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A model is presented that mimics the nearest-neighbor-spacing (NNS) distribution of chaotic
molecules such as Dy2 and Er2 just below their dissociation threshold. In this model the degree
of chaos is controlled by choosing suitable Hamiltonian matrices from random ensembles. It is
found that, in versions of the model that are not completely chaotic, the NNS of observable Fano-
Feshbach resonances exhibits greater level repulsion, hence more chaos, than the corresponding NNS
of a typical energy spectrum of the molecule at a fixed magnetic field.
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I. INTRODUCTION

Recently, evidence of quantum chaos has been reported
in ultracold collisions of both erbium and dysprosium
atoms [1–5]. The states contributing to chaotic spec-
tra are those that lie immediately below the dissociation
threshold of the Dy2 or Er2 molecule. This is unusual:
chaos is predicted to be present in triatomic systems at or
just below dissociation, such as Ar3 clusters [6], as well as
ultracold collisions of Li+CaH [7] or Rb+K2. However,
it is less obvious that diatomic molecules could present
chaotic behavior.

The observation of chaos in Dy2 and Er2 was assisted
by the circumstance of extremely low temperatures, on
the order of hundreds nK. This circumstance enabled
high-resolution spectroscopy of distinct states, which re-
vealed quantum chaos by the usual measures of nearest-
neighbor-spacing statistics or spectral rigidity.

There is, however, a novelty in the observations of Refs.
[1–5], at least from the point of view of quantum chaos.
The resonant states were observed as a function of mag-
netic field, rather than as a function of energy, as would
be the case in conventional spectroscopy. This is a very
natural consequence of spectroscopy in ultracold gases,
where the energy of a pair of colliding atoms is fixed – es-
sentially at zero – while the resonant states can be moved,
in this case by means of the magnetic field, through this
energy, where they are observed as E = 0 scattering res-
onances.

The spectra of the near-dissociation molecules gener-
ally appear as in Figure 1. This figure is the result of
a schematic model of Dy2 energy levels, to be described
in Sec. II. The point here is that, at each value of the
magnetic field B, there exists a spectrum of bound state
energies that may exhibit some degree of quantum chaos.
As the magnetic field is increased, this spectrum evolves,
in such a way that the energy states move closer to,
and eventually cross, the dissociation threshold, taken
here to be E = 0. This threshold corresponds to the
lowest-energy states of a pair of free atoms, each in the
|jm〉 = |8,−8〉 state in this case. At each magnetic field
where one of these bound state crosses the threshold, a

scattering resonance appears, which is observed by means
of the excessive three-body recombination that accompa-
nies it. The resulting set of magnetic field values consti-
tutes a spectrum, which can be analyzed by means of the
usual tools of quantum chaos.
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FIG. 1: Simulated spectrum of Dy2 molecules, versus mag-
netic field, generated as described in the text. Each energy
level at B = 0 evolves as the magnetic field is increased, even-
tually finding its way to zero energy, where it appears as a
scattering resonance.

The measured spectra of Dy2 and Er2 are therefore
unusual, inasmuch as they consist of magnetic field val-
ues, rather than energies. What is recovered is not the
energy spectrum of a chaotic molecule, but rather a spec-
trum consisting of a single energy level from each ofmany

different chaotic molecules, since the molecular Hamilto-
nian giving rise to these bound states is different for each
magnetic field.
This distinction raises questions regarding the inter-

pretation of the measurement. If chaos is found in the
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spectra of magnetic field values, does it imply the same
degree of chaos would be found in the energy spectrum at
any fixed magnetic field? If not, which is “more chaotic,”
and how do we quantify the difference?

In this article we make a preliminary investigation into
these questions. In Section II we construct a fairly real-
istic model of Dy2 molecules and extract from it spec-
tra of energies at constant magnetic field, and spectra of
magnetic field values at constant energy. These spectra
are analyzed in terms of their nearest-neighbor-spacing
(NNS) and quantified by the free parameters of their re-
spective Brody distribution [8]. It is found that both
spectra yield Brody parameters near unity, i.e., that both
the energy and magnetic field spectra are fully chaotic.
In Sec. III we introduce a family of extended mod-

els in such a way that effective channel couplings in
the molecule can be reduced, making the molecules less
chaotic. We find that for any given member of this fam-
ily that is not completely chaotic, the Brody parameter
of the magnetic field spectrum is generally greater than
that for the energy spectrum, νB > νE , implying that the
magnetic field spectrum may exhibit a greater degree of
chaos. In Section III we also simplify the model further
to garner insight into why this might be so. We conclude
in Section IV.

II. MODEL OF THE DIATOMIC SPECTRA

We begin with a simplified model of these molecules,
which incorporates features of about the right quality and
scale. It is a simplified version of a complete scattering
calculation carried out by [1]. The essence of this ap-
proximate calculation is to separate the basic structure
of ro-vibrational energy levels, and spins, from the strong
anisotropic couplings that ultimately generate the chaos.

A. Hamiltonian

This model describes a pair of 162Dy atoms in their
ground state with spin j = 8 and g-factor g = 1.2508
[9]. The nuclear spin of these atoms is zero. (A similar
model can be constructed for Er, of course). The model
Hamiltonian is taken to be

H = Hrv +Hmag + Van. (1)

Briefly, Hrv describes the ro-vibrational degrees of free-
dom, Hmag their shifts in a magnetic field, and Van the
coupling of these states due to the anisotropic potential
energy surface. V is regarded as the part that engenders
chaos in the spectra.
In more detail: We begin with a Lennard-Jones poten-

tial that describes an approximately correct long-range
interaction between the atoms, so that the spacing of ro-
vibrational levels is realistic. This potential, including a

centrifugal potential, is

VLJ =
C12

R12
− C6

R6
+

h̄2L(L+ 1)

2µR2
, (2)

where R is the distance between the atoms, µ the re-
duced mass of the atom pair, and C6 = 2 003 au [1] is
the isotropic van der Waals coefficient of Dy2. C12 is
chosen so that the depth of the potential is set to 785.7
cm−1 [10].
From this potential, a set of radial basis functions

|L, v〉 = φL,v(R) is numerically constructed as eigenfunc-
tions of Hrv,

− h̄2

2µ

d2φL,v

dR2
+ VLJφL,v = EL,vφL,v. (3)

Taken together with the spins of the two atoms and the
partial wave angular momentum, these states define the
basis of this model,

|L, v〉|LML〉|j1m1〉|j2m2〉. (4)

Further, in this basis the magnetic field Hamiltonian is
diagonal, with energies given by

Hmag|j1m1〉|j2m2〉 = gµB(m1 +m2)B |j1m1〉|j2m2〉, (5)

where µB is the Bohr magneton.
The observations occur upon scattering atoms in their

ground state, |jm〉 = |8,−8〉 at ultracold temperatures,
whereby the initial partial wave angular momentum is
L = 0. Starting from this state, we consider all basis
states (4) consistent with conservation of angular mo-
mentum and boson exchange symmetry. Moreover, we
consider the energy of two free atoms in the |8,−8〉 state
to define the zero of energy at all values of magnetic field.
As a consequence, the energies of the basis states in (4)
have the magnetic field dependence

EL,v + gµB

[

(m1 + 8) + (m2 + 8)
]

B. (6)

This ensures that the energies of all the bound states
are rising functions of magnetic field, and that the mag-
netic field spectrum will be identified with these levels
crossing E = 0. These energies are more-or-less indepen-
dent from one potential to the next, and ensure a ran-
dom, non-chaotic spectrum, characterized by a nearest-
neighbor distribution having Poisson statistics.
To generate chaos in such a spectrum requires strong

off-diagonal coupling, represented here by Van. This po-
tential can contain the magnetic dipole-dipole interaction
between the atoms,

Vdd(~R) = −
(gα

2

)2 3 (R̂ · ~j1)(R̂ · ~j2)− ~j1 · ~j2
R3

, (7)

where α is the fine structure constant; and an anisotropic
dispersion interaction

Vad(~R) = −Cad√
6

2
∑

i=1

3 (R̂ · ~ji)(R̂ · ~ji)− ~ji · ~ji
R6

. (8)
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Here ~R = RR̂ is the interatomic separation vector in
relative coordinates. It has been observed previously that
Vdd is primarily responsible for anisotropic coupling in
Dy2, while Vad is more important for Er2 [1, 11].
In the basis (4) these interactions have the matrix el-

ements

〈L′v′|〈L′M ′

L|〈j1m′

1|〈j2m′

2|Van|L, v〉|LML〉|j1m1〉|j2m2〉 =
2
∑

q=−2

(−1)q+1〈L′M ′

L|C2q|LML〉
{√

6
(gα

2

)2

×

〈L′v′| 1
R3

|L, v〉〈j1m′

1|〈j2m′

2|(j1 ⊗ j2)2,−q|j1m1〉|j2m2〉 +

Cad〈L′v′| 1

R6
|L, v〉 ×

〈j1m′

1|〈j2m′

2|(j1 ⊗ j1)2,−q + (j2 ⊗ j2)2,−q|j1m1〉|j2m2〉
}

,

(9)

where (j1⊗j2)2,−q is the −q-component of the compound
irreducible second rank tensor product of tensors of rank
1 (vectors) that act as the total angular momentum op-
erators on the individual variables in spaces 1 and 2.
Ckq is the modified spherical harmonic. The value of
Cad = 0.168 Eha

6
0 [10].

B. Spectrum and chaos

Thus the Hamiltonian matrix can be constructed and
diagonalized for any desired value of magnetic field B.
The resulting map of eigenenergies versus B is shown
in Figure 1. To achieve this figure, 7103 basis functions
having their partial-wave function of even L up to Lmax =
28 were needed to reach convergence of eigenstates of H .
The energies change substantially for Lmax < 22, but
in turn as Lmax increases their positions converge and
for Lmax = 28 they do not deviate from their converged
values by more than 8 × 10−6 K in the range of energy
shown.
This spectrum shows several remarkable features.

Mainly, it consists of a collection of nearly-parallel curves,
with occasional avoided crossings. The mean slope of
these lines is approximately 1 mK/G, corresponding to
about 15µB. This is comparable to the mean value of all
the bare magnetic moments described by (6), whose av-
erage value would be 20µB if all values of m were equally
likely. The point is that strong interchannel couplings in
this case lead to a remarkably uniform set of magnetic
moments for all states. If the lines in Figure 1 were all
straight lines with the same slope, then the magnetic field
spectrum at E = 0 would be a faithfully rescaled copy
of the energy spectrum at B = 0, and the two spectra
would exhibit exactly the same degree of chaos. That
these curves are not perfectly parallel is the first hint
that the chaos in the two spectra may not be equivalent.
In addition, several lines in Figure 1 have a consider-

ably smaller slope. These are likely due to broad “halo”

resonances tied to the incident channel as were discov-
ered in Ref. [12] and that are expected to persist across
many narrower, chaotic lines in the spectrum. While
such states are interesting, they are in the minority and
do not significantly affect the conclusions we draw here.
We seek to quantify the degree of chaos present in the

two kinds of spectra: one, an energy spectrum at a fixed
value of B; and the other, a magnetic field spectrum
at E = 0. To do so, we employ the basic tool widely
used for this purpose, namely, we fit the nearest-neighbor
spacing (NNS) distribution [8], normalized so that the
mean NNS is equal to one. As is conventional, we then
fit this distribution to the Brody function:

P (ν, s) = (1 + ν)αsν exp(−αsν+1), (10)

where α = [Γ((ν + 2)/(ν + 1))]ν+1, s is the normalized
NNS, and ν is the Brody parameter. This parameter is
considered to be a measure of the chaos on the spectrum:
ν = 0 corresponds to a random, non-chaotic, Poisson
spectrum, while ν = 1 corresponds to a fully chaotic
spectrum whose levels are chaotic and characteristic of
the eigenvalues of matrices from the Gaussian orthogonal
ensemble (GOE). We will extract two kinds of Brody
parameters, νE for a spectrum of energy values, and νB
for a spectrum of magnetic field values.
The NNS and the Brody parameter represent only one

approach to quantifying chaos in a quantum mechanical
system. The methods of statistical analysis of spectra are
many and diverse, and subsequent analyses have looked
more deeply at the experimental spectra. Reference [13]
analyzed the original Er data set in [2], finding that the
NNS distribution is likely to underestimate the degree of
chaos if levels are missing from the spectra, that is, if
they are too narrow to be observed. This is shown by
an analysis of the power spectrum of long-range correla-
tions in far apart spectral levels [14] as well as by analyz-
ing the distribution of resonance widths in comparison
with the Porter-Thomas distribution. This analysis is
consistent with the data if all resonances narrower than
∼ 10 mG are unobserved, which amounts to about 20%
of them. The suggestion was that the spectrum was in-
deed chaotic, but the resolution of the data were not yet
sufficient to draw this conclusion. The analysis is further
complicated by the sensitive temperature dependence of
observable effects of the resonances [1].
Nevertheless, in our theoretical study we are able to

resolve all resonances and use the Brody parameter ex-
clusively as a measure of chaos. In Figure 2 are shown
two histograms of the data in Figure 1. Fig. 2a) is drawn
from the B = 0, energy spectrum, and yields a Brody pa-
rameter νE = 1+0

−0.23 . Fig. 2b) is drawn from the E = 0,

magnetic field spectrum, and yields νB = 0.93+0.07
−0.28 . In

both cases, the histograms are generated from 250 levels
of the spectrum. The uncertainties are the 1-σ uncer-
tainties due to the fit to the Brody function (10). This
uncertainty arises due to the counting statistics of data in
the histogram. It is compelling to assert that both these
spectra are “fairly chaotic,” and that therefore chaos is
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FIG. 2: Nearest-neighbor spacing (NNS) distributions for the
spectrum shown in Figure 1. In a) is shown the B = 0 spec-
trum, while in b) is shown the E = 0 spectrum.

preserved in the mapping from energy spectra to mag-
netic field spectra. However, the large fit uncertainties
make a quantitative statement difficult. With these un-
certainties, the value of νB is somewhat higher than, but
nearly consistent with, the values ∼ 0.5− 0.75 extracted
from the original 164Dy data [1].

C. Simulation of lesser-strength anisotropy

In order to beat down the large error bars associated to
a single statistical evaluation of the spectra ensemble we
exploit the theory of random matrices. The nonzero ma-
trix elements of Van for a chaotic molecule are viewed as
random variables distributed around zero with a variance
w0. This allows us to simulate the molecule more generi-
cally by using the matrix elements distributed according
to the probability densities [15]

P (w, Vii) =
1√
2πw

exp

(

− V 2
ii

2w2

)

,

P (w, Vij) =
1√
πw

exp

(

−
V 2
ij

w2

)

, i 6= j. (11)

To approximate the Dy2 model given in the previous sec-
tion, we set the width w to the root-mean-squared width
determined from the nonzero matrix elements computed
above. This width is w0 = 24.7 mK.

The interaction matrix is constructed by filling those
elements that are not zero by symmetry with random
variables determined from the GOE distributions (11),
while treating the diagonal elements of Hrv and Hmag as
before. In this way we can generate many realizations
of models of Dy2 and find an ensemble of independent
Brody parameters that can be averaged to reduce the
collective uncertainty of the set. Approximately 30 such
realizations are required to reduce the uncertainty to 5%.
The resulting Brody parameters are then νE = 0.94 ±
0.05, and νB = 0.98 ± 0.05, respectively. We conclude
that our basic model of Dy2 is fully chaotic, and is equally
chaotic in energy and magnetic field spectra.

The random matrix version of the theory affords also
the opportunity to turn off the chaos in a controlled way.
Namely, as the value of w is reduced, the magnitudes of
the matrix elements of Van are reduced, generating less
level repulsion in the eigenvalues of H , and bringing the
spectrum closer to the essentially random spectrum of
Hrv+Hmag. That is, the Brody parameters are generally
expected to be increasing functions of w. We refer to such
a model, with less chaos than a more realistic dysprosium
model, as the “sub-dysprosium” model.

We note that a similar model was described in Ref. [1].
There are some significant differences, however. Ref. [1]
distributed the magnetic moments randomly and, more
significantly, allowed the diagonal spectrum to have its
own Brody parameter, independent of the size of ran-
dom off-diagonal matrix elements. A main conclusion
from that calculation was that the Brody parameter of
the magnetic field resonance spectrum rose as a function
of channel coupling just the same, regardless of the origi-
nal diagonal Brody parameter. This was strong evidence
that the chaos in the observed spectra lay in the avoided
crossings in figures such as Fig. 3d of Ref. [1], or Fig. 1 of
this paper. Reference [1] did not, however, make a direct
comparison between energy and magnetic field spectra
for a given channel coupling, as we do here.

For our model, the resulting parameters νE for mag-
netic field B = 10 G (for reasons explained below) and
νB for energy E = 0 are shown versus w in Figure 3. For
full strength of anisotropic coupling, w = w0, both spec-
tra have essentially unit Brody parameters are and both
fully chaotic, and agree with the results of the model in
the previous section (solid points). Both Brody parame-
ters drop rapidly as w decreases, but νE drops much more
rapidly. Therefore, for a given version of sub-dysprosium
that is not completely chaotic, the magnetic field spec-
trum of Fano-Feshbach resonances would appear more
chaotic than would the energy spectrum at a given mag-
netic field. For much smaller values of w the spectra both
return to random, Poisson-like NNS, and do not differ as
dramatically.

A caveat in preparing this Figure 3 is that the energy
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FIG. 3: Brody parameters νE and νB for the simulation of
’sub-Dysprosium’ as a function of the width parameter w in
the units of w0 = 24.7 mK, and for Dy2 calculation (shown
in Figure 1) evaluated from discrete energy values for B = 10
G [red (dark gray) cross at 0.98+0.02

−0.25 ], and from resonance

positions at E = 0 K [black cross at 0.93+0.07

−0.28]. Error bars for
values at large crosses are not shown.

spectrum is computed at a magnetic field B = 10 G,
rather than B = 0. This is because, for small B, the
spectrum has two characteristic energy scales. There is
a small energy scale given by the very regular spacing
of Zeeman levels; and a larger energy spacing given by
the characteristic ro-vibrational energies. This leads to
a bimodal NNS that is not well described by a Brody
distribution for any value of νE . Once a field is applied
and Zeeman energy splitting become comparable to ro-
vibrational splittings, this is no longer an issue.

III. SCHEMATIC MODEL OF

MAGNETIC-FIELD DEPENDENCE

Examination of the onset of chaos in sub-dysprosium in
Figure 3 suggests that the Brody parameter curves νE(w)
and νB(w) have the same shape, namely, a sigmoidal
dependence that rises first then saturates at unity. The
two curves can be made to nearly overlap by shifting one
of them along the logarithmic w axis. Another way to
say this is that for a given value of w in the model, the
two kinds of spectra have different effective values of w,
scaled by some factor. In this section we explore this
idea.

To do so, it is worthwhile to construct an even sim-
pler model that incorporates the essential features of the
sub-dysprosium model, but that lends itself better to an-
alytical understanding. These essential features are: an
underlying spectrum of pseudo-vibrational states repre-
senting the molecule in zero field; a collection of pseudo-
magnetic moments that map these energies to magnetic
field values; and a strong mixing that generates chaos.

A. It’s Only a Model

To this end, we contemplate a set of Nv energy lev-
els, Ei, to represent the B = 0 molecule. These en-
ergies have mean spacing E0, which defines the unit of
energy. They are chosen randomly in the energy inter-
val [−NvE0, 0], appropriate to pseudo-vibrational states
lying below a threshold at E = 0. Each of these is as-
sumed to have a d-fold degeneracy of pseudo-magnetic
levels, bringing the total number of states in the model
to N = Nvd. These degenerate states are enumerated
by pseudo-magnetic quantum numbers, m = 1, 2, . . . d.
The degeneracy of these states is lifted in a magnetic
field, which each one getting an additional energy mµB,
which represents all the states rising in energy with mag-
netic field. The combination µB effectively defines the
magnetic field unit B0 = E0/µ.
The Hamiltonian of the model is then given in matrix

form as

Hschematic = D + V + µBM, (12)

where D and M are diagonal matrices,

D = diag(E1, E1, . . . , E1, E2, E2, . . . , E2, . . . , ENv
),(13)

where each energy Ei is repeated d times; and

M = diag(1, 2, . . . d, 1, 2, . . . , d, . . . , d). (14)

In this way, all the original pseudo-vibrational levels
move to intercept the E = 0 axis somewhere in the inter-
val B ∈ [0, NvE0/µ], see Figure 4a. The energy and mag-
netic field spectra are therefore characterized by mean
spacing of, respectively,

∆E =
NvE0

Nvd
=

E0

d

∆B =
E0/µ

d
. (15)

Chaos is introduced into the model via the coupling
matrix V , in the same way it was for the sub-dysprosium
model. That is, the elements of V will be drawn from
the Gaussian orthogonal ensemble given in (11). Sample
spectra for w = 0.8 E0 are shown in Figure 4b. These
spectra reproduce, at least qualitatively, the features of
the more realistic model in Figure 1. Note especially that
the lines are nearly, but not quite, parallel, representing
the regularization of magnetic moments of all the states.

B. Chaos in the Model

Using this schematic model, we compute the Brody
parameters νE(w) and νB(w) as functions of w, and for
several different values of spin degeneracy d. The results
are shown in Figure 5. In general all curves show the
familiar sigmoidal dependence that shows how the chaos
turns on as w is increased.
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FIG. 4: Simulated spectra for the schematic model of chaotic
molecules in a magnetic field in the case of 10-fold degeneracy.
In a) is shown the non-chaotic version, w = 0, illustrating the
movement of levels from the energy axis to the magnetic field
axis. In b) is shown a chaotic spectrum with w = 0.8; compare
to Figure 1.

The specific curves are different, however. In general,
larger spin degeneracies d cause the curves νE(w) and
νB(w) to shift to smaller values of w, indicating an earlier
onset of chaos. Moreover, for a given value of d > 1, νB
is shifted to smaller w than νE , as in the sub-dysprosium
model, suggesting that for a given model with a given
value of w, the magnetic field spectrum exhibits a greater
degree of chaos by this measure. For d = 1, the two
Brody parameters coincide.

Qualitatively, these features can be understood in sim-
ple terms. For example, in the energy spectra the mean
energy spacing is ∆E = E0/d. The spectrum, random
when w = 0, starts to see significant mixing and level re-
pulsion when off-diagonal matrix elements in the Hamil-
tonian, of order w, become comparable to the mean spac-
ing of the diagonal elements. Thus for d = 1 the transi-
tion to chaos is nearly complete when w = 1 (recall that
w is given in units of E0 in the plot). But for larger val-
ues of d, the coupling w should be compared to a smaller
mean spacing E0/d, so that the level repulsion, hence
chaos, appears at smaller values of w ∼ E0/d. Thus the
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FIG. 5: Brody parameters νE and νB for the schematic model
presented in Sec. II.A, as a function of the width parameter
w.

Brody parameters νE (dashed curves in Figure 5) are
shifted leftward in the figure for larger d.
Similarly, for a given degeneracy d, the magnetic field

spectrum becomes chaotic for smaller w than does the
corresponding energy spectrum. This suggests that the
magnetic field spectrum possesses a larger ratio of effec-
tive coupling to mean level spacing, at least in the range
explored, than does the energy spectrum. We can see
this as follows.
To find the B = 0, energy spectrum, we solve the ma-

trix diagonalization

(D + V )x(α) = eαx
(α) (16)

for the energy eigenvalues eα and eigenstates x(α). The
size of w in the matrix V , as compared to the mean
spacing ∆E of the diagonal elements of D, controls the
degree of chaos and the value of the Brody parameter.
Similarly, the E = 0, magnetic field spectrum is given

by setting the energy to zero, thereby solving

(D + V + µBM)y = 0 (17)

for the spectrum of B values. Since M is a positive def-
inite matrix, M1/2 and M−1/2 exist, and this matrix
equation is equivalent to the diagonalization

(D̃ + Ṽ )ỹ(α) = bαỹ
(α), (18)

where the transformed matrices, in units of magnetic
field, read

D̃ = − 1

µ
M−1/2DM−1/2

Ṽ = − 1

µ
M−1/2VM−1/2, (19)

and the eigenstate is changed to

ỹ = M1/2y. (20)
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The magnetic field spectrum derives from a qualita-
tively different eigenvalue problem (18) than the one in
Eqn. (17) that gives the energy spectrum. For one
thing, the unperturbed spectrum (diagonal elements of

D̃) no longer have a uniform density of states. To see

this, note that the diagonal elements of D̃ have the form
Bi = −Ei/(mµ). Thus the spectrum is squeezed to
smaller values of B for larger values of m, as can be
seen in Figure 4a. The small region of magnetic field in
the interval B ∈ [0, NvB0/d], contains a number of states
given by

d
∑

m=1

Nv

d
m =

Nv

d

d(d+ 1)

2
. (21)

The density of states in this near-zero-field interval is
then

ρB =
d(d+ 1)

2B0
. (22)

This is higher than the value d/B0 given by taking the
total number and dividing by the total magnetic field
range. It is worthwhile to restrict attention to this mag-
netic field region where the density of states is relatively
uniform. Such a region can cover as many magnetic field
resonance values as desired, by simply increasing Nv.
Similarly, the matrix Ṽ is no longer necessarily

drawn from the GOE, since its matrix elements become
−Vij/(µ

√
mm′), and are diminished by the m quantum

numbers of the states involved. In this case the matrix
element distributions no longer share a common width as
implied by (11). Rather, for each given pair of numbers
m, m′, the matrix elements Vij are Gaussian distributed,

with an effective width wmm′ = w/(µ
√
mm′).

The net distribution of all matrix elements will no
longer be Gaussian, in general, but for the sake of ap-
proximation we can define a Gaussian distribution whose
width is defined by the root-mean-square deviation of the
matrix elements. That is, given the mean squared width
〈V 2

ij〉 = w2/2, the mean squared width of any off-diagonal

element of Ṽ is

w̃2

2
=

1

d2

∑

m

∑

m′

w2

2µ2

1

mm′

=
w2

2µ2

1

d2

(

d
∑

m=1

1

m

)2

. (23)

For the sake of estimation, we will pretend that Ṽ is a
member of a GOE with width w̃.
Then, roughly, the degree of chaos in the magnetic field

spectrum is determined by the ratio of w̃ to the mean
level spacing in the magnetic field range of interest,

w̃

1/ρB
=

w

µB0

d+ 1

2

d
∑

m=1

1

m
. (24)

The corresponding parameter determining the degree of
chaos in the energy spectrum is w/(1/ρE), where ρE =
E0/d is the density of states for the energy levels. The
relation between these two is therefore

w̃

1/ρB
=

w

1/ρE
fc(d), (25)

where fc is a correction function given by

fc(d) =
d+ 1

2d

d
∑

m=1

1

m
. (26)

This factor is unity for d = 1, i.e., for no spin degen-
eracy. In this case the energy spectrum is just rescaled
by the magnetic moment to become the magnetic field
spectrum, and the Brody parameter ought therefore to
come out the same. For nonzero spin degeneracy d > 1,
however, fc > 1, implying that the magnetic field spec-
trum should be more chaotic (larger Brody parameter)
than the energy spectrum. This conclusion is restricted
to the near-zero-field region B ∈ [0, NvB0/d]. In this re-
gion the density of states ρB grows rapidly as a function
of degeneracy (∼ d2), faster than the comparatively slow
growth of the width parameter w̃ ∼ ln d/d.

IV. CONCLUSIONS

In summary, we have verified, by numerical and semi-
analytic considerations, that a molecule that exhibits
partial chaos in its energy spectrum below its dissoci-
ation threshold, may appear to exhibit a greater degree
of chaos as measured in its spectrum of Fano-Feshbach
resonances. This conclusion, drawn from the nearest-
neighbor-spacing distribution, is consistent with the gen-
eral models of Ref. [1]. In both models the transition
from the B = 0 energies to the E = 0 magnetic field res-
onance positions involves a series of avoided crossings, or
alternatively, nontrivial magnetic moment fluctuations of
the molecular states.
It is of course difficult to change the degree of chaos

in a given molecule and to make a full study of the de-
pendences in Figure 3. Nevertheless, the Dy2 molecule as
measured in Ref. [1] has Brody parameters νB somewhat
less than unity. It is therefore conceivable that a mea-
surement of the energy spectrum of Dy2 at fixed magnetic
field, for example by microwave spectroscopy, would be
capable of testing the hypothesis that νE < νB for this
molecule. Effectively varying the degree of chaos native
to a molecule may have to wait until similar spectra are
measured in alternative, less chaotic molecules elsewhere
in the periodic table.
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