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Laser Cooling by Sawtooth Wave Adiabatic Passage
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JILA, NIST, and University of Colorado, 440 UCB, Boulder, CO 80309, USA

We provide a theoretical analysis for a recently demonstrated cooling method. Two-level particles
undergo successive adiabatic transfers upon interaction with counter-propagating laser beams that
are repeatedly swept over the transition frequency. We show that particles with narrow linewidth
transitions can be cooled to near the recoil limit. This cooling mechanism has a reduced reliance
on spontaneous emission compared to Doppler cooling, and hence shows promise for application to
systems lacking closed cycling transitions, such as molecules.

I. INTRODUCTION

The use of coherent light to cool the motion of particles
such as atoms to sub-Kelvin temperatures has greatly ex-
panded the capabilities of atomic and molecular physics
[1]. The earliest and simplest mechanism demonstrated
and understood was Doppler cooling [2, 3], which relies
on preferential absorption between counterpropagating
lasers, followed by spontaneous emission. While Doppler
cooling is simple and robust, the large number of spon-
taneous emissions involved has several drawbacks: spon-
taneously emitted photons impart random momentum
kicks to the particle that cause diffusion and limit the
achievable temperatures. These spontaneous emission
events can also result in the particle falling into internal
states that are no longer near resonance with the applied
light so that the cooling ceases. In the case of atoms,
the latter can be mitigated by adding a small number of
additional lasers to “repump” into cooled states, but in
the case of molecules the number of uncooled states may
be so large that this approach becomes a significant chal-
lenge [4]. Doppler cooling can reach the recoil tempera-
ture (set by the recoil energy from a single emitted pho-
ton) for narrow linewidth transitions such that γ < ωr,
where γ and ωr are the optical transition linewidth and
recoil frequency respectively. However, the cooling time
scale in this parameter regime is long, scaling inversely
with γ.

Several approaches to laser cooling have been devel-
oped to mitigate the negative effects of spontaneous emis-
sion [5]. In sub-Doppler cooling mechanisms such as
Sisyphus cooling [6], the energy removed per sponta-
neously emitted photon is large, allowing lower temper-
atures to be reached. In Raman sideband cooling [7],
tight confinement of the atom can suppress the effect of
momentum recoil associated with spontaneous emission,
enabling cooling to nearly the ground state of the exter-
nal potential well. Cavity-cooling techniques [8] can be
used to reduce free-space spontaneous emission by caus-
ing preferential decay to a desired state via the output
coupler of an optical resonator.

Recently, we have experimentally demonstrated a new
cooling mechanism, named “SWAP cooling” (sawtooth
wave adiabatic passage cooling) in which particles are
coherently driven between ground and excited states of
a narrow-linewidth optical transition by counterpropa-

gating, frequency-swept lasers. Spontaneous emission is
still critical in order to remove entropy from the sys-
tem to achieve steady-state cooling, but by coherently
driving a particle between its ground and excited state
multiple times, large amounts of energy can be removed
per spontaneous emission. This provides a way to gen-
erate significant forces and to reach low temperatures
while maintaining a large velocity capture range. The
approach is largely insensitive to perturbations such as
laser frequency drifts, magnetic fields, and AC Stark
shifts. These factors have made SWAP cooling a use-
ful experimental technique for cooling atomic strontium
using its 7.5 kHz linewidth, dipole-forbidden 1S0 → 3P 1

transition [9]. A related procedure has been used in the
generation of a new form of magneto-optical trap [10].
Sub-Doppler cooling of 87Rb was recently observed us-
ing SWAP cooling with two-photon Raman transitions
between ground hyperfine states [11]. In general, the
approach is applicable to any atomic species, especially
alkaline-earth-like atoms that possess intercombination
transitions. Further, the reduced reliance on spontaneous
emission may make SWAP cooling a useful tool for cool-
ing molecules that have narrow linewidth optical tran-

sitions, such as the 160 kHz linewidth X2Σ → A′
2
∆3/2

transition in YO [12].
Here, we present a detailed theoretical analysis of

SWAP cooling. We explore the minimum achievable tem-
perature as well as the various laser-particle interactions
that affect particle dynamics. We investigate its capture
range and the forces involved in the cooling process. We
show that for appropriate parameters, SWAP cooling can
be used to cool to near the recoil limit. We also simu-
late the rate at which spontaneous photons are emitted
during cooling, confirming that the amount of energy re-
moved per spontaneous emission event can greatly exceed
the limits of Doppler cooling.

II. BASIC MECHANISM

The main mechanism for momentum removal in SWAP
cooling is the coherent transfer of a particle toward zero
momentum via adiabatic passage. Momentum is re-
moved by time-ordered stimulated absorption and emis-
sion of photons caused by interaction with a standing
wave formed by counter-propagating laser beams. To de-
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scribe the cooling, we consider a two-level particle with
internal states |e〉 and |g〉, separated in energy by ~ωa,
and one dimension of motional freedom along the ẑ-
direction (see Figure 1). We choose to represent the ex-
ternal degree of freedom in the momentum basis and with
label |p〉, where p denotes a momentum eigenstate such
that p̂ |p〉 = p |p〉.

FIG. 1. (a) Spatial setup of the standing wave (two counter-
propagating lasers with frequency ωL(t)) and particle (circle)
with velocity v in the lab frame. (b) Energy level diagram of
the bare internal states, separated by energy ∆E = ~ωa.

As shown in Figure 2, the laser frequencies, ωL(t), fol-
low an asymmetric sawtooth waveform with full range ∆s

and period Ts so that the slope of the sawtooth ramp is
α ≡ ∆s/Ts. The sawtooth frequency ramp is centered
on the transition frequency, ωa, and the frequency is lin-
early ramped from below to above ωa. We approximate
the wavenumber, k, to be fixed throughout the sweep-
ing sequence. This also implies that the recoil frequency,
ωr = ~k2/2m, is fixed, where m is the mass.

FIG. 2. Top: The laser frequency, ωL(t), as a function of
time. The approximate resonance frequencies for a particle
with velocity v are labeled. The sweep range is chosen to
be large enough such that both beams will become resonant
with the particle at some time during the sweep. Bottom:
The ideal excited-state fraction, Pe, in the adiabatic regime.
The particle remains in the excited state for a time interval
τe.

The direction of particle motion matters since Doppler
shifts set the time-ordering of which beam first interacts
with the particle. To understand this time-ordering, con-
sider a particle initially in the state |g, pi〉. The Doppler

shift ensures that the counter-propagating beam is the
first to sweep across the transition frequency. If we first
focus on the case with pi > 0, this adiabatically trans-
fers the particle to the state |e, pi − ~k〉 via stimulated
absorption. After some time, the co-propagating beam
will achieve resonance, adiabatically transferring the par-
ticle to |g, pi − 2~k〉 via stimulated emission. For pi < 0,
the mapping is |g, pi〉 → |e, pi + ~k〉 → |g, pi + 2~k〉. In
either case, the particle is transferred closer to zero mo-
mentum. The net result is the removal 2~k of momen-
tum and transfer back to the particle’s initial internal
state without spontaneous emission. Subsequent sweeps
would then continue to remove momentum in units of
2~k. Figure 2 shows this process by illustrating the ideal
excited state fraction, Pe, over two sweeps.

The particle’s internal state at the beginning of a sweep
is a crucial factor in determining the impulse it receives
from each laser. If the particle instead begins a sweep
in the excited state, it is transferred away from zero mo-
mentum. Hence, one of the roles of spontaneous emis-
sion is to ensure that the particle begins a sweep in the
ground state. This is achieved by requiring an imbalance
between the times spent inside and outside of the two
resonances, which corresponds to

∆s > 4|kv|. (1)

This condition also enforces the requirement that the
sweep range, ∆s, is large enough for both laser beams
to achieve resonance with the particle.

There are several other conditions that must be satis-
fied in order to realize SWAP cooling. In order to ensure
a low probability of decay during the time interval the
particle is in the excited state, τe, we require the condi-
tion

τe �
1

γ
. (2)

Importantly, the Rabi frequency of each laser beam, Ω0,
and the laser frequency sweep rate, α, must satisfy the
condition

κ ≡ Ω2
0

α
≥ 1, (3)

so that there is a substantial probability, Pa, for an adi-
abatic transition at each resonance [13]:

Pa = 1− exp

[
−π

2

Ω2
0

α

]
. (4)

We shall refer to κ as the adiabaticity parameter. Any κ
that satisfies Eq. (3) is said to be within the adiabatic
regime, and any κ that does not satisfy Eq. (3) is said to
be within the diabatic regime.

III. SYSTEM DYNAMICS

The quantum master equation
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dρ̂

dt
=

1

i~
[Ĥ, ρ̂] + L̂(ρ̂) (5)

governs the time evolution of the density matrix, ρ̂, whose
Hilbert space includes both the particle’s internal and ex-
ternal degrees of freedom. The Hamiltonian, Ĥ, captures
the coherent dynamics, while the Lindblad superopera-
tor, L̂(ρ̂), captures the incoherent dynamics due to spon-
taneous emission and the associated recoil.

The operators ẑ and p̂ describe the particle’s posi-
tion and momentum, respectively. The excited and
ground states, |e〉 and |g〉, form a pseudo-spin 1/2 sys-
tem. The usual raising (σ̂+ = |e〉 〈g|) and lowering
(σ̂− = |g〉 〈e|) operators, along with the usual Pauli
spin operators, σ̂x,y,z, whose coordinate labels are im-
plicitly understood to refer to the pseudo-spin space (e.g.,
σ̂z = |e〉 〈e|− |g〉 〈g|, etc.), operate on the internal states.

The electric field of the applied lasers is polarized along
the quantization axis, x̂, (see Figure 1) and is described
in first quantization by the operator

Ê(ẑ, t) = x̂E0

[
cos (kẑ + η(t)) + cos (kẑ − η(t))

]
. (6)

Here, the amplitude of each standing wave is E0, and the
time-dependent accumulated phase of the laser field, η(t),
from initial time t0 is

η(t) ≡
∫ t

t0

ωL(t′) dt′ . (7)

In the interaction picture defined by the free Hamilto-
nian

Ĥ0(t) =
p̂2

2m
+

~
2
ωaσ̂

z, (8)

the particle’s non-dissipative dynamics, under the dipole
and rotating wave approximations, is described by the
interaction Hamiltonian

Ĥ =
~
2

Ωs cos

(
kẑ +

kp̂

m
t

)(
σ̂+e−iθ(t) + h.c.

)
, (9)

where

θ(t) ≡
∫ t

t0

ωL(t′)− ωa dt
′ = η(t)− ωat (10)

is the time-dependent phase of the laser field’s detun-
ing from resonance. The standing wave’s peak Rabi fre-
quency,

Ωs ≡ 2Ω0 = −2 〈e|d̂|g〉 · x̂E0

~
, (11)

characterizes the interaction strength of the electric field

with the particle’s electric dipole operator d̂.

The Lindblad operator,

L̂(ρ̂) = −γ
2

(
σ̂+σ̂−ρ̂+ ρ̂σ̂+σ̂− − 2

{3

5
σ̂−ρ̂σ̂+

+
1

5
eikẑσ̂−ρ̂σ̂+e−ikẑ +

1

5
e−ikẑσ̂−ρ̂σ̂+eikẑ

})
, (12)

describes the effect of spontaneous emission. In order to
keep the momentum distribution on a discretized grid, we
have approximated the dipole radiation pattern to pro-
duce recoil of magnitudes −~k, 0, and ~k along ẑ with
probabilities 1

5 : 3
5 : 1

5 , respectively [14]. We consider nu-
merical and theoretical results of Eq. (5) in the following
sections.

IV. DYNAMICS IN THE HIGH-VELOCITY
REGIME

The core mechanism whereby SWAP cooling removes
momentum and energy from a particle’s motion is most
easily understood in a regime in which one can consider
that the particle interacts sequentially with one traveling
wave and then the other. We shall henceforth refer to this
as the “high-velocity regime.” To define it, we must con-
sider the time it takes to adiabatically transfer a particle
with initial velocity vi between its internal states, which
we call τjump, as well as the time interval separating the
two resonances, which we denote by τres. In the adiabatic
regime, it can be shown that τres = 2(kvi − 2ωr)/α and
τjump = 2Ω0/α (see Appendix A and [15], respectively).

Figure 3 shows the time-ordering of these processes, as
well as a measure of the total excited time, τe, defined as
the sum of τjump and τres in this regime.

0

0.5

1

τjump τjump

τe

τresP
e

Time (one sweep)

FIG. 3. The excited state fraction, Pe, of a particle prepared
in the state |g, 10~k〉 over one sweep. Values, in units of ωr,
are: ∆s = 200, Ts = 22, and Ω0 = 5.

Roughly half of each τjump overlaps with τres. Therefore,
to keep the resonances separated, we define the high-
velocity regime to be the range of velocities that satisfy
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τjump < τres, or

|Ω0| < |kvi − 2ωr|. (high-velocity regime) (13)

It is important to emphasize that particles outside of the
high-velocity regime may still be cooled under the SWAP
cooling procedure. However, their dynamics are more
difficult to describe and analyze qualitatively.

A. Dressed state picture

A convenient and intuitive way to understand adiabatic
transfer is the dressed state formalism. Working in the
laser frame, we diagonalize the Hamiltonian

Ĥ(t) =
p̂2

2m
− ~

2
δ(t)σ̂z +

~
2

Ωs cos(kẑ)σ̂x, (14)

at each instant in time. Here, δ(t) ≡ αt is the laser
detuning from resonance, since the detuning is linearly
ramped from −∆s/2 to ∆s/2. We track the evolution of
the minimal set of eigenstates necessary to demonstrate
the evolution of a particle that begins a sweep in the state
|g, p〉 in the high-velocity regime. This set maps to the
bare eigenstates

{|g, p〉 , |e, p− ~k〉 , |g, p− 2~k〉 , |e, p− 3~k〉} (15)

in the limit of large detuning (|δ(t)| � |kv|). The avoided
crossing of a multi-photon process known as a Doppleron
resonance, which does not affect the dynamics of a par-
ticle in the high-velocity regime, is also present (see Ap-
pendix B for details).

|g, p− 2h̄k〉

|g, p〉

|e, p− 3h̄k〉

|e, p− h̄k〉

|e, p− 3h̄k〉

|e, p− h̄k〉

|g, p− 2h̄k〉

|g, p〉n = 1
Doppleron
resonance

E
n
er
gy

Detuning

FIG. 4. Eigenvalue energy versus detuning for the four cou-
pled states given in Eq. (15). The inset shows the split-
ting of an n = 1 Doppleron resonance, which is small in
the high-velocity regime. The red arrows identify the phys-
ical path being considered. Dashed lines show the evolu-
tion of the uncoupled states. Values, in units of ωr, are:
Ω0 = 2, α = ωr = 1, Ts = 50. p = 4~k.

Figure 4 shows the instantaneous eigenvalues as the de-
tuning is linearly ramped. Starting in the state |g, p〉, the
particle diabatically crosses the higher-order Doppleron
resonance, thus being transferred into a different eigen-
state. It then undergoes two adiabatic crossings, which
correspond to the two resonances previously discussed,
and ends up in the state |g, p− 2~k〉, signifying the re-
moval of 2~k of momenta. It is important to note that
Figure 4 only depicts the correct evolution of a particle
that follows the red arrows; in reality, the surrounding
states would couple to states of higher and lower mo-
menta.

B. Coherent dynamics

In order to further illustrate the dynamics strictly due to
coherent evolution, we numerically calculated the time
evolution of the root-mean-square (rms) momentum of

the particle, prms =
√
〈p̂2〉, as it underwent SWAP cool-

ing starting from the initial state |ψi〉 = |g, 10~k〉 and
without spontaneous emission (γ = 0). The Rabi fre-
quency was chosen such that the simulation operated
in the high-velocity regime for all momentum states
|pi| > ~k.

Figure 5 shows the rms momentum, prms, versus time,
expressed in terms of the number of sweeps. The prob-
ability of finding the particle in the excited state, Pe =
|〈e|ψ〉|2, is also shown on the right hand axis. One sees
that during each sweep the particle was adiabatically
transferred to the excited state and then back to the
ground state. Each transition was accompanied by a re-
duction in the particle’s momentum by ~k for a total of
2~k per sweep. As the momentum of the particle was re-
duced, the time between transitions became shorter (i.e.,
the width of the pulses became smaller). This is what
one would expect since the velocity of the particle and
therefore the accompanying Doppler shift is decreased.

By symmetry, and as confirmed by calculation, the
rms momentum decreased in an identical manner for
the state with opposite initial momentum, |g,−10~k〉.
Course graining over the individual sweeps, the effective
force exerted on the particle drives it toward zero veloc-
ity, independent of its initial direction of motion. As a
result, one should draw an important distinction between
the force exhibited here and a “slowing force” that can
be understood as applying a uniform translation to the
momentum of all particles. Such slowing forces are of-
ten implemented in the context of slowing a molecular
beam with chirped-frequency light [16] or using rapidly
varying electrostatic potentials as is done in Stark decel-
erators [17], but do not lead to steady-state cooling.

On the final sweep shown in Figure 5, the particle ap-
proached zero momentum where the dynamics are modi-
fied. At the end of the final sweep, the particle had a 50%
probability of occupying the |g, 0〉 state, and a 25% prob-
ability of occupying each of the |e, ~k〉 and |e,−~k〉 states,

resulting in a final rms momentum of prms = ~k/
√

2 and
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FIG. 5. Root-mean-square momentum, prms (step-like curve;
magenta online), for a particle starting in the state |g, 10~k〉
over five sweeps. The curve exhibiting rising and falling pulses
shows the excited state fraction, Pe (cyan online). The par-
ticle experiences a significant reduction in prms and is left in
a superposition of the internal states. Values, in units of ωr,
are: ∆s = 120, Ts = 1000, and Ω0 = 1.

a final excited state probability of Pe = 1/2. We will see
that being left in the excited state at the end of the sweep
is an important consideration for understanding the final
equilibrium temperature.

C. High-velocity regime dynamics including
dissipation

We have shown that under the influence of purely coher-
ent dynamics, a particle prepared in its internal ground
state can be sufficiently transferred to low momentum. In
a realistic system, however, the presence of spontaneous
emission restricts the amount of time a particle may re-
main in the excited state, Eq. (2), which increases for
higher initial momentum. Nevertheless, in the context of
the high-velocity regime in the adiabatic limit, it can be
shown that there is no upper bound on the momentum
states that can be transferred to lower momentum via
the SWAP cooling procedure, contingent that arbitrar-
ily high Rabi frequencies and sweep rates are accessible.
However, there exists a fundamental lower bound:∣∣∣ p~k ∣∣∣ ' 1 +

2κγ

ωr
. (16)

This motivates the use of SWAP cooling on a transition
for which κγ/ωr is small. It is a requirement of adiabatic
transfer to have κ at least on the order of unity, so the
experimentalist only has the freedom to vary the ramp
slope α and Rabi frequency Ω0 accordingly. Regardless of
experimental laser parameters, narrow linewidth transi-
tions (on the scale of the recoil frequency) are preferable
if the goal is to maximally cool the system.

V. FORCES AND CAPTURE RANGE

For analyzing the cooling dynamics, it is useful to investi-
gate the equivalent classical force exerted on a particle as
a function of its velocity or momentum. We have chosen
to describe this relationship by defining various quanti-
ties that provide information about the impulse imparted
to the particle over a single sweep.

A. Conservative Forces

One way to describe impulsive momentum kicks applied
to the particle is the change in its rms momentum due
to a single sweep:

∆prms ≡
√
〈ψf | p̂2 |ψf 〉 −

√
〈ψi| p̂2 |ψi〉, (17)

where |ψi〉 is the state of the particle prior to the sweep
and |ψf 〉 is the state of the particle after the sweep. We
describe the impulse in this way (rather than the average
momentum) because the system exhibits Bragg oscilla-
tions, which are transitions between resonantly coupled
momentum states |p〉 ↔ |−p〉 (see Appendix C). These
oscillations yield an additional momentum change that is
qualitatively different to the adiabatic transfer dynamics
that we are interested in and does not contribute to the
cooling process. The rms momentum is a measure that
by construction excludes the effect of such Bragg oscilla-
tions.

Figures 6 and 7 show the computed rms impulse ∆prms

versus the initial momentum pi for a particle initially
prepared in |ψi〉 = |g, pi〉 and |ψi〉 = |e, pi〉, respectively.
The values chosen for the adiabaticity parameter, κ = 0.5
(top rows) and κ = 4 (bottom rows), demonstrate the
system’s behavior in the diabatic and adiabatic regimes,
respectively, and were varied by changing only the Rabi
frequency, Ω0. The probability of being left in the excited
state at the end of the sweep, Pe, is also provided.

To aid in the description of the dynamics, we have la-
beled specific regions of momentum space with the sym-
bols (0), (1), and (2), where (i) labels the maximum num-
ber of lasers the particle substantially interacts with at
any time during the sweep. More specifically, a particle
with initial velocity vi lies within the region defined by:

|kvi| >
∆s

2
region (0)

|Ω0| < |kvi| <
∆s

2
region (1) (18)

|kvi| < |Ω0| region (2).

Note that region (1) roughly corresponds to the high-
velocity regime, Eq (13). Uninterestingly, particles in
region (0) do not significantly interact with the laser field,
so we restrict our discussion to regions (1) and (2).

For most states in region (1), the resulting ∆prms and
Pe after the sweep are roughly constant. The general re-
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FIG. 6. ∆prms vs. pi ((a) and (c)) and Pe vs. pi ((b) and (d))
for a particle that started in the state |g, pi〉 at the beginning
of a sweep. The various momentum regions in Eqs. (18) are
labeled in Figure 6(a) and are presented in all subplots by ver-
tical, dashed lines. The horizontal, dashed line corresponds to
∆prms = 0. The adiabaticity parameter κ lies in the diabatic
regime for plots (a) and (b) (κ = 0.5,Ω0 = 9.5ωr) and in the
adiabatic regime for plots (c) and (d) (κ = 4,Ω0 = 26.8ωr).
Values common to all plots, in units of ωr, are: ∆s = 360,
Ts = 2.
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FIG. 7. ∆prms vs. pi ((a) and (c)) and Pe vs. pi ((b) and
(d)) for a particle that started in state |e, pi〉 at the beginning
of a sweep. The various momentum regions in Eqs. (18) are
labeled in Figure 7(a) and are presented in all subplots by
vertical, dashed lines. The adiabaticity parameter κ lies in
the diabatic regime for plots (a) and (b) (κ = 0.5,Ω0 = 9.5ωr)
and in the adiabatic regime for plots (c) and (d) (κ = 4,Ω0 =
26.8ωr). Values common to all plots, in units of ωr, are:
∆s = 360, Ts = 2.

sults of a diabatic sweep in region (1), as seen in both Fig-
ures, may be interpreted as giving a low imparted impulse
and a failure to return the particle to its initial internal
state. In contrast, the general results of an adiabatic
sweep in region (1) are an impulse of |∆prms| ≈ 2~k and
significant return to the initial internal state; these are
the ideal coherent dynamics of the high-velocity regime
as previously discussed. The highest momentum states

within region (1) do not quite undergo this ideal behav-
ior, even in the adiabatic regime, because the particle
does not begin the sweep in an eigenstate of the Hamil-
tonian, Eq. (9).

As previously mentioned, Dopplerons and the ambigu-
ous time-ordering of the two laser interactions can signifi-
cantly modify the force in region (2) such that the physics
is more complex. The effect of this complex behavior is
clearly visible in Figures 6 and 7 as |pi| approaches zero.
In particular, a particle within region (2) initially in the
internal ground state will be transferred to the excited
state after a sweep, which would then send it on a tra-
jectory toward increasingly higher momentum. This mo-
tivates the requirement described by Eq. (1), which will
on average reset the particle to the ground state for the
next sweep via spontaneous emission.

B. Forces including dissipation

While Section V A provides insight into the conservative
forces in SWAP cooling, it does not include the dissi-
pative features that ultimately lead to phase-space com-
pression and equilibration. Moreover, we enforced spe-
cific state preparation at the beginning of each sweep. In
order to explore the forces one would expect in the labo-
ratory, i.e., with γ 6= 0 and no specific state preparation,
we define an average impulse as

∆pavg ≡ Tr [p̂ρ̂f ]− Tr [p̂ρ̂i] (19)

with the constraint that the internal state populations
are the same at the beginning and end of the sweep.
The quantities ρ̂i and ρ̂f are the density operators as-
sociated with the initial and final particle states, respec-
tively. We shall call these internal state populations the
“steady-state” populations, P ss

e for each pi. Note that
steady-state here refers only to the internal state popu-
lations being equal before and after the sweep cycle; the
momentum in general will change. This choice of repre-
senting the impulse is motivated by the desire to compare
to other cooling methods where the internal populations
reach a stationary situation, and to thereby allow inves-
tigation of the relationship between force and particle
velocity in a more general context.

Figure 8(a) displays ∆pavg for a large range of initial
momentum states pi. The parameters were chosen such
that the time between the two laser interactions, τres,
obeyed τres ≤ 1/γ for all |kvi| < ∆s/2. We see that the
overall effect of SWAP cooling yielded an impulse toward
zero momentum for |kvi| < ∆s/4 and an impulse away
from zero momentum for ∆s/4 < |kvi| < ∆s/2. This
motivates Eq. (1) as a characterization of the momentum
capture range of SWAP cooling. For low momentum, the
effects of Bragg oscillations, Dopplerons, and the ambigu-
ous time-ordering of laser interactions results in momen-
tum dynamics that differ from those in the high-velocity
regime.
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FIG. 8. Various quantities for a particle that is subject to a
single sweep with γ 6= 0 as a function of its initial momen-
tum, pi. (a) ∆pavg (average impulse, in units of ~k). (b) P ss

e

(steady-state population). (c) ξ (number of scattered pho-
tons). The vertical, dashed lines correspond to the four condi-
tions |kv| < ∆s/2 (where ∆prms falls to zero) and |kv| < ∆s/4
(the capture range). Each point was averaged over 1000 tra-
jectories. Values, in units of ωr, are: ∆s = 1800, Ts = 1.0,
Ω0 = 60, γ = 1.

Figures 8(b) and 8(c) present the steady-state excited
state fraction, P ss

e , and the average number of incoher-
ent scattering events per sweep, which we call ξ, for the
same parameters. We see that impulses with magnitudes
of nearly 2~k are imparted for |pi| near 25~k with only
∼ 0.2 scattering events per sweep. Moreover, the mo-
mentum states around |pi| = 25~k experienced an aver-
age force of |∆pavg/Ts| ≈ 2~kγ, which is roughly four
times the cooling force that one expects from a radiation
pressure force that fully saturates the atomic transition.
This means that SWAP cooling can provide large cooling
forces with a relatively low scattering rate. We investi-
gate this useful feature in more detail in Section VII.

The effect of Bragg oscillations at low pi, which mani-
fests as a sharp, linear feature in Figure 8(a), is elucidated
by considering the effect of switching the sweep direction.
As described in Appendix C, Bragg oscillations can mix
the particle between the |±pi〉 states before the particle
resonates with the lasers, so the net ∆pavg is indepen-
dent of the sweep direction. To compare ∆pavg with and
without these oscillations, we define impulses ∆p± in the
following way:

∆p± ≡ (∆pavg)pos ± (∆pavg)neg
2

(20)

in which the subscripts “pos” and “neg” refer to the sign
of the ramp, i.e., red to blue or blue to red detuning,
respectively. By symmetry, we expect the effect of Bragg
oscillations to be present in ∆p+ and to cancel in ∆p−.
Figure 9 displays ∆p± as a function of the initial mo-
mentum, pi. The substantial effect of Bragg oscillations
were seen to be present in ∆p+ for |pi| < 7~k. For pi

nearer to the high-velocity regime, which is |pi| > 30.5~k
for this set of parameters, Bragg oscillations do not play
a significant role, and we observe ∆p+ tending to zero,
and ∆p− tending to ±1.5~k.
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FIG. 9. (color online) ∆p± vs. pi. The sharp, linear feature
in ∆p+ is due to Bragg oscillations, which mix the particle
between the |±pi〉 states before it reaches resonance with the
lasers. Each point is averaged over 1000 trajectories. Values,
in units of ωr, are: ∆s = 1800, Ts = 1.0, Ω0 = 60, γ = 1.

VI. TEMPERATURE LIMIT AS γ → 0

We now provide the results of a SWAP cooling simulation
that includes the effects of dissipation, but in the limit
γ → 0. To accomplish this, we modifed the frequency
profile to be a series of single sawtooth ramps with pe-
riod Ts � 1/γ, each separated by a time Twait � 1/γ,
as shown in Figure 10. This “sweep-wait” scheme ef-
fectively mimics the cooling process for a particle with
an ultranarrow linewidth. It also reduced the required
computation time by allowing i) ∆s to be small and ii)
the use of the analytical expression for free-space spon-
taneous decay. We modeled the limit Twait → ∞ and
γ → 0 by setting γ = 0 and projecting any remaining
excited state population to the ground state, along with
simulating any accompanying momentum recoil.

Figure 11 presents the evolution of a particle that
started in the state |g, 10~k〉 under this cooling scheme.
At the end of this simulation, the temperature of the par-
ticle was observed to asymptote to a value near the recoil
limit, 2Tr, where

kBTr ≡
(~k)2

2m
= ~ωr, (21)

and kB is Boltzmann’s constant. We use the variance
in p as a measurement of the 1D temperature, T , i.e.,

σ2
p

2m
≈ 〈p

2〉
2m

=
1

2
kBT. (22)
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FIG. 10. Frequency profile for the simplified “sweep-wait”
cooling scheme.

It should be noted that not all steady state solutions are
Gaussian in nature, but are centered on zero momentum.
Thus, the first equality in Eq. (22) universally holds once
the system has equilibrated.
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FIG. 11. Cooling of a particle that begins in the state |g, 10~k〉
to the recoil limit after 5 sweep-wait cycles. Top inset: A
snapshot of the momentum distribution P (p) halfway through
the 7th sweep. Bottom inset: A closer look at the cooling
trajectory once the system reached equilibration. The recoil
limit, 2Tr, is included as a horizontal, dashed line. This curve
is the average of 100 trajectories. Values, in units of ωr, are:
∆s = 100, Ts = 60, and Ω0 = 2.

It is also interesting to consider how the final temper-
ature scales with Ω0. Figure 12 displays this relationship
in both the diabatic and adiabatic regimes. A minimum
temperature was found just within the adiabatic regime.
From the numerics, the temperature was observed to fol-
low a linear relationship

kBT =
1

2
~Ω0 (23)

in the adiabatic regime, which we attribute to decreased
time ordering between adiabatic transfers and the parti-

cle spending more time in the excited state, hence more
scattering events. This linear relationship held for at
least twice the domain of Figure 12. An increase in tem-
perature was observed in the diabatic regime, which we
attribute to both a reduction in conservative forces as de-
scribed in Section V A, and the presence of a significant
excited state fraction at the end of each sweep, leading
to more diffusion from spontaneous emission.
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FIG. 12. Stationary values of 〈p2/2m〉 as a function of Ω0 in
the sweep-wait sequence. The vertical, solid line labels the
value of Ω0 that divides the diabatic and adiabatic regimes.
The recoil limit is represented as a horizontal, dashed line.
Deep within the adiabatic regime, the temperature scales lin-
early with Ω0. Values, in units of ωr, are: ∆s = 100, Ts = 60.
Each point is averaged over 500 trajectories.

VII. COOLING EFFICIENCY

We now compare the efficiency of SWAP cooling with
Doppler cooling. We define “cooling efficiency” here as
the energy carried away from the system per scattering
event. This choice is motivated in part by the potential
application of SWAP cooling to systems where closed cy-
cling transition may not be accessible and therefore a
large number of spontaneous emission events are unde-
sirable. We calculate the cooling efficiency by prepar-
ing an ensemble of particles in a specific initial state,
|g, 20~k〉, and subsequently applying both Doppler and
SWAP cooling for comparison. Here, we used the SWAP
cooling scheme presented in Figure 2, in which dissipa-
tion is included at all times.

Clearly, many fewer scattered photons are required for
SWAP cooling to reduce the energy and to bring the
system close to equilibrium. In fact, in the simulation,
SWAP cooling was able to remove up to an average of 5~k
of momentum per scattered photon. As a consequence, in
comparison to Doppler cooling’s ideal cooling efficiency,
we deduce that SWAP cooling promises to be well-suited
to cooling particles where the adverse affects of sponta-
neous emission are significant, such as those that lack
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closed cycling transitions.
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FIG. 13. (color online) 〈p̂2〉/2m vs. the average number of
scattered photons for SWAP cooling and Doppler cooling. For
both methods, ωr = γ = 1. The SWAP parameters, in units
of ωr, are: Ω0 = 28,∆s = 391, Ts = 1, and Doppler parame-
ters are: Ω = 40, δ = −40. The SWAP cooling data is over
38 sweeps. Each curve is averaged over 1000 trajectories. We
extract an average cooling efficiency for SWAP cooling of up
to 5~k per scattered photon.

VIII. CONCLUSION

The SWAP (sawtooth wave adiabatic passage) procedure
proves to be a robust and simple cooling mechanism. Our
analysis of both the coherent and dissipative dynamics
of two-level particles suggests that it has numerous ap-
plications, such as to systems with narrow linewidth or

no closed cycling transitions. We have shown its ability
to cool particles to the recoil limit while simultaneously
inducing larger cooling forces and maintaining a higher
cooling efficiency than Doppler cooling.

In the future, it will be interesting to further elaborate
on the concept of a cooling efficiency, i.e., the removal of
a system’s energy and entropy per scattering event, in the
general context of laser cooling theory. For example, the
information associated with the momentum of a particle
initially in the state |g, pi〉 may be encoded in the time
record of spontaneously emitted photons. This provides
significant motivation for a systematic analysis of entropy
dynamics in the various implementations of laser cooling
that may prove to be an insightful and useful endeavor
for the laser cooling and atomic physics community.

The scope of the calculations presented in this pa-
per were limited to two-level atoms moving along one-
dimension. It will be interesting to consider more gen-
eral atomic systems and more general geometries of laser
and trapping fields. In particular, SWAP cooling may
be applied to magneto-optical trapping [10], to optical
lattices, and to general multilevel laser cooling strate-
gies [11]. Furthermore, while it is important to recognize
that while our calculations are fully quantum mechanical
(consisting of a complete description of the internal and
external variables) with the inherent advantages of not
having to make approximations, it will also be useful to
develop and validate semiclassical methods where many-
sweep cycles can be treated with higher efficiency. This
will be important to treat more massive systems such as
complex molecules.
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Appendix A: Resonance times and intervals in the
adiabatic limit

In the adiabatic limit (Ω2
0 � α), most of the population

transfer for a motionless particle occurs around t = 0 for
a detuning profile δ(t) = αt, as this is when the laser is
in resonance with the particle. By energy conservation
(see Eq. (B2) with n = 0), motional degrees of freedom
translate this “resonance period” for a particle in the
state |g, p〉 interacting with a right-traveling wave to the
time that satisfies

αtright − ωr(2β + 1) = αtright − kv − ωr = 0, (A1)

where β ≡ p/~k. For high-velocity particles (kv � ωr),
the resonance period agrees with the intuitive Doppler
shift result. However, the additional recoil term is impor-
tant for low velocity (kv ' ωr) particles. A similar result
can be found for the interaction of a ground-state parti-
cle with a left traveling wave (β → −β), which translates
the resonance period to

αtleft − ωr(−2β + 1) = αtleft + kv − ωr = 0. (A2)

The resonance periods for a particle starting in the ex-
cited state can be found with the substitution ωr → −ωr
on the additional recoil term. It is easily shown that adi-
abatic transfer with motion has the same probability as
the motionless case [13].

In the high-velocity regime (see Eq. (13)), there is one
stimulated absorption and one stimulated emission per
sweep in SWAP cooling. From Eqs. (A1) and (A2), the
time separating these resonant phenomena for a particle
with initial velocity vi, labeled τres, is

τres =
2(kvi − 2ωr)

α
. (A3)

It should be noted that (A3) is only valid in the adia-
batic limit, since the time associated with the stimulated
absorption recoil has been included. An understanding
of these resonance times and intervals provides insight
into the particle dynamics for various momentum states
in SWAP cooling.

Appendix B: Doppleron Regime

As the laser frequencies are swept, multi-photon tran-
sitions often called Dopplerons come to resonance even
when single-photon transitions do not. As shown in Fig-
ure 14(a), an nth-order Doppleron process is character-
ized by the absorption of n + 1 photons from one beam

and the emission of n photons into the other, resulting in
a (2n+ 1)~k net momentum transfer to the particle and
the particle being left in the opposite internal state from
which it started [18]. In general, Doppleron resonances
can occur both before and after the single-photon reso-
nances, and their existence has the potential to substan-
tially affect particle dynamics outside the high-velocity
regime.

(b)

(a)

FIG. 14. (a) A 1st-order Doppleron resonance, characterized
by the condition βf = βi−3. (b) A Bragg resonance between
the states |g,±2~k〉.

Doppleron resonances only occur for specific values of
laser detuning. For a particle with initial momentum
pi = βi~k, the time of an nth-order Doppleron resonance
can be found from energy conservation:

β2
i ~ωr + (n+ 1)~ωL(t) = n~ωL(t) + ~ωa + β2

f~ωr. (B1)

We have neglected the AC Stark shift here for simplicity.
In Eq. (B1), the terms proportional to n are the energies
of the photons being absorbed and emitted, ~ωa is the
transition energy, and the terms proportional to ωr are
the initial and final kinetic energies of the particle.

Paired with the momentum condition βf = βi −
(2n + 1), where βf is the particle’s momentum after
the Doppleron process, the time, tn, of an nth-order
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Doppleron resonance for a lab-frame laser detuning pro-
file δn(t) = αtn obeys

αtn = −(2n+ 1)kvi + (2n+ 1)2ωr

= −
(
n+

1

2

)
(kvi + kvf ). (B2)

Regardless of the Rabi frequency, multiphoton effects
become relevant for low momentum states. From numer-
ical methods, the 1st-order splitting in a dressed state
picture (see Figure 4) behaves as

Ω(1) ≈ Ω3
0

16(kvi − 3ωr)2
, (B3)

which suggests that the probability of adiabatically pass-
ing through a first-order Doppleron resonance is [13]

P (1)
a = 1− exp

[
− π

512

Ω6
0

α(kvi − 3ωr)4

]
. (B4)

The size of the argument in this exponential can be used
to define the conditions for which Dopplerons are relevant
for a particle with velocity vi. Because SWAP cooling
requires Eq. (3) to be satisfied, we choose to define the
Doppleron regime as follows:

|Ω0| > |kvi − 3ωr| (Doppleron regime). (B5)

Comparing this result with Eq. (13), we see that the
Doppleron regime describes nearly all remaining states
outside the high-velocity regime. Of course, there exist
similar conditions for higher-order Doppleron resonances.

Increasing Ω0, i.e., allowing for more Doppleron res-
onances, may decrease the amount of time it takes to
reach a steady-state temperature, as they allow for more
momentum transfer. However, the final temperature in-
creases with Ω0 (see Figure 12). Thus, minimum tem-
peratures with a high capture range may be achieved by
dynamically changing the Rabi frequency as the particle
is cooled over time.

Appendix C: Bragg Oscillations

Momentum states experience nontrivial effects due to
Bragg oscillations, i.e., particle scattering from a light

grating (the standing wave). These transitions, which
are between states with ±β~k momenta where β is an
integer, occur at a rate [19]

ΩB,β(t) ≈ |Ω0|2β
4β(8ωr)β−1[(β − 1)!]2δ(t)β

, (C1)

provided that |δ(t)| > |Ω0| > γ. Figure 14(b) displays
the energy diagram for a Bragg resonance between the
|g,±2~k〉 states. If there are many oscillations, it is likely
that system noise will cause the oscillations for different
particles to become out of phase, leaving, on average,
half of the atoms in either momentum state. This phe-
nomenon is an important consideration in the analysis of
the impulses in Figure 9.

Integrating Eq. (C1) and dividing by 2π gives the total
number of βth-order Bragg oscillations between times ti
and tf :

Nβ(ti, tf ) =
1

2π

∣∣∣∣∫ tf

ti

ΩB,β(t′) dt′
∣∣∣∣ (C2)

∝
∣∣∣∣∫ tf

ti

1

δ(t′)β
dt′.

∣∣∣∣
The quantities ti and tf are related to the times of stim-
ulated absorption/emission during the sweep process, as
these will carry the particle away from the states that are
experiencing Bragg oscillations.

To provide a few interesting examples, 1st-order Bragg
transitions affect the dynamics of the initial states |ψ〉0 =
|g, ~k〉 , |g, 3~k〉. From Eq. (C2) and using Eqns. (A1)
and (A2),

N1 ≈
κ

8π
ln

∣∣∣∣2ωr∆s

∣∣∣∣ , |ψ〉0 = |g, ~k〉 ; (C3)

N1 ≈
κ

8π
ln

∣∣∣∣ ∆s

6ωr

∣∣∣∣ , |ψ〉0 = |g, 3~k〉 .

The Bragg oscillations occur before the SWAP reso-
nances for |g, ~k〉 and after the SWAP resonances for
(|g, 3~k〉). Although N1 scales logarithmically with ∆s

in both cases, a sufficiently large sweep range will pro-
mote multiple Bragg oscillations.


