
4S1/2 → 4P1/2 transition, with frequencies ω1,2 and wavevec-

tors ~k1,2 are applied to drive transitions between the |↑〉
(red) and |↓〉 (blue) states. The Raman wavevector differ-

ence ~δk = ~k1 − ~k2 lies along the (−1,−1, 1) direction of the
lattice. Selecting between two distinct processes is achieved
by fixing the laser beam frequency ω1 and tuning ω2. (a)
If the frequency difference matches the Zeeman energy (i.e.,
∆ω = ω1−ω2 = ω↑↓), then atoms flip their spin and remain on
the same site. (b) When the laser frequency difference accom-
modates the Hubbard interaction energy U (∆ω = ω↑↓−U/~),
then CSFT occurs and atoms tunnel to neighboring occupied
sites and flip their spin. For |↓〉 as an initial state, the condi-
tion for resonant CSFT changes to ∆ω = ω↑↓ + U/~.

to find the effective Hamiltonian term describing CSFT:

HCSFT =
∑

i,j∈n.n.

Kijni↑ (1− nj↓) c†j↑ci↓ + H.c. (1)

(see Appendix B for derivation). Here, i, j ∈ n.n. denotes
a sum over nearest neighboring sites and permutations,

c†iσ (ciσ) creates (removes) a particle on site i in spin state
σ, and niσ is the number of particles on site i in state σ.

CSFT arises as a spin-flip transition to a virtual state
offset by U followed by a tunneling event. In contrast

to the conventional tunneling term −tc†i cj in the Fermi-
Hubbard model, this laser-induced correlated spin-flip
tunneling is density dependent and accompanied by a
spin rotation. CSFT occurs only when neighboring sites
are occupied by atoms in the same spin state or when
a doublon (i.e., a |↑〉–|↓〉 pair) is next to an empty site.
Using a particle-hole transformation, we show (see Ap-
pendix B) that Eq. (1) effectively creates singlets to build
RVB correlations [25].

The CSFT matrix element is complex and tunable. It
is given by (Appendix B):

Kij ≈
tΩ

2U

(
e−i

~δk·~Rj − e−i ~δk·~Ri
)
, (2)

where the ratio t/U ≈ 0.04–0.08 is controlled by the lat-

tice potential depth s, ~Ri is the location of site i, and
~δk is the Raman wavevector difference. For our lat-

tice,
∣∣∣ ~δk · (~Ri − ~Rj

)∣∣∣ = π/2
√

3 is the same for every
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lattice direction. The Rabi rate for the carrier transi-
tion |Ω| /~ ≈ 2π × 650 Hz is controlled by the Raman
laser intensity and measured via Rabi oscillations (Ap-
pendix B), and therefore |Kij | /~ ≈ 2π× 6–22 Hz for our
measurements.

Eq. 1 is the leading order in a large U expansion and
has been projected into the subspace connected to the
initial spin-polarized |↑〉 state by resonant CSFT. Other
terms can, in principle, contribute to the dynamics. We
have verified that the dynamics of the full tight-binding
CSFT model (i.e., without the large U approximation)
are reproduced by Eq. 1 by applying the time-evolving
block decimation algorithm [28] to 1D chains (see Ap-
pendix B).

The site-dependent Raman phase in Kij that arises
from the Raman wavevector difference is critical to al-
low tunneling to occur. When spin rotations are driven
by long-wavelength radiation or co-propagating Raman
beams, this phase factor is absent, and tunneling is pre-
vented. One reason for the absence of tunneling in this
scenario can be understood as destructive interference
between multiple tunneling pathways caused by the anti-
symmetrization of the fermionic wavefunctions (see Ap-
pendix C). This effect is related to the behavior of clock
shifts for fermionic atoms [29–31]. In our case, the Ra-
man phase factor suppresses the destructive tunneling
interference.

IV. OBSERVATION OF CORRELATED SPIN
FLIP TUNNELING

A. Transfer Fraction Spectroscopy

We spectroscopically resolve CSFT and distinguish it
from on-site spin rotations by measuring the change in
spin fraction after a 50 ms Raman pulse, which is com-
parable to the CSFT π-time. Sample data are shown
in Fig. 2a for the fraction f↓,↑ of atoms transferred be-
tween spin states at varied ∆ω for s = 10 ER, where
ER = h2/8md2 is the recoil energy, m is the atomic
mass, and d ≈ 390 nm is the lattice spacing. Broadening
of the carrier transition, which is consistent with contri-
butions from magnetic field and Raman phase noise (see
Appendix B), results in a feature that obscures CSFT.
To isolate CSFT, we therefore subtract the data taken
at identical ∆ω with opposite initial spin configurations.
Since the carrier frequency does not depend on the ini-
tial state, the contribution from the broad carrier feature
is canceled out by this procedure. In contrast, the fre-
quency offset of the CSFT sideband changes sign with
the initial spin configuration and is not removed by the
subtraction. The resulting lineshape for f↑−f↓ shown in
Fig. 2b therefore reveals the CSFT sidebands as peaks
offset at approximately ±U/~ ≈ ±2π× 3.5 kHz from the
carrier transition.

To compare with the predicted sideband frequency, we
fit the f↑−f↓ lineshape to a sum of two gaussian functions

with independent central frequencies and standard devi-
ations as free parameters. The interaction energy U de-
termined from this fit as half of the frequency separation
of the peaks is shown in Fig. 2c for data taken at differ-
ent lattice potential depths. The inferred U increases less
rapidly with s than the tight-binding prediction, which
is shown as a dashed line. A similar disagreement has
been observed in other experiments [32]. The source of
this discrepancy is unresolved and cannot be explained
by renormalization of U by the Raman process, which is
approximately a 1% effect (see Appendix B).
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FIG. 2. Spectroscopy of CSFT. (a) The fraction of atoms
transferred between spin states by a 50 ms Raman pulse is
shown for an initially |↑〉 (black squares, f↑) and |↓〉 (red cir-
cles, f↓) spin polarized state at s = 10 ER for varied ∆ω. For
these measurements, N = 25400± 3900 atoms were cooled to
T/TF = 0.24± 0.08 before turning on the lattice. Each data
point is the result from a single experimental run, and the
measurement uncertainty is not visible on this scale. Non-
zero transfer at large detuning is due to off-resonant sponta-
neous Raman scattering. (b) The difference f↑ − f↓ for pairs
of points in (a) reveals the CSFT sidebands at approximately
±U . The black line shows a fit to a sum of two gaussian
functions; the individual gaussians are displayed as shaded
regions. The peak at lower (higher) frequency corresponds to
CSFT for an initially |↑〉 (|↓〉) spin-polarized state. (c) The
interaction energy U inferred from fits to data such as those
shown in (b) for varied s. The error bars are derived from
the fit uncertainty. The dashed line is the value of U from a
standard tight-binding calculation.

B. Double Occupancy Spectroscopy

To isolate CSFT from other dynamics, we measure
changes in the doublon number. As doublon forma-
tion and decay are strongly suppressed at high inter-
action strength in the standard Hubbard model [33],
doublon generation provides a signature of CSFT dy-
namics. We probe doublon creation using loss induced
by light-assisted collisions (LAC) [34]. The carrier fre-
quency ω↑↓ is estimated using a gaussian fit to Raman
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spectroscopy taken using a 0.7 ms pulse, which is too
short to drive CSFT. The inset to Fig. 3 shows sam-
ple LAC data taken after a 50 ms Raman pulse with
(∆ω − ω↑↓) /2π = 3.5 kHz, which corresponds to the
+U CSFT sideband. Immediately following the Raman
pulse, the lattice potential depth is rapidly increased to
29 ER to arrest further dynamics. We measure the num-
ber of atoms remaining after a laser pulse 50 MHz de-
tuned from the 4S, F = 9/2 → 5P3/2, F = 11/2 transi-
tion is applied to the gas. Two loss processes are evident
as the duration τ of the resonant laser pulse is changed.
The loss on a fast timescale τD corresponds to LAC re-
moving atoms from doubly occupied sites, while the de-
cay over a slower timescale τS results from single atoms
ejected from the dipole trap via spontaneous scattering.
These data are fit to a double exponential decay function
N (τ) = NDe

−τ/τD + (N −ND) e−τ/τS with N , ND, τD
and τS as free parameters to determine the fraction of
doubly occupied sites D = ND/N .

Measurements of D as ∆ω is changed show that a res-
onance for doublon creation is centered near the CSFT
spectroscopy sideband peak at (∆ω − ω↑↓) ≈ U/~ (Fig.
3). The doublon dynamics near the resonance agree with
the rate predicted by HCSFT (see Fig. B3 in Appendix
B) and indicate that D has reached a steady state. We
therefore compare the data with the fit from Fig. 2b
to |f↑ − f↓|, which can be interpreted as the fraction of
atoms that flip their spin during CSFT events. The close
agreement between the fit and D imply that each spin-
flip is associated with the creation of a doublon.

C. Vacancy Dependence of Transfer Fraction

Finally, we demonstrate the sensitivity of CSFT to site
occupancy by reducing the atom number and controllably
introducing vacancies before a Raman pulse on the CSFT
sideband (see Fig. 4 inset). Our technique involves three
steps. After turning on the lattice to s = 8 ER, atoms are
transferred from a spin-polarized initial state (either |↑〉
or |↓〉, as in Fig. 2) to the F = 7/2,mF = 7/2 state via
adiabatic rapid passage (ARP) driven by a microwave-
frequency magnetic field. The power of the microwave
field (swept across 0.4 MHz in 0.5 ms) is varied to control
the probability of a transition between hyperfine states.
The fraction δN of atoms that are not transferred to
F = 7/2 are removed from the lattice with a 0.5 ms pulse
of light resonant with the 4S, F = 9/2 → 5P3/2, F =
11/2 transition. A second ARP sweep (across 0.8 MHz
in 1 ms) returns all of the atoms shelved in the F = 7/2
manifold to the initial spin state.

After this procedure, unoccupied sites are randomly
distributed through the spin-polarized atomic density
distribution. The presence of holes suppresses CSFT,
which can only occur when adjacent sites are occupied.
We probe this effect by measuring changes in |f↑ − f↓| for
a 40 ms Raman pulse with ∆ω fixed on the ±U peaks of
the CSFT sideband (Fig. 4). Because the doublon popu-
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FIG. 3. Fraction of doubly occupied sites D measured after
a 50 ms Raman pulse at various detunings for s = 10 ER.
The inset shows sample LAC for (∆ω − ω↑↓) /2π = 3.5 kHz
fit to a double-exponential decay with τD = 3.1±0.77 ms and
τS = 13.7± 2.5 ms. The vertical error bars in D are derived
from fits to similar data acquired at different ∆ω, while the
horizontal error bars show the estimated 0.5 kHz uncertainty
in the carrier transition from magnetic field drift. The solid
line in the main panel is the fit from Fig. 2a for |f↑ − f↓|
plotted on the same scale as D.

lation has saturated (see Fig. B3 in Appendix B), |f↑−f↓|
coincides with the number of nearest neighbor pairs. As
the number of atoms is reduced and the hole density in-
creases, |f↑ − f↓| decreases, indicating that fewer atoms
can participate in CSFT. The data shown in Fig. 4 show
good agreement with a prediction of the probability for
adjacent sites to be occupied (see Appendix D). For this
calculation, the density profile is computed using entropy
matching based on s, the overall confinement, and the
measured N and T/TF . The probability of adjacent sites
being occupied is determined by averaging over configu-
rations that involve randomly removing a fraction δN of
atoms from the simulated density profile.

V. CONCLUSION

We have reported the first observation of density-
dependent tunneling in a many-body optical lattice
Fermi-Hubbard model. In the future, the spontaneous
scattering rate and associated heating and loss can be
reduced by a factor of 50 (at constant K) and rendered
insignificant by using a laser tuned to an optimal point
between the D1 and D2 transitions, which for 40K is at
768.67 nm [35]. Furthermore, reducing the sources of
carrier-broadening technical noise by a factor of 3.5 or us-
ing a Feshbach resonance to enhance U would enable the
CSFT and carrier transitions to be separately resolved.
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FIG. 4. Density dependence of CSFT. The CSFT spec-
troscopy signal taken with fixed (∆ω −∆ω↑↓) ≈ ±U/~ is
shown for varied fraction δN of atoms randomly removed from
an s = 8 ER lattice gas. For these data, N = 47000–81000,
and the gas was cooled to T/TF ≈ 0.35 before turning on the
lattice. Data obtained with the +U sideband are shown as
red circles and those for −U as black squares. The sideband
frequencies were determined using a double-Gaussian fit to
CSFT spectroscopy data, as in Fig. 2b. The dashed line is a
prediction for the probability to find adjacent sites occupied
based on a calculation of the density profile after the removal
procedure. The inset shows the procedure for controllably in-
troducing vacancies. Atoms (shown as transparent) that are
not shelved in the F = 7/2 state via microwave transitions
are removed using resonant light.

The technique we have developed may be used to di-
rectly prepare and dynamically evolve RVB order or to
observe other exotic states, such as bond-ordered waves,
triplet pairing, and hole superconductivity [21]. The site-
dependent phase of the bond-charge interaction the Ra-
man lasers introduce also leads to a synthetic gauge field
that was not explored in this work. The unique prop-
erties of the occupation-dependent gauge field created
via this method can be used to simulate interacting rela-
tivistic quantum field theories and correlated topological
insulators [21].
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Appendix A: Experimental Sequence and
Parameters

Ultracold gases composed of ground-state 40K atoms
in the |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉
states are cooled to temperatures below the Fermi tem-
perature TF in a crossed-beam 1064 nm optical dipole
trap using standard techniques. After evaporative cool-
ing, the optical trap depth is increased to the same value
for all the data presented in this paper. The result-
ing dipole trap frequencies are 7.9 ± 0.4 Hz, 98 ± 1 Hz,
and 114± 2 Hz. A microwave-frequency swept magnetic
field combined with a static magnetic field gradient are
used to remove all atoms in one hyperfine state, thereby
preparing a spin-polarized gas a with purity of greater
than 95% for either spin state. Following spin polariza-
tion, we ramp on the three pairs of lattice beams (λ =
782.2 nm) in 100 ms. The Raman beams are derived from
a cavity-stabilized diode laser (Vortex II TLB-6900) and
are 80 GHz red-detuned from the D1 transition. The
frequency and power of each beam are controlled using
an acousto-optic modulator.

A 13 G magnetic field is used to lift the degeneracy
of Zeeman transitions between different mF states. The
field provides a 27 kHz difference between the mF =
9/2 → 7/2 and mF = 7/2 → 5/2 transitions. No signif-
icant population of mF = 5/2 atoms has been observed
in our measurements. The drift in the magnetic field is
about 10 mG from day-to-day and 3 mG over the course
of a two-hour measurement run.

The magnetic field is reduced to 3 G for imaging. The
lattice is ramped down over 100 µs to map band popula-
tions onto the momentum distribution [36], and then the
dipole trap is turned off for time-of-flight expansion. An
additional magnetic field gradient is applied during time-
of-flight to spatially separate the two spin components.
A gaussian distribution is used to fit the images of each
spin component and determine the corresponding atom
number.

The minimum band gap (at the band edge) in this work
is 31 kHz. For the approximately 10 kHz Raman detun-
ings (from the carrier transition) we sample, the prob-
ability for inter-band transitions is therefore negligible.
Furthermore, we do not observe excited band population
for any of the measurements discussed here.

We observe loss of atoms and heating caused by light
scattering from the Raman beams. We characterized this
process, which is not fully understood for strongly inter-
acting systems, using measurements at s = 12 ER. The
measured exponential decay constant for N at s = 12 ER
for Raman-induced loss varied from 130 ± 20 ms to
310 ± 50 ms during the time period when data were ac-
quired. The weighted average of the measured lifetime at
s = 12 ER was 200 ± 10 ms, which is much longer than
the Raman pulses used in this work. Heating is more dif-
ficult to measure, given that determining temperature for
strongly correlated lattice gases is an outstanding prob-
lem. To estimate the heating rate, we measure the tem-
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perature in the dipole trap after slowly turning off the lat-
tice. Using this method, we observed a 0.30±0.02 nK/ms
heating rate at s = 12 ER. The measured heating rate
without a Raman pulse is 0.13 ± 0.01 nK/ms. We con-
clude that heating from the Raman pulse is comparable
to that from other sources. Furthermore, these data do
not show a strong dependence of the heating rate on atom
number: the temperature of the gas increases linearly in
time, even though the atom number decays (for this mea-
surement) from approximately 2.8×104 to 1.7×104 over
80 ms.

We also note that the light scattering (and heating and
loss rates) could be reduced by a factor of 50 (without
changing the Raman Rabi rate) for 40K atoms by using a
different laser capable of tuning to 768.67 nm [35]. More-
over, using an atom with a different electronic structure
could achieve scattering rates that are many orders of
magnitude smaller.

For comparison to theory, U is determined from the
lattice depth (as measured by lattice spectroscopy) [37],

according to

U =
4π~2as
m

∫
|ψi (~x)|4 d3~x, (A1)

where as ≈ 174 a0 is the free-space scattering length
between the spin states [38], m the atomic mass, and
ψi(~x) the Wannier wavefunction derived from the tight-
binding model. The uncertainty in U is estimated to be
less than 2%, and we sample U/t =13–47 in this work.

Appendix B: Theoretical Description of Effective
CSFT Hamiltonian

1. Single-Particle Hamiltonian

We first review the Raman-transition Hamiltonian in
the absence of interactions and a lattice. Following the
standard approach, we consider a three-level system and
adiabatically eliminate the intermediate state. This pro-
cedure is valid in the Ω1,2 � ∆R and δ � ∆R limits (to
be defined subsequently), both of which are well-satisfied
in our experiment.

The level diagram for the three-level atom is shown in
Fig. B1. The Hamiltonian is

H3−lev =


ω↑↓ 0

Ω∗1
2

(
e−i(

~k1·~R−ω1t) + c.c.
)

0 0
Ω∗2
2

(
e−i(

~k2·~R−ω2t) + c.c.
)

Ω1

2

(
ei(

~k1·~R−ω1t) + c.c.
)

Ω2

2

(
ei(

~k2·~R−ω2t) + c.c.
)

ω0

 , (B1)

which is written with respect to the {|↑〉 , |↓〉 , |3〉} basis.

Here, ~R is the position of the atom, the laser frequencies
satisfy ω1 = ω0 −∆R − δ − ω↑↓ and ω2 = ω0 −∆R, and

the individual Rabi rates Ω1,2 = −e
〈

3
∣∣∣ ~E1,2 · ~r

∣∣∣ ↑, ↓〉 de-

pend on the dipole matrix elements for the atom–light

(with electric field ~Ei) interaction.

For the calculations in the main text and discussed
in this document, we use a simplified model in which
laser beam 1 only couples |↑〉 and |3〉, and laser beam 2
only couples |↓〉 and |3〉. In the experiment, however, the
polarizations of the Raman beams are such that both
ground states are coupled to the (multi-level) excited
state by both beams. The couplings that we neglect are
far from any resonant Raman or single-photon transition
and only lead to AC Stark shifts that can be absorbed
into the definition of the ground spin states.

We make the rotating-wave approximation and a uni-

tary transformation H ′3−lev = ei
∫ t V dt′H3−leve

−i
∫ t V dt′−

V , with

V =

 ω↑↓ + δ 0 0
0 0 0
0 0 ω0 −∆R

 , (B2)

which is similar to a transformation to a rotating frame.
Projecting H ′3−lev onto the subspace {|↑〉 , |↓〉}, under the
condition |Ω1| ≈ |Ω2| � ∆R, yields

H2−lev ≈

(
δ Ω

2 e
−i ~δk·~R

Ω∗

2 e
i ~δk·~R 0

)
, (B3)

for an effective Hamiltonian, where Ω = −Ω∗1Ω2/2∆R

and ~δk = ~k1 − ~k2. This projection is equivalent to adia-
batically eliminating the excited electronic state. These
two levels act as the pseudo-spin basis used in the main
part of the text.
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δ

∆R

k2,ω2,Ω2
k1,ω1, Ω1

3

FIG. B1. Energy levels of a 3-level atoms with two lasers of
frequencies ω1 and ω2.

2. Lattice and Interaction Effects

In the presence of an optical lattice, we project the
Hamiltonian onto the lowest Bloch band of the lattice.
We denote the Wannier function centered at the site lo-

cated at ~Ri as ψi (~r) = ψ
(
~r − ~Ri

)
and c†iσ as the opera-

tor that creates a fermion with spin σ at that site. The
full tight-binding Hamiltonian is

H0 =− t
∑
〈ij〉σ

(
c†iσcjσ + hc

)
+
∑
〈ij〉

(
Ω

2
e−i

~δk·
~Ri+

~Rj
2 Ψijc

†
i↑cj↓ + i↔ j + hc

)

+
∑
i

(
Ω

2
Ψ0e

−i ~δk·~Ric†i↑ci↓ +
Ω∗

2
Ψ0e

i ~δk·~Ric†i↓ci↑

)
+
δ

2

∑
i

(ni↑ − ni↓) + U
∑
i

ni↑ni↓,

(B4)

where niσ = c†iσciσ, Ψij =
∫
d~rψ∗i e

i ~δk·(~Ri−~Rj)ψj is a
Debye-Waller factor, Ψ0 = Ψ00, and U is the strength of

on-site interaction. The first term is the ordinary spin-
conserving tunneling term. The second term is a spin-flip
tunneling term akin to spin-orbit coupling in the lattice.
The third term is an on-site spin-flip term, which can be
understood as an effective Zeeman term in the x, y di-
rections. The fourth term is an effective Zeeman energy.
For the experimental parameters explored in this work,
we find Ψij ≈ δij . The second term can therefore be
safely ignored.

3. Effective Hamiltonian for δ ≈ U

To derive an effective Hamiltonian for CSFT, we work
in the limit U, δ � t,Ω and treat the first three terms
of H0 as perturbations. We consider the case δ ≈ U
and and project the Hilbert space onto the subspace of
states that have the same total Zeeman energy as the
initial states. Other states are separated in energy by
at least δ and are projected away. The virtual transi-
tions involving these states lead to higher-order (in 1/δ)
terms in the effective Hamiltonian of the retained states.
Off-resonant processes that can take the state out of this
subspace (for example, carrier transitions leading to sites
occupied by a single spin-down atom) are ignored. This
procedure isolates the CSFT dynamics from other as-
pects of the system. As described in the main text, we
also experimentally isolate the CSFT behavior either by
studying doublon dynamics or by performing differential
spin measurements that remove the carrier contribution.
This allows a comparison of only the CSFT portion of
the dynamics with theory.

We therefore project our Hamiltonian onto such states
where all sites are either empty or occupied by at least
a spin-up fermion. Let P =

∏
i [1− ni↓(1− ni↑)] be the

projector onto this space. Second-order perturbation the-
ory then gives

Heff =P

−t∑
〈ij〉σ

(
c†iσcjσ + hc

)
− tΨ0

2

(
1

U
+

1

δ

)∑
〈ij〉

(
Ω∗

2

(
ei
~δk·~Ri − ei ~δk·~Rj

)
c†i↓cj↑ + i↔ j + hc

)

+

(
δ

2
+
|Ω|2 Ψ2

0

4δ

)∑
i

(ni↑ − ni↓) + U
∑
i

ni↑ni↓ +
∑
〈ij〉

(
Ω

2
e−i

~δk·
~Ri+

~Rj
2 Ψijc

†
i↑cj↓ + i↔ j + hc

)

+
2t2

U

∑
〈ij〉

(
c†i↑c

†
i↓cj↓cj↑ + hc

)
+

2t2

U

∑
〈ij〉

(ni↑ni↓ (1− nj↑) (1− nj↓) + i↔ j) +
t2

U

∑
〈ij〉,〈ij′〉,j 6=j′

ni↑c
†
i↓cj′↓c

†
j↓ci↓

+
t2

U

∑
〈ij〉,〈ij′〉,j 6=j′

(1− ni↓) c†j↑ci↑c
†
i↑cj′↑ −

t2

U

∑
〈ij〉,〈ij′〉,j 6=j′

(
c†j↑c

†
j′↓ci↑ci↓ + hc

)P.
(B5)



8

Noting that Ψij ≈ 0 for i 6= j and further ignoring higher-order interactions, this can be written as

Heff = P

−t∑
〈ij〉σ

(
c†iσcjσ + hc

)
+
∑
〈ij〉

(
Kijc

†
j↑ci↓ +Kjic

†
i↑cj↓ + hc

)
+
δ∗

2

∑
i

(ni↑ − ni↓) + U
∑
i

ni↑ni↓

P+O
(
t2

U

)
,

(B6)

where

Kij = −tΩΨ0
e−i

~δk·~Ri − e−i ~δk·~Rj
4

(
1

U
+

1

δ

)
(B7)

and

δ∗ = δ +
|ΩΨ0|2

2δ
. (B8)

Heff governs the dynamics of fully polarized initial
states discussed in the main text. The first term moves
(but does not create) doublons and holes (e.g., |↑↓, ↓〉 →
|↓, ↑↓〉). The second term is spin-flip tunneling, which
due to the projectors P is effective only if no sites
with spin-down are created. We can therefore rewrite
the second term by explicitly inserting the projectors:

Kijni↑(1−nj↓)c†j↑ci↓+ i↔ j + hc. This term can create
doublon-hole pairs out of the fully polarized initial state
and dominates the dynamics to leading order.

4. Particle–Hole Transformation and Singlet
Creation

The effective Hamiltonian (B6) can be recast using a
particle-hole transformation into a Hubbard model with
singlet creation. We perform the following canonical
transformation on Eq. B6:

c†i↑ → c̃†i↑

c†i↓ → (−1)Pi c̃i↓,
(B9)

where, for the bipartite lattices we are considering,
(−1)Pi takes on opposite signs for all pairs of nearest
neighbors.

This results in a transformed effective Hamiltonian of
the form

H̃eff =P̃

−t∑
〈ij〉

(
c̃†i↑c̃j↑ + c̃†i↓c̃j↓ + hc

)
+
∑
〈ij〉

(
(−1)PiKij

(
c̃†i↑c̃

†
j↓ − c̃

†
i↓c̃
†
j↑

)
+ hc

)

+
δ∗

2

∑
i

(ñi↑ + ñi↓) + U
∑
i

ñi↑(1− ñi↓)

]
P̃ +O

(
t2

U

)
,

(B10)

where P̃ =
∏
i [1− (1− ñi↓)(1− ñi↑)], and ñiσ = c̃†iσ c̃iσ.

In this new basis, the initial state of the system is the
fully-occupied state, where each site has two fermions.
The projector P̃ now restricts the Hilbert space to have
at least one particle on each site.

Initialized with the fully-filled state, the only effective
term in the Hamiltonian (Eq. B10) is the second term,

which is of the form
(
c̃†i↑c̃

†
j↓ − c̃

†
i↓c̃
†
j↑

)
. This operator cre-

ates a singlet on each pair of nearest-neighbor sites. We
can therefore understand the state during the initial stage
of the dynamics as a superposition of states consisting
of singlet pairs. We also note that the second term ef-
fectively implements RVB correlations because the RVB

order parameter is 〈c̃†i↑c̃
†
j↓ − c̃

†
i↓c̃
†
j↑〉.

The second term in Eq. (B10) creates singlets in time
evolution when acting on the initial state. To explain this
behavior, we consider a four-site system. The evolution
in the early stage can be schematically understood as

follows:

∣∣∣↑̃↓, ↑̃↓, ↑̃↓, ↑̃↓〉 1−iH̃effδt−−−−−−→ superposition of∣∣∣↑̃↓, ↑̃↓, ↑̃↓, ↑̃↓〉 , ∣∣∣∣ ↑̃ , ↓̃ , ↑̃↓, ↑̃↓〉 ,∣∣∣∣↑̃↓, ↑̃ , ↓̃ , ↑̃↓〉 , ∣∣∣∣↑̃↓, ↑̃↓, ↑̃ , ↓̃ 〉 ,
(B11)

where the outlined sites denote singlet pairs, i.e.,∣∣∣∣ ↑ , ↓ 〉 ≡ | ↑ , ↓ 〉−| ↓ , ↑ 〉√
2

, and δt is an infinitesimally small

time interval such that only the first order effects of H̃eff

are important. The main dynamics in the early stages
of time evolution are therefore the creation of entangled
singlet pairs. A comparison between the two bases is
tabulated in Table I.
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Original Basis Transformed Basis

Allowed states of each site |↑〉, |↑↓〉,|0〉
∣∣∣↑̃↓〉,

∣∣∣↑̃〉,
∣∣∣↓̃〉

CSFT term c†j↑ci↓ − c
†
i↑cj↓ + hc c̃†i↑c̃

†
j↓ − c̃

†
i↓c̃
†
j↑ + hc

Initial state | ↑ , ↑ , ↑ , ↑ 〉
∣∣∣↑̃↓, ↑̃↓, ↑̃↓, ↑̃↓〉

State after evolution to

first order
(

1− iH̃effδt
)

superposition of

| ↑ , ↑ , ↑ , ↑ 〉 ,

∣∣∣∣∣ ↑↓, 0 , ↑ , ↑

〉
,∣∣∣∣∣ ↑ , ↑↓, 0 , ↑

〉
,

∣∣∣∣∣ ↑ , ↑ , ↑↓, 0

〉
superposition of∣∣∣↑̃↓, ↑̃↓, ↑̃↓, ↑̃↓〉 , ∣∣∣∣∣ ↑̃ , ↓̃ , ↑̃↓, ↑̃↓

〉
,∣∣∣∣∣↑̃↓, ↑̃ , ↓̃ , ↑̃↓

〉
,

∣∣∣∣∣↑̃↓, ↑̃↓, ↑̃ , ↓̃
〉

TABLE I. Comparison between the original and the transformed basis. In the representation of states, we have used the

notation where

∣∣∣∣∣ ↑↓, 0

〉
≡ |↑↓, 0 〉+| 0 ,↑↓〉√

2
and

∣∣∣∣∣ ↑ , ↓
〉
≡ | ↑ , ↓ 〉−| ↓ , ↑ 〉√

2
.

5. Estimation of U Using the Resonance Near δ = U

The value of the Hubbard U is estimated experimen-
tally via CSFT by finding the resonant δ at which dou-
blon creation is most effective. As discussed in the main
text, this procedure appears to undervalue U compared
with the tight-binding prediction from independent mea-
surements of the lattice potential depth. To understand
how higher-order terms in Heff may explain this discrep-
ancy, we consider a two-site system with the three states
| ↑, ↑〉, | ↑↓, 0〉, |0, ↑↓〉 and solve for the value of δ at which
the doublon creation rate is maximized. Writing Heff in
this basis,

H
(2)
eff =

 δ +
Ψ2

0|Ω|
2

2δ K12 −K21

K∗12 U + 2t2

U
2t2

U

−K∗21
2t2

U U + 2t2

U


= U†

 δ +
Ψ2

0|Ω|
2

2δ

√
2K12 0√

2K∗12 U + 4t2

U 0

0 0 U

U
(B12)

where U transforms the basis to{
| ↑, ↑〉, |↑↓,0〉+|0,↑↓〉√

2
, |↑↓,0〉−|0,↑↓〉√

2

}
, and the equality

Kij = −Kji has been used. The first two states have
the same energy (and hence doublon creation is most
effective) when:

δ ≈ U +
4t2 − |Ω|2 Ψ2

0/2

U
+

2t2 |Ω|2 Ψ2
0

U3
(B13)

Here we see that the resonant condition for maximal dou-
blon creation is not exactly at δ = U , but instead shows
higher-order corrections. These corrections contribute to
the deviation between the measured and predicted U dis-
cussed in the main text. However, the predicted 1% de-
viation is too small to explain the observed discrepancy.

6. Validating the CSFT Effective Hamiltonian

The effective model Heff is a perturbative result, in
comparison to the full tight-binding Hamiltonian H0. To
test the validity of the doublon dynamics predicted by
Heff , we compare the time evolution of the doublon pop-
ulation in both models. This allows us to benchmark the
effective Hamiltonian against an exact numerical simula-
tion.

The dynamics of H0 cannot be solved exactly in large
systems with dimension higher than one. We therefore
consider doublon dynamics in one-dimension. We initial-
ize a one-dimensional infinite system with one spin-up
fermion in each state, and evolve it with infinite time-
evolving block decimation (iTEBD) [28]. The evolution
of doublon fraction, defined as D = 〈ni↑ni↓〉/〈ni↑ + ni↓〉,
is plotted in Fig. B2(a). The simulations performed with
H0 and Heff are both presented.

Here we see that the effective model captures the qual-
itative features of the full Hamiltonian. The doublon
creation rate at short times is essentially the same for
both models. Furthermore, the long-time steady-state re-
veals approximately the same doublon fraction. In both
models the timescale of equilibration is roughly set by
~/|K〈ij〉| = 14ms. We therefore see that the effective
CSFT model Heff captures the essential features of the
full tight-binding model H0 in one dimension.

7. CSFT Timescale: Theory–Experiment
Comparison

We measure the Rabi rate of the carrier Ψ0 |Ω| /~ =
2π×650 Hz using resonant Rabi oscillations. The carrier
frequency ω↑↓ is determined using a fit of the spin tran-
sition probability vs. Raman detuning ∆ω for a 0.7 ms
pulse, which is too short to drive CSFT.

Measuring the slower rate for CSFT requires a longer
timescale. We eliminate the background contribution
from the broadened carrier feature using the same pro-
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FIG. B2. The evolution of doublon fraction 〈ni↑ni↓〉/〈ni↑ +
ni↓〉 from a numerical simulation with constant Ω. The solid
lines shows the simulation with the full Hamiltonian H0, while
the dashed line shows that with the effective Hamiltonian Heff

derived from second-order perturbation theory. The states
are initialized with one spin-up fermion on every site, and the
parameters are determined by experiment: t/h = 0.25kHz,

U/h = 3.22kHz, Ω = 0.1U and ~δk · ~d = π/2
√

3, where ~d is a
lattice vector.

cedure as for Fig. 4 in the main text. After locating
the carrier frequency ω↑↓, we perform two measurements
with the same Raman pulse time at ∆ω = ω↑↓+U/~, but
with different initial spin polarization. The difference be-
tween these two measurements f↑ − f↓ reflects only the
CSFT process. Fig. B3 shows the measured CSFT sig-
nal for different Raman pulse times at s = 8 ER lattice
depth.

The measured CSFT timescale is approximately a fac-
tor of five larger than that of the numerical simulations
shown in Fig. B2, which use the experimentally deter-
mined carrier Rabi rate. The uncertainty in t and U
(which determine Kij and the CSFT timescale) from
measurements of the lattice potential depth are too small
to support this difference.

A potential source of this discrepancy is phase-noise
between the Raman laser beams, which translates into
fluctuations in the complex phase of Ω in Heff . Such
noise can arise from, for example, differential acoustic vi-
brations of the opto-mechanics or fibers in the physically
distinct and spatially separated Raman beam paths or
the separate optical power servos we use for each beam.
Phase noise with a non-uniform frequency spectrum is re-
quired to explain the inconsistency we observe, since the
predicted CSFT time dependence shown in Fig. B2 is
constrained by all the experimental parameters, includ-
ing the independent measurement of |Ω| using the carrier
transition. In order to differentially affect the carrier and
CSFT transitions, the phase-noise spectral density must
be frequency dependent.

To explore this, we carry out iTEBD numerical simu-
lations with a time-dependent Ωeiφ(t). The result, plot-

0 2 0 4 0 6 0- 0 . 0 5
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5

t i m e  ( m s )
FIG. B3. CSFT signal for varied Raman pulse time. The
Raman detuning for these measurements is fixed to the +U
CSFT sideband. The measurements are shown using black
circles, and a theoretical simulation is displayed as a red
line. The simulation is performed with Ω in H0 replaced with
Ωeiφ(t), where 〈〈φ(t)2〉〉=8, and the characteristic timescale of
the fluctuations in φ(t) is 2 ms. The dynamics has been av-
eraged (indicated by the notation 〈〈〉〉) over five realizations of
φ(t). For these parameters, the carrier Rabi oscillations are
not strongly perturbed.

ted as the solid line in Fig. B3, shows better agreement
with the experimental result. The noise we introduce in
this simulation is generally consistent with experimental
sources of phase instability between the Raman beams.
This phase noise may also explain the broadening of the
CSFT peaks evident in Fig. 2 in the main text. We re-
serve a detailed discussion of the noise and comparison
with experiment to future work [39].

Appendix C: Raman Phase Gradient and Fermionic
Statistics

As discussed in the main text, the spatially dependent
Raman phase that arises because the Raman beams in-
tersect at an angle plays a key role in enabling CSFT. We
use a two-site, two-atom toy model to explain how the
Raman phase disrupts destructive interference between
multiple tunneling pathways that is induced by antisym-
metrization of the wavefunction.

Considering a two-site, two-fermion system, there are
six possible configurations, which we label according to
the site and spin occupancy in each well: |↑, ↑〉W , |↓, ↓〉W ,
|↑↓, 0〉W , |0, ↑↓〉W , |↑, ↓〉W , and |↓, ↑〉W . In this well-
specific basis, |↓, ↑〉W means that a |↓〉 atom is in the

left well (located at position ~R1) and an |↑〉 atom is in

the right well (located at position ~R2), for example.
Using a Slater determinant to explicitly write down
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properly symmetrized (un-normalized) two-atom wave- functions, we have:

|↑, ↑〉W = (|LR〉 − |RL〉) |↑↑〉 (C1)

|↓, ↓〉W = (|LR〉 − |RL〉) |↓↓〉 (C2)

|↓↑, 0〉W = |LL〉 (|↑↓〉 − |↑↓〉) (C3)

|0, ↓↑〉W = |RR〉 (|↑↓〉 − |↑↓〉) (C4)

|↑, ↓〉W = (|LR〉 − |RL〉)(|↑↓〉+ |↓↑〉) + (|LR〉+ |RL〉)(|↑↓〉 − |↓↑〉) (C5)

|↓, ↑〉W = (|LR〉 − |RL〉)(|↑↓〉+ |↓↑〉)− (|LR〉+ |RL〉)(|↑↓〉 − |↓↑〉), (C6)

where the spatial part of the wavefunction is written in
the basis of |L〉 and |R〉, which are single-particle states
on either the left or the right well, and the spin compo-
nent is denoted as |↑〉 and |↓〉. For example, in this basis,
|LR〉 |↑↓〉 means that atom 1 is in the left well in the |↑〉
state, and atom 2 is in the right well in the |↓〉 state.
The key point for this discussion is that the |↑, ↓〉W and
|↓, ↑〉W states consist of spin singlet and triplet compo-
nents. Furthermore, the relative sign between the spin
and triplet components is opposite for these two states.

We focus on resonant CSFT with ∆ω = U/~. An ini-
tially spin-polarized state |↑, ↑〉W (as in the experiment)
can transition to a virtual state |↑, ↓〉W or |↓, ↑〉W via a
Raman transition (see Fig. C1). The amplitude for this
process is suppressed by a factor of 1/U because of the
energy mismatch. The phase of the virtual state depends

on which atom undergoes a spin-flip, since ~δk 6= 0. There-

fore, the Raman phase enters as either e
~δk·~R1 or e

~δk·~R2 ,

where ~R1 and ~R2 differ by a lattice vector ~d. After the
virtual state is formed, tunneling completes the CSFT
process, and a doublon is formed. Via tunneling, the sign
difference between equations C5 and C6 is converted into
an overall sign difference between the wavefunctions for
each doublon-formation pathway. This π relative phase
between the wavefunctions can be computed from the

tunneling matrix elements 〈↑↓, 0|W t(c†i ci+1+h.c.) |↑, ↓〉W
and 〈↑↓, 0|W t(c†i ci+1 + h.c.) |↓, ↑〉W .

+ 

+ 

 

 

Virtual states  

− 1  

− − 2  

FIG. C1. A schematic diagram showing CSFT for a two-site
two-fermion system. CSFT happens as a two-step process
via a virtual state. Two possible channels between the initial
state |↑, ↑〉W and the final state |↑↓, 0〉W + |0, ↑↓〉W happen
simultaneously but with amplitudes carrying opposite signs.
The probability to observe a doublon-hole pair is affected by
interference between these channels.

The transition between the between the initial
state |↑, ↑〉W and the final doublon–hole state hap-
pens via these two possible channels simultane-
ously. The final state is a superposition of these
two pathways, with a wavefunction proportional to(
e−i

~δk· ~R1 − e−i ~δk· ~R2

)
(|↑↓, 0〉 + |0, ↑↓〉). The probability

to observe a doublon-hole state is thus proportional to

[1− − cos( ~δk · ~d)
]
. Without the Raman phase gradient

(i.e., ~δk = 0 or ~δk · ~d = 0), destructive interference pre-
vents tunneling, and doublons will not be formed. Ul-
timately, this interference arises from the different signs
between the triplet and singlet components in equations
C5 and C6—it is absent for bosons, for instance.

Appendix D: Simulation of CSFT Sensitivity to
Vacancies

We developed a simple numerical simulation (shown
in Fig. 4 in the main text) to determine the sen-
sitivity of CSFT to vacancies in the lattice. We
compute a density distribution in the non-interacting
limit, and determine the probability that neighbor-
ing sites are occupied as atoms are randomly re-
moved. The density distribution after turning on
the lattice is generated according to n (rx, ry, rz) =∫
d3~q
h3

1

eβ[V (rx,ry,rz)+ε(~q)−µ]+1
, where V (rx, ry, rz) is the to-

tal harmonic potential imposed by optical trap and lat-
tice beams, µ is the chemical potential, β = 1/kBT̃ ,
ε (~q) = 2t (3− cosπqx/qB − cosπqy/qB − cosπqz/qB) is

the lattice dispersion, qB = ~π/d, and T̃ the effective

temperature in the lattice. Both µ and T̃ are solved by
matching the entropy and number of atoms N to the
corresponding values in the dipole trap. Non-interacting
thermodynamics (including the tight-binding lattice dis-
persion and confining potential) are solved to relate the

entropy to N and T̃ . Each site in the simulated lattice is
computed as occupied by a single atom or empty based
on comparing a random number in the interval [0, 1] to
n (rx, ry, rz).

Atoms are randomly removed from the simulated den-
sity profile according to a probability δN , which corre-
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FIG. D1. The fraction of atoms with nearest neighbors at var-
ious removal fractions δN for N = 61000 and S/N = 2.89 kB ,

which corresponds to kBT̃ = 9.7t and chemical potential
µ = 6.4t in the lattice. The insets at the right show sample
occupation profiles (with one black dot per atom) through a
central slice of the gas. The inset at bottom left schematically
illustrates the procedure for counting pairs.

sponds to the average fraction of atoms discarded. The
fraction Np of atoms in adjacent occupied sites remain-
ing after this removal procedure is counted. As shown
in an inset to Fig. D1, atoms are only counted once if
they participate in any nearest-neighbor pair. Results
from this simulation for the fraction of atoms Np are
shown in Fig. D1 for N = 61000 and entropy per parti-
cle S/N = 2.89kB in the lattice. This curve is plotted in
Fig. 4 in the main text.

Our simulation includes the Raman-induced atom loss
in δN . For the measurements in Fig. 4 in the main
text, the initial conditions before the controlled removal
procedure are N = 80900 ± 3940, T/TF = 0.29 ± 0.04;
N = 54800 ± 12500, T/TF = 0.34 ± 0.04; and N =
47200± 2810, T/TF = 0.38± 0.08 from high to low δN .
After removal and loss induced by the Raman beams,
the atom number is 59200 ± 2660, 23700 ± 1830, and
10900± 5180, from high to low δN .

The procedure described in the main text for deter-
mining how D depends on δN involves measurements of
f↑ and f↓. We observe that the CSFT spectrum is not
altered qualitatively by changes in N for the range of δN
sampled in Fig. 4 in the main text. Sample data are
shown in Fig. D2 for δN ≈ 0.57.

4 1 8 0 4 1 8 5 4 1 9 0 4 1 9 5 4 2 0 0 4 2 0 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

FIG. D2. Measurements of f↑ (black squares) and f↓ (red
circles) for varied Raman detuning ∆ω taken using the same
procedure as for Fig. 2 in the main text. For these data,
δN ≈ 0.57.
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