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Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in

a rotating frame, for both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization

direction, we study the profiles of the single vortex state and show how the critical rotational frequency change

with the s-wave contact interaction strength, DDI strength and the polarization angle. In addition, we find

numerically that at the ‘magic angle’ ϑ = arccos(
√
3/3), the critical rotational frequency is almost independent

of the DDI strength. By numerically solving the dipolar Gross-Pitaevskii Equation at high rotation speed, we

identify different patterns of vortex lattices which strongly depend on the polarization direction. As a result, we

undergo a study of vortex lattice structures for the whole regime of polarization direction and find evidence that

the vortex lattice orientation tends to be aligned to the dipole polarization axis for positive DDI strength and to

the perpendicular direction of the dipole axis for negative DDI strength.

PACS numbers: 03.75.Hh, 75.80.+q, 67.85.-d

I. INTRODUCTION

One of the striking features of rotating atomic Bose-

Einstein condensates (BECs) is the formation of vortices

above a critical angular velocity [1–3]. In a symmetric BEC,

multiple vortices arrange in a characteristic triangular pattern

[2]. This triangular vortex lattice minimizes the free energy of

the BEC.

While the initial experiments considered atoms with lo-

cal interactions, more recently, dipolar BECs with significant

electric or magnetic dipole moment have received much at-

tention from both theoretical and experimental studies (for re-

cent reviews, see Refs. [4, 5]). The dipole-dipole interaction

(DDI) crucially affects the ground-state properties [6, 7], sta-

bility [8–11], and dynamics of the gas [12]. Furthermore, they

offer a route for studying many-body quantum effects, such as

a superfluid-to-crystal quantum phase transition [13], super-

solids [14] or even topological quantum phases [15]. Recent

advances in experimental techniques have paved the way for

a Bose-Einstein condensate (BEC) of 52Cr with a magnetic

dipole moment 6µB (Bohr magneton µB), much larger than

conventional alkali BECs [16–18]. Promising candidates for

dipolar BEC experiments are Er and Dy with even larger mag-

netic moments of 7µB and 10µB , respectively, which have

been reported in experiments [19, 20]. Furthermore, DDI-

induced decoherence and spin textures have been observed

in alkali-metal condensates [21, 22]. Dipolar effects also

play a crucial role in experiments with Rydberg atoms [23]

and heteronuclear molecules [24, 25]. Bosonic heteronu-

clear molecules may provide a basis for future experiments on

BECs with dipole moments much larger than those in atomic

BECs [26].
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The anisotropy of DDI dramatically affects stationary states

of the rotating dipolar BEC. In this article we focus on a

system of dipolar BEC confined in a quasi-two-dimensional

pancake shaped trapping potential with the atomic magnetic

dipoles polarized by an external magnetic field. We define the

polarization angle ϑ to be the angle between the dipoles and

the normal direction of the condensate plane. Hence, if the

dipoles lie in the plane of the condensate, we have ϑ = π/2;

whereas if the dipoles are perpendicular to the plane, we have

ϑ = 0. By adjusting the external magnetic field, ϑ can be

varied smoothly between 0 and π/2. Most previous studies

of rotating dipolar BECs focused only on the limiting cases

with ϑ = 0 or π/2 [27–31]. Recently, Zhao and Gu [32] and

Malet et al. [33] studied the angular momentum and critical

rotational frequency of a 2D dipolar BEC with positive DDI

strength in the intermediate regime. Their results show that

the critical rotational frequency monotonically increases with

the polarization angle ϑ, while the relation between the critical

rotational velocity and the DDI strength is ϑ-dependent. Mar-

tin et al. [34] analytically studied the vortex lattice for the case

where the dipoles are not perpendicular to the plane of rota-

tion, and suggested that there is a phase transition in the lattice

geometry from triangle to square which can be measured as a

function of the DDI strength, and the vortex lattice orientation

does not depend on the polarization angleϑ. This vortex struc-

ture transition was observed in the numerical results of Zhao

and Gu [32] for a rotating quasi-2D dipolar BEC with positive

DDI strength, however, to our knowledge, there have not, to

date, been numerical results concerning the change of vortex

lattice orientation with respect to the polarization angle ϑ. In

this paper, we further study the impacts of the s-wave con-

tact interaction strength and the polarization angle on the crit-

ical rotational frequency for both positive and negative DDI,

and focus on vortex lattice structure with many vortices in the

fast rotation limit. Different patterns of vortex lattices are ob-
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served, which strongly depend on the polarization direction

and we characterize the vortex lattice structure by virtue of

the static structure factor [35, 36]. We also take into account

negative DDI which can be achieved with a rotating magnetic

field [37]. Simulating high vortex numbers requires reliable

numerical methods. We employed spectral methods that are

very accurate for such kinds of problems [38–42], with less

grid points needed than those of traditional finite difference

methods.

This article is organized as follows. In Sec. II we present

a 2D model for a dipolar BEC in the rotating frame. We also

explain our approach for numerically solving this model. In

Sec. III, we show how the s-wave contact interaction strength

and the polarization angle affect the critical rotational fre-

quency with both attractive and repulsive DDI strengths. In

Sec. IV we present simulation results of stationary states at

high rotation frequency for different polarization angles and

DDI strengths. Focusing on the regime with many vortices al-

lows us to discern characteristic vortex patterns that occur as

the polarization changes from predominantly perpendicular to

parallel. We conclude in Sec. V.

II. MODEL

We consider a polarized dipolar BEC trapped in a cylin-

drically symmetric harmonic potential Ṽ (r) = 1

2
m[ω2

r(x
2 +

y2) + ω2

zz
2] with m the atomic mass and ωr, ωz the trans-

verse and axial trap frequencies, respectively. We assume

that the magnetic dipoles are polarized along an axis n =
(cosϕ sinϑ, sinϕ sinϑ, cosϑ), where ϕ and ϑ are the az-

imuthal and polar angles, respectively. The DDI potential be-

tween two atoms separated by the relative vector r is given

by

Udd(r) =
gd
4π

1− 3 cos2 θ

|r|3 . (1)

Here, θ is the angle between the polarization axis n and r.

For magnetic dipoles, the interaction strength gd is given by

gd = µ0µ
2

d, where µ0 is the magnetic vacuum permeability

and µd is the dipole moment. In addition, we assume that

the BEC is rotating with frequency Ω around the z axis. In

the remainder of this article we adopt length, time and energy

units as ar =
√
~/mωr, 1/ωr, and ~ωr, respectively. At

zero temperature this dipolar BEC system is described by the

Gross-Pitaevskii equation (GPE) in the rotating frame [12, 43]

i∂tΨ(r, t) =

[
−1

2
∇2 + V (r)− ΩLz + g|Ψ|2

+

∫
dr′Udd(r − r′)|Ψ(r′, t)|2

]
Ψ(r, t).

(2)

Here, Lz = i(y∂x − x∂y) is the z component of the an-

gular momentum operator and g = 4πNas/ar with N be-

ing the number of atoms and as being the s-wave scatter-

ing length. The dimensionless DDI strength is given by

gd = Nmµ0µ
2

d/3~
2ar, and the potential is V (r) = 1

2
(x2 +

y2) +
ω2

z

2ω2
r
z2. It is noted that both the sign and the magnitude

of the DDI strength gd could be modified through a rotating

magnetic field [37]. In addition, a dipolar BEC system de-

scribed by Eq.(2) is stable, i.e. admits ground states, if and

only if εdd = gdd

g ∈ [− 1

2
, 1] [39] and |Ω| < 1. Therefore, we

will focus on the typical parameters within this range[44].

We consider the quasi-2D regime where ωz ≫ ωr, and the

interactions are sufficiently weak such that no axial modes are

excited [45]. In this regime, the wave function Ψ(r, t) can

be separated into a transverse and a longitudinal part, that

is, Ψ(r, t) = ψ(ρ, t)w(z) exp(−iγt/2), where ρ = (x, y),

|ρ| =
√
x2 + y2, w(z) = (γ/π)1/4 exp(−z2/2γ) is the

ground mode in z direction, and γ = ωz/ωr. Inserting this

expansion of the wave function into Eq. (2) and integrating

out the z variable reduces Eq. (2) to [46, 47]

i∂tψ(ρ, t) =

[
−1

2
∇2

r +
|ρ|2
2

− ΩLz + ḡ|ψ(ρ, t)|2

+

∫
dρ′U 2D

dd (ρ− ρ′)|ψ(ρ′, t)|2
]
ψ(ρ, t).

(3)

Here, ∇2

r = ∂2x+∂
2

y and ḡ =
√ γ

2π

[
g − gd

(
1− 3 cos2 ϑ

)]
is

the effective 2D contact interaction strength that now depends

on the DDI strength and polarization direction. The effective

kernel for the 2D DDI is given by

U 2D
dd (ρ) =

gdγ
3/2

8
√
2π3

eγ|ρ|
2/4

[(
1− 3 cos2 ϑ+ γ[(x cosϕ+ y sinϕ)2 sin2 ϑ− |ρ|2 cos2 ϑ]

)
K0(γ|ρ|2/4)

−
(
1− cos2 ϑ+ γ[(x cosϕ+ y sinϕ)2[1− 2/γ|ρ|2] sin2 ϑ− |ρ|2 cos2 ϑ]

)
K1(γ|ρ|2/4)

]
,

(4)

where Kν are modified Bessel functions of the second

kind. In Fourier space, the DDI potential
∫
dρ′U 2D

dd (ρ −
ρ′)|ψ(ρ′)|2 becomes V̂2D(k) = Û 2D

dd (k)|̂ψ|2(k) with

|̂ψ|2(k) being the condensate density function in momentum

space and Û 2D
dd (k) = 3gd

2
[(k̂x cosϕ + k̂y sinϕ)

2 sin2 ϑ −

cos2 ϑ]kek
2/2γ erfc(k/

√
2γ), where k = |k|, k̂x,y = kx,y/k

are normalized components of the momentum, and erfc(x) =
1− erf(x) is the complementary error function.

For positive DDI gd > 0, the effective nonlocal interaction

of a quasi-2D dipolar BEC described by Eq. (4), is attractive

along the projection of the polarization axis (cosϕ, sinϕ) and
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repulsive perpendicular to the polarization axis. For axial po-

larization ϑ = 0, the nonlocal interaction is isotropic and re-

pulsive. In our work, without loss of generality, we assume

that the dipoles are polarized in the xz-plane, such that we

can fix ϕ = 0, i.e. the dipole axis is n = (sinϑ, 0, cosϑ). The

effective interaction diverges less strongly in the limit |ρ| → 0
than the full 3D dipole-dipole potential Udd. Furthermore, it

has a well-behaved Fourier transform, which is advantageous

for numerical computations [46]. To find the ground states,

we use the imaginary time method [38–40], with backward

Euler discretization in time and Fourier spectral discretization

in space.

III. CRITICAL ROTATION FREQUENCY

In this section, we show the impacts of varying s-wave

contact interaction strength g, DDI strength gd and polariza-

tion angle ϑ on the critical rotational frequency, respectively.

Malet et al. [33] have studied the angular momentum and crit-

ical rotational frequency of a dipolar BEC in the intermedi-

ate regime with positive DDI strength, here we further study

it for rotating dipolar BECs with both positive and negative

DDI. We are also interested in the change of the structure of a

single vortex with different polarization angle ϑ.

FIG. 1. (Color online) Density of a rotating dipolar BEC around

the critical rotational frequency Ωc for fixed γ = 10, g = 250,

gd = −100, different polarization axis n = (sinϑ, 0, cos ϑ) (ϑ = 0
top panel (a),(b); ϑ = π/4 middle panel (c), (d); ϑ = π/2 bottom

panel, (e),(f)). The critical rotational frequency Ωc is found to be

0.356 < Ωc < 0.357 (top panel), 0.275 < Ωc < 0.276 (middle

panel), 0.236 < Ωc < 0.237 (bottom panel), with the corresponding

lower bound of rotational frequency for the non-vortex states and the

upper bound for the vortex state.

Firstly, we study the density profiles of the condensate near

FIG. 2. (Color online) Density of a rotating dipolar BEC around the

critical rotation frequency Ωc for fixed γ = 10, g = 250, gd = 200,

different polarization axis n = (sinϑ, 0, cosϑ) (ϑ = 0 top panel

(a),(b); ϑ = π/4 middle panel (c), (d); ϑ = π/2 bottom panel,

(e),(f)). The critical rotational frequency Ωc is found to be 0.195 <
Ωc < 0.196 (top panel), 0.232 < Ωc < 0.233 (middle panel),

0.357 < Ωc < 0.358 (bottom panel), with the corresponding lower

bound of rotational frequency for the non-vortex states and the upper

bound for the vortex state.

the critical rotational frequency. It is observed that for the

fixed effective 2D contact interaction strength ḡ and the DDI

strength gd, there exists a critical rotation frequency Ωc such

that there is no vortex if Ω < Ωc and at least one vortex if

Ω ≥ Ωc [cf. e.g., Figs. 1(a)–(b) and 2(e)–(f)]. By varying the

polarization angle ϑ from 0 (z direction out-of-plane polariza-

tion) to π/2 (x direction in-plane polarization), we examine

the relation between the dipole polarization axis and the crit-

ical rotational frequency, and check how the anisotropic DDI

changes the density profile of the single vortex state. Fig-

ures 1-2 display density plots of the rotating dipolar BEC near

the critical rotational frequency with representative negative

and positive DDI strength gd, respectively.

At ϑ = 0 when the dipoles are polarized perpendicular

to the xy plane, Figs. 1-2 show that the 2D BEC is radially

symmetric. This is expected as the 2D effective DDI and

contact interaction are isotropic in this situation. Due to the

anisotropy of the DDI, the profiles of the vortices change and

become more anisotropic when the dipole axis tilts into the

2D BEC plane for increasing polarization angle ϑ. For nega-

tive (positive) DDI strength gd, the Fourier transform of U 2D
dd

(Eq. (4)) shows that the DDI induces a growing attractive

(repulsive) interaction in x direction in terms of the energy

contribution, for increasing ϑ : 0 → π/2. As a consequence,

BEC becomes more compressed (elongated) in the x direction

for negative (positive) gd compared to the y direction. This is
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in accordance with the fact that positive DDI tends to align

the dipoles along the polarization axis in a head-to-tail man-

ner (θ = 0, π in (1), preferable along x axis) and negative DDI

tends to align the dipoles perpendicular to the polarization axis

(θ = ±π/2 in (1), preferable along y axis). Moreover, the ef-

fective contact interaction ḡ in Eq. (3) increases (decreases)

for negative (positive) gd with varying ϑ : 0 → π/2, which

leads to the size change of BEC in Figs. 1-2.
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FIG. 3. The critical rotational frequency Ωc of a rotating dipolar

BEC v.s. the s-wave contact interaction strength g = 4πNas/ar for

fixed γ = 10, dipole axis n = (0, 0, 1) and a natural dimensionless

parameter ε
dd

:= gd/g = - 0.5, 0 and 1, respectively.
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FIG. 4. The critical rotational frequency Ωc of a rotating dipolar

BEC v.s. polarization angle ϑ for fixed γ = 10, g = 250 and ε
dd

= -

0.4, - 0.2, 0, 0.4 and 0.8, respectively.

Secondly, we investigate how the critical frequency Ωc

changes with interaction parameters g and gd. For radially

symmetric case with the dipoles polarized along the z axis

(i.e., ϑ = 0) and the varying contact interaction strength g
with fixed εdd = gd/g, where the DDI is isotropic in the xy
plane, Figure 3 illustrates the dependence of the critical rota-

tion frequency Ωc on the s-wave contact interaction strength

g. The numerical results show that Ωc decreases when g in-

creases for any fixed positive and negative DDI strength gd.

Furthermore, Ωc → 1 as g → 0 and Ωc drops dramatically

when g increases near g ≈ 0. This is in accordance with the

isotropic conventional rotating condensates without DDI [1–

3]. It is also clear that when the DDI strength gd ր, Ωc ց
for any fixed s-wave contact interaction strength g and other

parameters.

When tuning the dipole orientation n = (sinϑ, 0, cosϑ) by

increasing the polarization angle ϑ from 0 to π/2, DDI in-

duces an increasingly anisotropic interaction in xy plane and

hence influences the critical rotational frequency Ωc. Fig-

ure 4 shows Ωc versus ϑ. It is observed that Ωc decreases

(increases) when effective contact interaction strength ḡ in-

creases (decreaes) with ϑ varying from 0 to π/2 for any fixed

negative (positive) DDI strength gd. Moreover, the curves

of Ωc as functions of ϑ with both negative and positive DDI

strength gd almost intersect with each other at the ‘magic an-

gle’ ϑ = arccos(
√
3/3). This can be understood as follows.

At this angle the effective 2D contact interaction in Eq. (3) is

independent of the DDI strength gd, while the long range in-

teraction part (the convolution term) in Eq. (3) is much weaker

compared to the effective contact interaction part (cubic term),

and thus has very little impact on the critical rotational fre-

quency.

IV. VORTEX LATTICE PATTERNS UNDER FAST

ROTATION

In this section, we show different vortex lattices that emerge

as stationary states for varying polarization angles under fast

rotation. To characterize the structure of the vortex lattice, we

define the static structure factor [35, 36]

S(k) =
1

N2
v

∣∣∣∣
∑

j

eik·ρj

∣∣∣∣
2

, (5)

whereNv is the number of vortices and ρj are the vortex core

positions. The structure factor exhibits peaks at the reciprocal

lattice sites, which reveal the frequencies and orientation of

the vortex lattice. The reciprocal lattice is defined by two basis

vectorsk1 and k2. Here we choose k1 as the one closest to the

y-axis and use the parameter η = ∠(k1,k2) to characterize

the orientation of the vortex lattice [c.f. Fig. 5]. η = π/2 for

a rectangular vortex lattice, and π/3 for a trianglar lattice.

η

k1

k2

FIG. 5. Illustration of the Bravais lattice basis vectors and the lattice

parameters.

We start with the impact of the polarization direction on

the vortex lattice geometry. We compute the ground states of

the dipolar BEC for different polarization angles ϑ at strong
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FIG. 6. (Color online) Density of a rotating dipolar BEC for dif-

ferent dipole polarization direction n = (sinϑ,0, cosϑ), with

ϑ = 0, arcsin(0.5), arcsin(0.8), arcsin(0.95), arcsin(0.96), π/2.

The rotational frequency is Ω = 0.95, γ = 10, g = 250, and

gd = 250.

DDI gd = g and high rotation frequency Ω/ωr = 0.95 by

imaginary time propagation. As shown in Fig. 6, for po-

larization predominantly perpendicular to the 2D BEC plane

(i.e., ϑ ≈ 0), the vortices form a regular triangular lattice

[cf. Figs. 6(a)–(c)]. The corresponding structure factor in

Figs. 7(a)–(c) reveals a hexagonal reciprocal primitive cell,

characteristic of the triangular lattice. As the polarization axis

rotates into the plane of the BEC, the vortex lattice aligns with

the polarization axis [cf. Figs. 6(d)–(f)]. Parallel polarization

(i.e., ϑ ≈ π/2) is observed in Figs. 6(e)–(f), and the vor-

tex lattice becomes nearly rectangular. In the extreme case

with ϑ = π/2, the vortices align on a central 1D line that

splits the BEC into two fragments. The elongation in each

BEC fragment is caused by magnetostriction, which tends to

align dipoles in a head-to-tail configuration (for positive DDI).

From the Fourier transform Û 2D
dd , the DDI between the two

fragments is repulsive but drops exponentially in momentum

for short wavelength [48, 49]. The distance between the frag-

ments is ≃ 2.5ar, which is on the order of µm. For polariza-

tion angles which are slightly less than π/2, instead of a single

split we observe that the whole condensate splits into several

fragments [cf. Figs. 6(e)]. The effective contact interaction

ḡ = 0 for ϑ = π/2 and ḡ = 3
√

γ
2π g(1− sin2 ϑ) ≥ 0.29g for

other ϑ shown in Fig. 6 (a)-(e). For increasing ϑ, the dominant

contact interaction strength ḡ is decreasing and the number of

vortices is decreasing (similar to the conventional BEC sys-

tem without DDI [1–3]), which shows that larger interactions

result in more vortices under the same rotational frequency.

In Fig. 8, we show densities of the rotating dipolar BEC for

different polarization angles ϑ and different DDI strength with

FIG. 7. Static structure factor S. Same parameters as in Fig. 6.

a very fast rotational frequency Ω/ωr = 0.99, which nearly

equals to its ultimate limit Ω/ωr = 1.0. It is observed that the

change of a triangular vortex lattice structure to a rectangular

vortex lattice structure occurs when both the polarization an-

gle ϑ and the natural dimensionless parameter ε
dd

:= gd/g
are close to their limits ϑ = π/2 and ε

dd
= 1.0. For dipoles

oriented along the z-axis (ϑ = 0 ), the 2D system described

by Eq. (3) is invariant under the axis rotation, i.e. if φg(ρ) is

a ground state, φg(Rρ) (R ∈ SO(2)) is also a ground state.

Moreover, for any polarization angle ϑ, Eq. (3) possesses the

symmetry that if φg(x, y) is a ground state, φg(−x, y) and

φg(x,−y) are also ground states. Therefore, for ϑ = 0, the

vortex lattice state plotted in Fig. 8 (a) will still be a possible

configuration after arbitrary rotation and/or reflection about x
axis. For the other dipole orientations partially or fully lying

in the xy-plane, the rotational invariant symmetry of the 2D

BEC breaks and only the reflection symmetry about the x and

the y axes remains, the vortex lattice density plots shown in

Fig. 8 with ϑ ∈ (0, π/2] are the only possible configurations.

For the negative DDI strength, there are more vortices

found in the condensate for in-plane polarization of the DDI

(ϑ = π/2) rather than off-plane polarizations (ϑ = 0), which

is in contrast with the positive DDI strength case but agrees

well with the behaviour of effective contact interaction ḡ. This

evidence implies that the number of vortices are still mainly
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FIG. 8. (Color online) Density of a rotating dipolar BEC for different dipole polarization angles with ϕ = 0 and ϑ = 0, arcsin(0.3),
arcsin(0.8), arcsin(0.98), arcsin(0.99), π/2 (from left to right) and for different DDI strengths with ε

dd
= −0.5,−0.2, 0.3, 0.8, 0.95, 1.0

(from bottom to top). The rotation frequency is Ω/ωr = 0.99, γ = 10 and g = 250.

determined by the effective contact interaction ḡ. On the

other hand, the DDI significantly affects the distribution of

the vortices (cf. Figs. 7 and 8). As discussed earlier, for

such ϑ ∈ (0, π/2], positive DDI aligns the dipoles along the

in-plane polarization x axis, while negative DDI aligns the

dipoles along the y axis perpendicular to the polarization x
axis, resulting in a very different vortex lattice orientation as

shown in Fig. 8. We find that the vortices are arranged in

a similar way, i.e., the vortices with negative DDI strengths

are aligned perpendicular to the polarization x axis, while the

vortices with positive DDI strengths are aligned parallel to the

polarization x axis.

In Fig. 9, we show the angle η = ∠(k1,k2) between the ba-

sis vectors k1 and k2 of the reciprocal lattice defined through

the structure factor in Eq. (5). For positive DDI strength, as

ϑ increases from 0, η starts from π/3 and varies rather slowly

initially; at a critical angle around arcsin(0.95), η exhibits

a jump to the value of π/2, indicating a structural change

to a rectangular vortex lattice. In contrast, for negative DDI

strength, η stays near π/3 as ϑ changes from 0 to π/2, hence

the vortex lattice remains roughly triangular independent of

the polarization angle.
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0 π/6 π/4 π/3 arcsin(0.95) π/2

ϑ (rad)

π/4

π/3

3π/8

π/2

η
(r
ad

)

εdd=1
εdd=-0.5

FIG. 9. Lattice orientation parameter η vs ϑ. Same parameters as in

Fig. 6.

V. CONCLUSIONS

We have studied the change of the critical rotational fre-

quency versus the s-wave contact interaction strength, the

DDI strength and the varying polarization direction n =
(sinϑ, 0, cosϑ). We find that the critical rotational frequency

is monotonically decreasing with growing s-wave contact in-

teraction strength g, and identically approaches the confine-

ment frequency limit for g, gd ≈ 0. The critical rotation fre-

quency drops rapidly near g = 0 and then decreases more

and more slowly for large g. In contrast to previous works,

our results cover both the case of gd > 0 and gd < 0, and it

is observed that the effect of the polarization angle ϑ to the

critical rotation frequency depends on the sign of gd. Specif-

ically, the critical rotational frequency increases (decreases)

with varying ϑ from 0 to π/2 for fixed positive (negative) DDI

gd. In addition, we find numerically that at the ‘magic angle’

ϑ = arccos(
√
3/3) ≈ 54.7 o, the critical rotational frequency

is almost independent of the value of DDI strength.

We have numerically simulated the dipolar GPE under fast

rotation limit and show different patterns of vortex lattices

which strongly depend on the polarization direction. When

the polarization angle ϑ changes from perpendicular to par-

allel to the condensate plane, a structural phase transition in

the vortex geometry from triangle to square is observed for

positive gd, but not for negative gd. This result is consistent

with the analytical results of Martin et al. [34]. Meanwhile, by

plotting the static structure factor and the orientation param-

eter η of the vortex lattice, we find evidence that the lattice

orientation varies with the polarization angle ϑ.
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