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Recent experiments on a one-dimensional chain of trapped alkali atoms [Bernien et al., Nature
551, 579 (2017)] have observed a quantum transition associated with the onset of period-3 ordering
of pumped Rydberg states. This spontaneous Z3 symmetry breaking is described by a constrained
model of hard-core bosons proposed by Fendley et al. [Phys. Rev. B 69, 075106 (2004)]. By
symmetry arguments, the transition is expected to be in the universality class of the Z3 chiral clock
model with parameters preserving both time-reversal and spatial-inversion symmetries. We study
the nature of the order–disorder transition in these models, and numerically calculate its critical
exponents with exact diagonalization and density-matrix renormalization group techniques. We use
finite-size scaling to determine the dynamical critical exponent z and the correlation length exponent
ν. Our analysis presents the only known instance of a strongly coupled generic transition between
gapped states with z 6= 1, implying an underlying nonconformal critical field theory.

PACS numbers: 02.70.-c, 03.65.Vf, 75.10.Jm, 75.40.Mg

I. INTRODUCTION

In recent years, symmetry-breaking quantum phase
transitions (QPTs) of bosons and spin systems have been
extensively studied [1], and many experimental realiza-
tions have been found [2–5]. In all the noted cases, the
zero-temperature quantum critical properties of the tran-
sitions are largely well understood.

A new realization of QPTs was recently found by
Bernien et al. [6] in a one-dimensional chain of trapped
alkali atoms, where they observed the onset of modu-
lation in pumped Rydberg states. A lattice model of
hard-core bosons [7] provides a good description of the
experiments. Both the experiments and the theoretical
model display a QPT with period-3 ordering. When com-
bined with the requirements of time-reversal and spatial-
inversion symmetries, the period-3 ordering implies that
the QPT should be in the universality class of the Z3

chiral clock model [8–16] over a set of parameters (φ = 0,
θ 6= 0), which will be specified below. Curiously, while
this clock model has been studied theoretically for over
three decades, there is no controlled field-theoretic de-
scription for a QPT with the specified symmetries be-
tween a gapped Z3-ordered state, and a gapped disor-
dered state that preserves translational symmetry. Our
paper will present numerical results which shed light on
the nature of this novel strongly coupled QPT in 1+1
dimensions.

One of the reasons for the tractability of the previ-
ously studied QPTs is that they all have dynamical crit-
ical exponent z = 1. Indeed, their critical theories are
relativistically and conformally invariant, and this large
symmetry enables much analytic progress. Our results

here clearly show that the chiral clock transition has dy-
namical critical exponent z 6= 1. To our knowledge, this
transition provides the only known strongly coupled crit-
ical point for a generic QPT between gapped states which
has z 6= 1, and so, cannot be described by a conformal
field theory. A prior example [17–19] of a strongly cou-
pled QPT with z 6= 1 involved the the onset of Ising
ferromagnetic order in a one-dimensional quantum spin
system with U(1) spin-rotation symmetry about the Ising
axis; however, in this case, the phases flanking the critical
point are both gapless. Nongeneric QPTs with z 6= 1, and
Hamiltonians which are finely tuned to obtain a known
ground-state wavefunction, appear in Refs. 20–22; these
are described by fixed points which are multicritical. An
instance of a generic QPT that has z 6= 1, but which is
weakly coupled and has a gapless phase next to it, is the
Pokrovsky-Talapov transition [23, 24], with z = 2.

As implied above, generally, QPTs involving Zn (n ≥
3) translational symmetry breaking along one spatial di-
rection are expected to be in the universality class of the
Zn chiral clock model [8–12, 15, 16]. The chirality is
a consequence of the structure of domain walls between
Zn-ordered phases: when moving along a fixed spatial di-
rection, domain walls which move clockwise around the
clock have distinct energies from those that move anti-
clockwise [Fig. 1]. There does not appear to be any
proposed field-theoretic framework for understanding a
generic direct transition from the gapped Zn-ordered
phase to a gapped symmetric phase. The main impedi-
ment to such efforts is that the term in the action respon-
sible for the chirality also induces incommensurate spin
correlations, and in a perturbative analysis, the density-
wave order parameter condenses at a nonzero wavevector,
resulting in a state with long-range incommensurate or-
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der [25]. Strong-coupling effects are evidently required
to obtain a direct order–disorder transition, which is the
focus of our study.

The Z3 chiral clock model (CCM) in one dimension is
defined by the Hamiltonian [15, 26]

Hccm = −f
L∑
j=1

τ †j e−iφ − J
L−1∑
j=1

σ†j σj+1 e−i θ + h.c. (1)

acting on a chain of L spins; the Hilbert space is (C3)
⊗
L.

The three-state spin operators τi and σi act locally on the
site i, and each satisfy

τ3 = σ3 = 1 , σ τ = ω τ σ ; ω ≡ exp (2π i/3) . (2)

For concreteness’ sake, let us also explicitly choose the
following representation of the CCM operators

τ =

1 0 0
0 ω 0
0 0 ω2

 , σ =

0 1 0
0 0 1
1 0 0

 , (3)

reminiscent of the Pauli matrices that measure and shift
the spin at a given site. The scalar parameters f and
J determine the on-site and nearest-neighbor couplings,
while φ and θ define two chiral interaction phases. For
φ and θ both nonzero, time-reversal and spatial-parity
(inversion) symmetries are separately broken, but their
product is preserved. This asymmetry in the Hamilto-
nian has important ramifications: the spatial chirality
(θ 6= 0) induces incommensurate (IC) floating phases
with respect to the periodicity of the underlying lattice
[27]. For applications to spatially ordered phases, we
need φ = 0, whereupon time-reversal and spatial-parity
are both symmetries of the Hamiltonian but the chirality
is still present as a purely spatial one. This article is thus
restricted to the φ = 0 case, with the chirality quantified
by θ [Fig. 1(b)].

The three-state CCM also has an explicit global Z3

symmetry. Using density-matrix renormalization group
techniques, we study the critical behavior at the direct
transition between the Z3-ordered and the gapped sym-
metric phase, with the aim of determining the exponent
z. The achiral φ = 0, θ = 0 model has a transition in the
universality class of the three-state Potts conformal field
theory with z = 1. We find that away from the special
point θ = 0, the dynamical critical exponent z is larger
than 1, indicating that there is no emergent conformal in-
variance. For φ = 0, θ 6= 0, our results [see Fig. 7] show
that the gapped symmetric phase has spatially incom-
mensurate correlations of the Z3 order parameter. How-
ever, the incommensurability vanishes as the transition
is approached and the long-range Z3 order is eventually
commensurate. These results clarify how a direct transi-
tion is possible between the gapped symmetric phase and
Z3 order, without an intermediate gapless IC phase.

(a)

(c)

(b)

(d) (e)

(f)

FIG. 1. Schematic representation of (a–b) the interactions,
and (c) a generic state of the Z3 chiral clock model. The
arrows connote the eigenvalue of the operator σ at each site
with σi = 1, ω, ω2 delineated by the arrow pointing at 12-, 4-,
and 8-o’clock, respectively. Owing to the chirality of the cou-
plings in Eq. (1), there are two distinct types of domain walls
(DW) with their associated interaction strengths illustrated
in (b). (d) The Rydberg and ground states of the two-level
system defined by Eq. (4). The van der Waals interactions
depend on the spacing between Rydberg excitations (e) and
thus a representative state (f), once again, has two kinds of
domain walls.

Turning to the recent experiments with trapped Ryd-
berg atoms [6, 28], we consider a model which is directly
related to the microscopic physical realization but the
transitions of which are expected to be in the same uni-
versality class as in the corresponding Zn CCM. On a
microscopic level, a one-dimensional array of N atoms is
described by the Hamiltonian

HRyd =

N∑
i=1

Ω

2
(|g〉i〈r|+ |r〉i〈g|)− δ |r〉i〈r|

+
∑
i<j

V|i−j| |r〉i〈r| ⊗ |r〉j〈r| . (4)

Here, |g〉i and |r〉i denote the internal atomic ground
state and a highly excited Rydberg state of the ith atom,
which together represent a spin-1/2 system [Fig. 1(d–f)].
The parameters Ω and δ characterize a coherent laser
driving field, while Vx = C6/x

6 quantifies the van der
Waals interactions of atoms in Rydberg states. In this
study, we focus on a region in parameter space where
this system exhibits a QPT between the Z3-ordered and
the gapped symmetric phase [15] and provide numerical
evidence that the critical behavior parallels that of the
three-state CCM (1). We note that HRyd does not break
time-reversal symmetry, motivating our choice of φ = 0



3

in the study of the quantum clock model (1).

Beginning with the chiral clock model in Sec. II, we
outline the approach used to determine the critical ex-
ponents of phase transitions for both Hccm and HRyd in
Sec. II C. Numerical results then follow: for the CCM in
Sec. II, and the Rydberg model (which can be mapped to
a system of hard-core bosons [7, 29, 30]) in Sec. III. The
associated exponents, which we compile in Secs. II C 2
and III A 2, respectively, are shown to differ rather non-
trivially from the Potts exponents and underscore the
nonconformal nature of the critical field theory. We also
appraise the possible influence of long-range interactions
on the nature of the chiral Z3 transition in Sec. III C. Fi-
nally, we conclude by summarizing our results in Sec. IV.

II. THE Z3 CHIRAL CLOCK MODEL

The one-dimensional Zn clock model [8–11] is a
straightforward generalization of the transverse-field
Ising model (TFIM) wherein one replaces the two-state
Ising spin at each site by a variable with n states. How-
ever, instead of enlarging the symmetry from Z2 to that
of the permutation group Sn (which would result in the
n-state Potts model), one can construct a Hamiltonian
such that the interactions are invariant under only the
subgroup Zn. Confining ourselves to n = 3, this leads to
the Z3 clock model [15] in Eq. (1), where the three val-
ues of the spin at any site are most conveniently labeled
by 1, ω, ω2. In this representation, it is not difficult to
observe that the Hamiltonian (1) is invariant under a uni-
form rotation of all the spins as τj → τj , σj → ω σj ∀ j
and thereby possesses a global Z3 symmetry implemented
by U =

∏L
j=1 τ

†
j .

This model’s recent resurgence, some forty years af-
ter its original proposal, is closely tied to the presence
of non-Abelian bound states beyond Majorana fermions,
after a non-local mapping of the Hilbert space to those
of parafermions (described below). Both analytical
[15] and numerical [31] studies confirm this assertion:
parafermionic edge zero modes can and do exist in this
model [32] but only when the interactions are chiral; in
contrast, the more conventionally studied clock models
with purely ferromagnetic or antiferromagnetic interac-
tions do not boast boundary zero modes.

In analogy with the TFIM, the Hamiltonian of the 1D
CCM in Eq. (1) comprises a spin-flip term (f > 0) and
a two-site interaction term (J > 0). By continuously
varying the phases φ and θ, the effective interaction can
be interpolated between ferromagnetic (e.g., f = J =
0.5, and φ = θ = 0) and antiferromagnetic (φ = θ =
π/3). The CCM is known to be integrable [33, 34] for
a two-parameter family of couplings [14] along the line
f cos (3φ) = J cos (3 θ) and at precisely φ = θ = π/6,

it is superintegrable [35, 36]. On setting φ = θ = 0, it
reduces to just the quantum version of the three-state
Potts model.

A. Parafermionic description

Recalling the reformulation of the TFIM in terms of
Majorana fermions, it is natural to wonder if a similar
procedure could be carried out for the Z3 CCM too. As il-
lustrated by Fendley [15], the answer is indeed in the affir-
mative: the Fradkin-Kadanoff transformation [37] maps
the model onto a parafermionic chain

H3 = −f
L∑
j=1

ψ†j χj e−iφ − J ω2
L−1∑
j=1

ψ†j χj+1 e−i θ + h.c.

(5)
where the two basic parafermions are

χj =

(
j−1∏
k=1

τk

)
σj , ψj = ω

(
j−1∏
k=1

τk

)
σj τj . (6)

These operators neither square to one nor commute:

χ3
j = τ3

j = 1; χ†j = χ2
j ; ψ†j = ψ2

j ; and χj ψj = ω ψjχj .

Additionally, due to to the inherently nonlocal nature of
the duality transformation (6), the parafermionic opera-
tors at different points also do not commute but instead
satisfy the algebra

χjχk = ω χkχj ; ψjψk = ω ψkψj ; χj ψk = ω ψkχj , (7)

for j < k. The most striking feature that manifests it-
self upon this redefinition is the occurrence of edge zero
modes characteristic of topological order [15, 38]. These
zero-energy modes, which are robust even with disor-
dered couplings (i.e., spatially varying f and J), require
the interactions to be necessarily chiral, unlike in the
usual ferromagnetic and antiferromagnetic cases.

B. Phase diagram

The exact phase structure of the quantum clock model
has been a subject of much debate. Intuitively, one ex-
pects to find a disordered (Z3-symmetric) and an or-
dered (symmetry-broken) phase—as is the case with the
TFIM—with a transition between the two driven by tun-
ing the coupling strengths from a regime where f � J
to one where f � J . Studies on several variants of
this model, using a multitude of methods spanning from
Monte Carlo simulations to transfer matrix partial di-
agonalization [39–41], lent credence to this expectation.
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Early analyses of finite-size effects [40] (admittedly, re-
stricted to θ = 0) revealed an additional IC phase absent
in the TFIM with chiral interactions [9]. Incidentally,
although it was known that the model has a tricritical
Lifshitz point [42, 43] at the intersection of the three
phases, its precise location in parameter space was, until
quite recently, ambiguous [44, 45].

The phase diagram of the Z3 CCM was mapped out as
a function of both chiral parameters (φ, θ) and couplings
(f , J) by Zhuang et al. [16], who detected three distinct
phases from entanglement entropy (EE) considerations
[46, 47]. We show the phase diagram for the case with
φ = 0 in Fig. 2. For large (small) values of f , the system
is generically in the disordered (ordered) state. In the
parafermionic description, these can be designated triv-
ial and topological, respectively, the latter being char-
acterized by a threefold ground-state degeneracy (ergo,
an EE ∼ ln 3). Both these phases are gapped and are
separated by an intermediate IC region when θ is large
(& π/6). The disorder–IC transition is of the Kosterlitz-
Thouless type [48] while the order–IC one is a Pokrovsky-
Talapov transition [23, 24]. For small θ, our results in
Section. II C 2 support a direct phase transition between
the two gapped phases (shown in Fig. 2), as proposed
by earlier works [13, 16, 44, 45]. Arguments that a gap-
less IC phase must intervene between the gapped phases
[12] do not apply near the Potts point at θ = 0. Little
is known about the universality class of the direct Z3-
symmetry-breaking (or in parafermionic language, direct
trivial–topological) transition and hence, understanding
it, in its full generality, is our desideratum in this section.
What we do know, however, is that the clock Hamilto-
nian (1) exhibits a second-order QPT at f = J when
θ = φ = 0. The symmetry group for the (achiral) model
at this critical point is the full S3 and the underlying
critical conformal field theory is that of the three-state
Potts model with central charge 4/5 [49].

Our general strategy is therefore as follows. We sweep
across the phase transition, constrained to the subspace
f = 1 − J , at several discrete values of θ for φ = 0.
At each such point in parameter space, the ground-state
eigenvalue E0 and the energy gap to the nearest level ∆ =
E1−E0 are recorded. Since the form of the Hamiltonian
is invariant under either of the transformations

φ′ → φ+
2mπ

3
; θ′ → θ +

2nπ

3
; ∀ m,n ∈ Z, (8)

φ′ → −φ; θ′ → −θ, (9)

it suffices to consider only the range φ, θ ≤ π/3 and in
particular, φ, θ < π/6, where a direct transition has been
confirmed [16]. Systematically examining this region en-
ables us to find the critical exponents of the transition as
detailed below.

0.0

0.5

1.0

f

 IC

P 0.1 0.2 0.3 0.4
0.44

0.46

0.48

0.5

FIG. 2. The three phases of the CCM, adapted from Ref. 16,
are schematically limned in a cross-section of the three-
dimensional phase diagram for φ = 0, J = 1−f , and L = 100.
P marks the transition point of the three-state Potts model.
Blue diamonds indicate the quantum critical points obtained
from finite-size DMRG, which are listed in Table I. When
overlaid with the previously found transition points (solid
line), the two datasets agree perfectly.

C. Critical exponents

Of primary interest in characterizing the nature of the
Z3-symmetry-breaking phase transition are its critical ex-
ponents. Specifically, these include the dynamical critical
exponent z and the correlation length exponent ν, which
are defined by [1, 50]

∆ ∼ |f − fc|z ν ; ξ ∼ |f − fc|− ν , (10)

where ∆ denotes the mass gap and ξ is the correlation
length that governs the decay of G(r) ≡ 〈Ψ(r) Ψ(0)〉 −
〈Ψ(r)〉〈Ψ(0)〉 ∼ exp(−r/ξ) for an order parameter Ψ. In
order to numerically estimate these exponents, we use
finite-size scaling (FSS) [51, 52] as described below.

1. Finite-size scaling and extrapolation

The FSS approach posits that if some thermodynamic
quantity K (f) diverges in the bulk system as K (f) ∼
|f − fc|−κ as f → fc, then, at criticality, it scales as
K (fc) ∼ Lκ/ν on a lattice of L sites. The exponent
κ/ν can therefore be directly determined by plotting K
against the system size. The FSS procedure now hinges
on appropriate choices of the variable K. For instance,
near the quantum critical point (QCP), one can assume
that the gap obeys a scaling ansatz of the functional form

∆ = L−z F
(
L1/ν (f − fc)

)
, (11)
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with F some universal scaling function. In addition, from
a technical perspective, it is also helpful to define the
Callan-Symanzik β function [53]:

β (f) =
∆ (f)

∆ (f)− 2
∂∆(f)

∂ ln f

. (12)

From Eqs. (11) and (12), it follows that these two quanti-
ties scale as −z and −1/ν, respectively, at the QCP thus
giving us access to the required exponents.

Alternatively, starting from successive values of K on
a sequence of finite lattices of increasing size, one can
estimate the ratio κ/ν from the sequence

RK,L =
L [KL(fc)−KL−2(fc)]

2KL−2(fc)
, (13)

which converges to κ/ν as L → ∞ if there are no
other higher-order or offset corrections. Under this as-
sumption, Eq. (13) asserts that in the limit L → ∞,
R∆,L → −z. On a finite lattice, however, this limit is
approached only asymptotically, necessitating further ex-
trapolation techniques [54] to accelerate the convergence
of the sequences (13) and to improve the estimates of the
critical parameters. In this work, wherever applicable,
we employ the BST [55, 56] algorithm to this end.

2. Numerical results

Our numerical calculations in this section are based on
the density-matrix renormalization group (DMRG) algo-
rithm [57–62]. We use finite-system DMRG [63, 64] with
a bond dimension m = 150 for a chain of up to L = 100
three-state spins with open boundary conditions; the first
and second energy levels are individually targeted. The
energy eigenvalues were found to be reasonably converged
within three sweeps to an accuracy of one part in 1010.

First of all, let us inspect the QPT at the Potts point,
φ = θ = 0 and fc = 0.5. Using Eq. (13) recursively,
we compute R∆,100 = 0.9881, whereupon extrapolation
to its infinite-lattice value yields z = 0.9959. Next,
we consider the scaling of the Callan-Symanzik β func-
tion [Eq. 12, Fig. 5] in connection with extracting the
correlation length exponent. Evaluating the slope of a
log-log plot against L, we find that for φ = θ = 0,
ν−1 = 1.201 ± 0.001 or, in other words, ν = 5/6 as is
known independently for the three-state Potts model. It
is to be noted that both values are in excellent agree-
ment with the universality hypothesis [65] that the three-
state Potts model and Baxter’s “hard-hexagon” model
[66] should have the same critical exponents. Reassured
by these familiar exponents, we now look into the critical
parameters for nonzero chiral angles.

In the remainder of this section, we focus on the Z3-
symmetry-breaking transition for a broad range of values
of θ, which we adjust here between 0 ≤ θ < π/6 in steps
of π/48. Constrained by the lack of preexisting informa-
tion about z, we pinpoint the location of the QPT by
plotting Lz ∆L against the tuning parameter f for vari-
ous lattice sizes (ranging from L = 60 to L = 100) and
values of z [see Fig. 3(a)]. Precisely at the QCP f = fc,
Eq. (11) predicts that the quantity Lz∆ is independent
of the length of the system L. In other words, with the
correct choice of z, all the curves for Lz∆ should cross at
fc for different values of L. This allows us to both locate
the QCP fc and estimate the value of z simultaneously.
By scanning successively smaller intervals, we are able
to determine the intersection point of the curves for dif-
ferent lengths to an accuracy of 10−4. Fig. 3 displays an
example of this method for θ = π/8. The variation of the
crossing points with θ is noted in Table I; the positions of
the QPT calculated in this fashion are in exact agreement
with the phase boundaries reported by Ref. 16.
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FIG. 3. (a) Scaling of the energy gap ∆ as a function of f
for individual system sizes with φ = 0 and θ = π/8. With
z = 1.229, all the curves intersect right at the critical point.
The finesse of the crossing depends crucially on the z chosen:
on zooming in, the contrast in sharpness between z = 1 (b)
and z = 1.229 (c) is vivid.

Although the abovementioned approach kills two birds
with one stone, one could worry about sensitivity to the
range of system lengths over which FSS is applied. To
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FIG. 4. Log-log plot of the gap ∆ against the lattice size L
at the critical point f = fc. As previously, φ = 0, and the
different values of θ are labeled. For sufficiently large systems,
the dependence is exactly linear as expected. For reference,
the curve for the Potts transition is indicated by a solid line.
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FIG. 5. The Callan-Symanzik β function plotted on a loga-
rithmic scale against the system size for φ = 0. The slopes of
the curves in the linear region, corresponding to large lattices,
give us the respective values of −1/ν for each choice of θ.

carefully investigate any such effects, we now turn our at-
tention to the scaling of the mass gap at precisely f = fc:
the gap is presented as a function of the system size in
Fig. 4. The deviations from a pure power-law scaling be-
speak the presence of corrections that become important
for small spin chains. In order to incorporate corrections
to FSS for the datasets, we use the ansatz

∆ (L) = c0 L
−z(1 + c1 L

−ζ); (ζ > z), (14)

that was originally argued for the three-state quan-
tum Potts chain on the premise of conformal invariance
[67, 68]. The coefficients ci as well as the exponents z
and ζ are treated as free parameters for the fit. The
values of z thus obtained are enlisted in Table I, which
shows that z > 1 for θ > 0, implying that the underlying

θ fc z z ζ 1/ν

π/48 0.4990 1.003 1.00(7) 1.20(9)

π/24 0.4961 1.021 1.01(8) 1.21(8)

π/16 0.4913 1.022 1.02(1) 1.22(3)

π/12 0.4842 1.078 1.07(6) 1.25(1)

5π/48 0.4748 1.135 1.13(3) 1.27(7)

π/8 0.4627 1.229 1.22(7) 1.32(4)

7π/48 0.4475 1.368 1.36(6) 1.38(2)

TABLE I. Calculated dynamical and correlation length crit-
ical exponents for φ = 0. Two independent sets of values
of z are distinguished: the first series is our estimate from
the crossing points [Fig. 3] whereas the second (designated by
the subscript ζ) is for the values after correcting for finite-
size effects, determined from a nonlinear fit to Eq. (14). The
evolution of the exponents with θ is quite smooth.

field theory breaks Lorentz invariance and (as hinted at
in Sec. III as well) is not conformally invariant. Hence,
for θ 6= 0, the QPT is not in the same universality class as
the ordinary order–disorder transition in the three-state
Potts model. Earlier examples of strongly coupled quan-
tum critical theories with z 6= 1 are limited to quantum
critical metals [69] and the onset of Ising ferromagnetism
in one-dimensional metals [17–19]. Interestingly, even for
the classical asymmetric clock model in two dimensions,
spatial rotational symmetry is not recovered in the scal-
ing limit (and consequently, it cannot be described by a
conformal field theory) [70].

Table I also lists the correlation length exponents ob-
served for different angles. It is perhaps not altogether
surprising [71] that ν varies continuously with the param-
eter θ; in this case, it ranges between 5/6 and (roughly)
5/7, which is in consonance with the exponents of the Ry-
dberg array model studied in the following section. The
robustness of all these exponents can be independently
verified by yet another method. Eq. (11) stipulates that
on graphing Lz ∆ as a function of the combined scaling
variable (f−fc)L1/ν , all the data for different values of f
and L should collapse onto a single curve [72–74]. Using
the values of z and ν from Table I, we obtain excellent
data collapse as established by Fig. 6.

Altogether, the analysis presented here offers strong
evidence for a direct second-order transition from the dis-
ordered to the commensurate Z3-ordered phase. Then,
a natural question as regards scaling is whether the di-
rect transition is described by a single fixed point with a
universal set of critical exponents and scaling functions,
or whether these exponents vary continuously. The over-
whelming majority of second-order transitions are known
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FIG. 6. Data collapse for six different chiral angles based on the critical exponents z and ν recorded in Table I. The data
consists of three different sets, one for each value of δf ≡ f − fc. Every dataset is, in turn, comprised of 31 points for the
differing system lengths L ranging from 40 to 100, in steps of 2. All the data collapse perfectly onto a single line.

to be of the former kind, with fixed exponents. All famil-
iar examples of the latter are related to the Kosterlitz-
Thouless transition and unfortunately, based on our data,
this category cannot be conclusively ruled out. On the
contrary, the variation in the values of z and ν could also
be an artifact stemming from finite-size effects.

In order to obtain some further insight into the na-
ture of this phase transition, we probe the correlation
properties of the ground states near the critical point
by performing infinite-system DMRG (iDMRG) [75, 76]
calculations. More specifically, we sequentially optimize
the ground-state wavefunction assuming an infinite-size
matrix product state (iMPS) that is invariant under two-
site translations, with bond dimensions up to m = 300.
Once the wavefunction converges [77], we compute the
two-site transfer matrix T [see Fig. 7(a)] and its eigenval-
ues λi with i ∈ 0, 1, 2, . . .. The largest eigenvalue λ0 = 1
dictates the normalization condition for the wavefunction
while subsequent ones characterize any correlations in the
ground state. In particular, the second-largest eigenvalue
λ1 encodes the length of the longest correlations and its
wavenumber via the relation

λ1 = exp

[
2

(
−1

ξ
+ i k

)]
. (15)

This relation can be explicitly seen by considering the di-
agram in Fig. 7(b): this translates to any two-point corre-
lator of the form C (2d) = 〈OiOi+2d+1〉 = (L|O T dO|R),
where (L| and |R) are the left and right eigenvectors of
T for the largest eigenvalue λ0, and O corresponds to

the expectation value of an operator O with respect to a
local tensor in the MPS representation. Since any corre-
lation decays as ∼ λdi , at sufficiently large distances, it is
dominated by λ1.

Proceeding along these lines, Fig. 7(c) shows the vari-
ation of the correlation length ξ with the parameter
f along the two specific cuts L1 (θ = π/16) and L2

(θ = π/8) marked in Fig. 2. In consistency with our pre-
vious phase diagram, ξ diverges near the expected critical
points. A particularly interesting feature is captured by
Fig. 7(d), which plots 2 k (mod 2π) against the inverse
correlation length 2/ξ. For both the lines L1 and L2, the
wavevector k remains nontrivial even close to the critical
point, although it eventually approaches zero as the cor-
relation length diverges. We fit this data to k ∼ (1/ξ)`

and find the best fits ` ≈ 0.77 (θ = π/16) and ` ≈ 0.64
(θ = π/8) for ξ < 100 [Fig. 7(d), inset], whereafter it ap-
pears that the effect of finite bond dimensions becomes
significant. The variations in ` are likely a consequence
of the proximity of the Potts critical point (which has
k = 0), and we do not appear to have captured the ulti-
mate scaling behavior. Nonetheless, the implications of
this variation in k are twofold. First, they corroborate
that the QPT from the disordered to the commensurate
Z3-ordered phase is indeed a direct transition and Fig. 7
succinctly highlights why this is possible: the period of
the incommensuration (≡ p ∼ 1/k) diverges as the cor-
relation length does. Secondly, these observations signify
that the diverging correlations in the vicinity of the crit-
ical points may exhibit nontrivial spatial structures such
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FIG. 7. Numerical simulations using iDMRG. Diagrammatic representations of (a) two-site-translation invariant matrix product
states and two-site transfer matrix T , and (b) the two-point correlation function. (c) Correlation lengths ξ along the two lines
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as modulations.

III. RYDBERG ARRAY AND CONSTRAINED
HARD-BOSON MODEL

As mentioned in Sec. I, the universal behavior of the Z3

CCM is also reflected in the phase diagram of an array
of Rydberg atoms described by Eq. (4). To see this,
we consider the case when V1 � |Ω|, |δ|, that is, nearest-
neighbor interactions are so strong that effectively no two
neighboring atoms can simultaneously be in the Rydberg
state. Further, owing to the rapidly decaying form of
the interactions Vx = C6/x

6, we can approximate the
Hamiltonian by neglecting couplings beyond the third-
nearest neighbor: Vx ≈ 0 for x ≥ 3. With this truncation,
we arrive at a toy model of the form

HRyd =

N∑
i=1

Ω

2
(|g〉i〈r|+ |r〉i〈g|)− δ |r〉i〈r|

+ V2 |r〉i〈r| ⊗ |r〉i+2〈r| (16)

with the constraint |r〉i〈r| ⊗ |r〉i+1〈r| = 0. This model,
which also appears in studies of ultracold atoms in tilted
optical lattices [3], has been analyzed in the literature in
the context of interacting bosons [7, 29, 30]. The map-
ping to bosons (with annihilation operators bi and num-

ber operators ni = b†i bi) is apparent on identifying the
state where the atom at site i is in the internal state |g〉
with a vacuum state of a bosonic mode, and the state
with the atom in |r〉 with the presence of a boson. In
the hard-core limit, where no more than one boson can
occupy a single site, the above Hamiltonian can be rewrit-

ten as [7, 29]

Hb =

N∑
i=1

−w (b†i + bi) + Uni + V nini+2, (17)

supplemented with the constraint

ni ni+1 = 0. (18)

This condition, that prohibits two bosons from occupying
neighboring sites, is referred to as the one-site blockade
constraint. In this work, we refer to this system as the
U-V model for obvious reasons. In order to connect this
to previous literature, it is useful to note the correspon-
dence Ω = −2w, δ = −U , and V2 = V . The equilibrium
phase diagram of the Hamiltonian (17) was studied as a
function of its parameters in Refs. 7 and 30. Depending
on the couplings, the ground state can exhibit several
different kinds of order. For example, if the chemical
potential favors creating particles (U < 0) and there is
an attractive (repulsive) next-nearest neighbor potential
set by V < 0 (V > 0), the ground state maximizes the
density of bosons by having a particle on every second
(third) site and the consequent ordered phase sponta-
neously breaks a Z2 (Z3) translational symmetry. More
careful considerations show that when the energies of the
two kinds of ordered states are comparable, there also ex-
ists a gapless IC phase [7], similar to the CCM.

In the following discussion, we concentrate on few spe-
cial points in this phase diagram. Expressly, we also ex-
amine the limiting case V → ∞, which further implies
that all states obey the two-site blockade constraint

ni ni+2 = 0. (19)
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A. Phase diagram

1. Transition from disorder to Z2 order

Let us momentarily review the physics when V = 0.
In this case, we expect a second-order QPT from the
disordered phase to the Z2-ordered phase as u = U/w
is varied from positive to negative values. As sketched
earlier, we determine the location of the phase transition
and its nature from the aforementioned FSS analysis by
numerically computing the gap as a function of u for
varying N , upon which, we find Uc/w = 1.308 and z =
1. Similarly, from previous data collapse arguments, we
know that on plotting Nz∆ against N1/ν(u − uc), the
resulting curves should ideally merge into a single one for
different system sizes; this occurs for a value of ν = 1.
Ipso facto, this phase transition unequivocally belongs to
the Ising universality class.

2. Transition from disorder to Z3 order

For finite V/w > 0, we expect a QPT from the gapped
disordered state, characterized by a featureless, low den-
sity state at large positive U/w, to the Z3-ordered phase,
which is a density-wave state of period three at large
negative U/w. However, as we demonstrate below, the
transition to this phase with spontaneously broken Z3

symmetry can be of two fundamentally distinct types.
This was originally argued for by Fendley et al. [7] in
their proposal for a continuum quantum field theory de-
scription for the onset of Potts order. The most general
effective action for such a theory, constructed in terms of
a period-3 density-wave order parameter field, Ψ, is per-
mitted by symmetry to include a linear derivative term
iαΨ∗ ∂xΨ, which induces a chirality: as in Fig. 1(f), with
α 6= 0, there are two inequivalent domain wall configura-
tions. For α = 0, the transition is in the conformal three-
state Potts class, as we demonstrate in Sec. III B 1. At
the Potts point, α is a relevant perturbation [7, 78] with
scaling dimension 1/5. Consequently, for small nonzero
α, the transition turns into the direct chiral Z3 transition
with z 6= 1, as we will see below.

In the phase diagram of Fig. 1 of Ref. 7, a narrow IC
phase was indicated immediately on one side of the Potts
critical point, with a direct chiral Z3 transition between
gapped phases on the other. We do not believe the IC
phase extends all the way to the Potts point. For small
α 6= 0, the physics should be the same for both signs of
α and hence, the Potts point should be flanked on both
sides by direct chiral transitions from the gapped sym-
metric phase to a commensurate Z3-ordered phase. The
latter scenario is the same as that in Fig. 2(a) of Ref. 10,
which indicated immediate direct chiral Z3 transitions on
both sides of the Potts point.

B. Critical exponents

1. Potts criticality on the integrable line

There are two special parameter-space lines in the
phase diagram of the U-V model, defined by

w2 = U V + V 2, (20)

along which the system is integrable [7, 66, 79–83]. Along
each of these, there is a quantum (multi)critical point at

V

w
= ±

(√
5 + 1

2

)5/2

. (21)

Our interest lies in the point at positive V/w, which sep-
arates the disordered phase from the Z3-ordered phase,
and is known to be a multicritical point in the universal-
ity class of the three-state Potts model. The same FSS
arguments as above confirm the location of this multi-
critical point with very high accuracy and the critical
exponents, moving across this integrable line, are found
to be z = 1 and ν = 5/6, as expected [see Fig. 8(a–b)].

2. Chiral transition in the two-site blockade limit

The transition away from the integrable line, however,
does not belong to the Potts universality class. In this
regard, the more interesting case that we now turn to is
the limit V → ∞, |U | � V , where the two-site block-
ade constraint is enforced. As depicted in Fig. 8, the
scaling of the gap once again tells us about the critical
point and exponents. With these parameters, we estab-
lish uc = −1.949, z ≈ 1.33, and 1/ν ≈ 1.40. Thus,
we indeed recover (within numerical error estimates) the
same critical exponents as for the chiral clock model in
Sec. II C 2. The discrepancies between the two are rea-
sonable given that these models are equivalent only in
the sense of universality (without the requirement of a
one-to-one mapping of their Hilbert spaces).

3. Finite-size scaling along the chiral phase boundary

One can iterate over the same procedure for all values
of V/w in the interval

(
(
√

5 + 1)/2)5/2,∞
]

and numeri-
cally extract the critical parameters and exponents; the
results of such a calculation are showcased in Fig. 9. In
this fashion, we recover the schematic phase boundary
proposed in Ref. 7. Akin to the CCM in Sec. II C 2, the
FSS analysis yields critical exponents that vary mono-
tonically from z ≈ 1.33 at V → ∞ (i.e., far away from
the Potts point) to 1 at the Potts critical point.
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FIG. 8. [Upper panel]: FSS analysis of the QPT from the disordered to the Z3-ordered phase, across the integrable line
w2 = U V + V 2, based on exact diagonalization of the Hamiltonian (17). (a) Plot of the energy gap ∆, rescaled by N−z with
z = 1, as a function of U/w for different system sizes N . The sharp intersection of the different curves at U/w = −3.029
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Uc/w ≈ −3.0299 [Eq. (21)]. (b) Scaling plot of the energy gap for different system sizes; perfect data collapse is achieved for
ν = 5/6. [Lower panel]: Same as above but in the limit V →∞. FSS now betokens U/w = −1.949, z ≈ 4/3, and ν ≈ 5/7.

C. Effect of long-range interactions

Unlike the idealized models (16) and (17) considered
above, in realistic experiments with trapped Rydberg
atoms [6, 28, 84–87], the interactions between excited
states have nonzero tails, decaying as Vx = C6/x

6. In
order to probe the physics behind the QPTs in these sys-
tems, one needs to understand the influence of these long-
range couplings—it is not a priori clear whether these
corrections to the interactions could change the nature
of the transition or even the topology of the phase dia-
gram. Indeed, for sufficiently large C6 and |δ| � Ω, it
has been previously suggested that the ground states of
the Rydberg Hamiltonian HRyd display a series of new
phases with distinct spatial symmetry breaking [88, 89]
such as Z4, Z5 and the like, in which the Rydberg atoms
are arranged regularly across every fourth or fifth site on
the array; this is in contrast to both the CCM and U-V
models.

Nevertheless, from numerical simulations combining
exact diagonalization and FSS analogous to Sec. II C 1,
we find that the system continues to exhibit a direct tran-
sition from the disordered to the Z3-ordered phase in cer-
tain parameter regimes. While both the Potts and chiral
Z3 transitions still persist, the associated phase bound-
aries and critical exponents are nontrivially altered as
can be seen in Fig. 9. In the presence of C6/x

6 cou-
plings, the critical points are shifted to larger values of
U—this is understandable since the long tails tend to en-
ergetically favor the disordered state [90]. Note, however,
that in the Rydberg model, reaching arbitrarily large val-
ues of V/w becomes difficult due to the onset of the
Z4-ordered phase, which has no counterpart in the U-
V model. Likewise, the dynamical critical exponent z is
modified in that it attains its saturation value for smaller
V/w. Qualitatively, this is because the long-range inter-
actions enhance the inequivalence between the two kinds
of domain walls (thereby rendering the system “more
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FIG. 9. (a) Phase boundary between the disordered and the
Z3-ordered state above the Potts critical point [Eq. (21)] with
nearest-neighbor/next-nearest-neighbor couplings only (U-V-
model, blue) and long-range Rydberg interactions (red). In
the latter case, the interaction strength between two spins
separated by x sites is given by Vx = C6/x

6. To plot the
phase boundary on the same scale, we identify V2 = V . (b)
The dynamical critical exponent z when crossing this phase
boundary in the U-V model, obtained from FSS with up to
N = 21 sites (blue). At the Potts point (green), we find
z = 1 as expected. Away from the Potts point, z increases
and for V → ∞, we reckon an asymptotic value of z ≈ 1.33;
the crossover in z between these limits is likely a finite-size
effect. The inset shows the analogously extracted value of
z for the Rydberg Hamiltonian. Here also, we find that z
increases with the interaction strength, starting from a value
close to one—this is consistent with the presence of a Potts
point in the Rydberg model as well. Note that in contrast to
the U-V model, here, increasing V would eventually lead to
the appearance of the the Z4 phase, which is not discussed in
this work. The FSS analysis for the Rydberg model is limited
to comparatively smaller systems, of up to 18 atoms, owing
to the sizeably larger Hilbert space.

chiral” in some sense), which, crudely, translates to a
faster deviation from the Potts exponent. Remarkably,
these chiral critical exponents can actually be observed in
the quench dynamics of ultracold atomic systems—such
as the 51-atom Rydberg simulator—through the Kibble-
Zurek mechanism [91–95], which gives one access to the
combination ν/(1+z ν). The detailed numerical [96] and
experimental study of this model will be presented in a
future work [97].

IV. CONCLUSIONS

Motivated by recent experiments observing “Rydberg
crystals” [7, 89] in a one-dimensional chain of ultra-
cold atoms [6], we have examined the direct quantum
phase transition (QPT) between a gapped phase with
no symmetry breaking, and a Z3-ordered phase. Such a

quantum phase transition is directly realized in the one-
dimensional chiral clock model (CCM) for three-state
spins, Hccm, in Eq. (1). One of the advantages of the
CCM is that it allows us to numerically study fairly large
system sizes. The exponents for this case are cataloged in
Table I. Once we move away from the achiral Potts tran-
sition at θ = 0, there is clear evidence for a dynamical
critical exponent of value z > 1.

In the same vein, we also studied the lattice boson
model, Hb, in Eq. (17) that was first proposed by Fend-
ley et al. [7]. This is expected to display a lattice-
translational-symmetry-breaking QPT in the same uni-
versality class as that in Hccm with the parameters φ = 0
and θ 6= 0. On that account, we presented a numer-
ical study of the critical properties of this model and
obtained confirmation of a continuous phase transition
with z ≈ 1.33 and ν ≈ 0.71—these values are close to
the exponents found for Hccm. Taken together, our re-
sults manifestly imply the existence of a strongly coupled
critical theory which is not a conformal field theory, or
even relativistic.

Our results also elucidate how a direct transition to a
Z3-ordered phase can occur in a chiral model, without
an intermediate gapless incommensurate phase. With
nonzero chirality in the Hamiltonian, correlations in the
gapped disordered phase have an oscillatory character,
which decays exponentially at long length scales. How-
ever, the period of the incommensurability diverges as
the transition is approached: this is demonstrated by
the results in Fig. 7. This complex behavior highlights
the strong-coupling nature of the direct chiral Z3 quan-
tum transition, and underlies the difficulty in obtaining
a field-theoretic renormalization group description.
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