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Abstract 

Simultaneous ionization and excitation of helium by electron impact is studied through ejected 

electron angle integrated double differential cross sections (DDCS) as a function of ionized 

electron energy using the 4-Body Distorted Wave model.  Results are presented for different 

alignments of the 2p0 magnetic substate of the He
+
 ion, and alignment effects observed in fully 

differential cross sections are shown to persist in the DDCS.  Examination of the DDCS for 

different orientations leads to a determination of anisotropy parameters and phase angles 

between substate amplitudes as a function of ejected electron energy.       

 

I. Introduction 

The study of ionizing collisions involving oriented targets has become more prevalent in 

recent years with improvements in experimental technology and computational power [1-8].  

These studies can provide valuable information about charge cloud structure and angular 

momentum transfer during the collision.  Most of the studies focusing on alignment and 

orientation effects fall into one of two groups: excitation collisions or molecular collisions.  In 

the case of excitation collisions, a typically neutral ground state atom is excited by electron, 

photon, or heavy particle impact, leaving the final state atom in a non-isotropic excited state.  

Electronic decay of the atom to the ground state can result in photon emission, and measurement 

of the angular distribution or polarization of these photons results in the determination of 



alignment and orientation parameters that can then be related back to atomic charge cloud 

information.  Excitation collisions have been well-studied for several decades, and reviews can 

be found in [9-13].  In a few instances, the target atom has been prepared in an oriented excited 

state, and ionization cross sections are then measured [1].  This type of oriented initial state 

collision is less studied, but recent results have produced new information regarding alignment 

effects.     

For molecular collisions, alignment is typically achieved through the nuclear arrangement 

of the molecule, which is naturally anisotropic.  Although some symmetry may exist, the 

electronic structure of the target is also anisotropic.  The complexity of targets other than the 

simplest diatomic molecules makes molecular collisions difficult to study, both experimentally 

and theoretically.  However, both ionization and excitation collisions have been used to examine 

alignment and orientation effects in molecular collisions, and some examples can be found in [4-

7] and references therein.   

In this work, we choose a simple atomic system in which simultaneous ionization and 

excitation leads to an oriented final state ion, allowing for the study of alignment effects.  

Electron impact simultaneous excitation-ionization (EI) of helium is a well-studied collision 

process, but continues to provide challenges due to effects such as electron correlation, post-

collision interaction, and the 4-body nature of the collision.  Ground breaking coincidence 

measurements of all final state particles, including the emitted photon (called (e,γ2e)) were 

presented in [14], but no additional such measurements are available due to their inherent 

difficulty.  Aside from (e,γ2e) studies, a much broader body of work is available for EI collisions 

in which the momenta of both final state electrons are measured, but no information about the 

photon is known.  These fully differential cross section (FDCS) typically provide energy 



resolved data that indicate the principle quantum number of the final state bound electron, but 

not its angular momentum or magnetic quantum number [15-18].   

A series of results were published in the 1990s and 2000s that provided differential cross 

sections for EI leading to determination of various alignment parameters, electron-photon 

correlations, and Stokes parameters [19-26].  These joint experimental and theoretical studies 

typically examined scattering angle integrated cross sections, total cross sections, or photon 

polarization or angular distributions.  Here we present both FDCS and ionized electron angle 

integrated double differential cross sections (DDCS) for electron impact simultaneous EI of 

helium for the 2p0 magnetic sublevel of the final state ion.  The EI process provides a 

challenging system in which to study alignment effects.  Target electron correlation effects are 

known to be important, and sophisticated atomic wave functions are required for adequate 

theoretical treatment.  Experimentally, the EI process is very challenging due to small cross 

sections.  Prior work using our 4-Body Distorted Wave (4DW) model has shown clear 

orientation effects in FDCS for the EI process, with some of the structures being traced to 

specific angular momentum components of the ejected electron and the target atom wave 

function [27-28].      

By focusing on the ml = 0 magnetic substate, and using the 4DW model to calculate both 

FDCS and DDCS, we identify specific orientation effects that persist, despite integration over 

ionized electron angle.  Unlike prior work, which presented results as a function of scattering 

angle or electron energy with integration over scattering angle, we present results for fixed 

scattering angle as a function of electron energy.  The ejected electron angle integrated DDCS 

are then used to calculate anisotropy and phase angle parameters.  To our knowledge, the results 

presented here are the first calculation of these parameters as a function of ionized electron 



energy, and we show their relationship to the magnetic sublevel DDCS.  Our calculations are 

also compared to the experimental data of Hayes and Williams [20], and Dogan et al. [21].  

Atomic units are used throughout unless otherwise noted.    

II. Theory 

The details of the 4DW model have been presented in [29], and only the necessary details 

are described here.  In the 4DW model, the target helium atom is treated using a 20-parameter 

Hylleraas wave function [30].  Also, all continuum electrons are treated as distorted waves, and 

the post-collision Coulomb interaction (PCI) between the final state continuum electrons is 

included.  The FDCS can be written in terms of the transition matrix Tfi 

𝑑3𝜎

𝑑Ω1𝑑Ω2𝑑𝐸2
= 𝜇𝑝𝑎

2 𝜇𝑖𝑒
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where 

iffi VT  .          (2) 

The momenta of the scattered projectile, ionized electron, and incident projectile are 𝑘𝑓
⃗⃗⃗⃗ ,  𝑘𝑒

⃗⃗⃗⃗  ⃗,  𝑘𝑖
⃗⃗⃗⃗   

respectively, and 
pa  and ie  are the reduced masses of the projectile and target atom and the 

final state ion and the ionized electron respectively.     

The initial and final state wave functions are written as products of the bound electron  

and continuum particle wave functions.  Specifically, the initial state wave function is given by   

Ψ𝑖 = 𝜒
�⃗� 𝑖

(𝑟1⃗⃗⃗  )Φ𝑖(𝑟2⃗⃗  ⃗, 𝑟3⃗⃗  ⃗) ,         (3) 

and the final state wave function is given by  

Ψ𝑓 = 𝜒
𝑘𝑓⃗⃗⃗⃗  ⃗(𝑟1⃗⃗⃗  )𝜒𝑘𝑒⃗⃗ ⃗⃗  (𝑟2⃗⃗  ⃗)𝜑𝑛𝑙𝑚(𝑟3⃗⃗  ⃗)𝐶(𝑟12⃗⃗⃗⃗  ⃗),       (4) 



In Eqs. (3) and (4), 𝜒
�⃗� 𝑖

(𝑟1⃗⃗⃗  ) and 𝜒
𝑘𝑓⃗⃗⃗⃗  ⃗(𝑟1⃗⃗⃗  )  are the incident and scattered projectile wave functions, 

Φ𝑖(𝑟2⃗⃗  ⃗, 𝑟3⃗⃗  ⃗) is the target helium atom wave function, 𝜒𝑘𝑒⃗⃗ ⃗⃗  (𝑟2⃗⃗  ⃗) is the ionized electron wave function, 

𝜑𝑛𝑙𝑚(𝑟3⃗⃗  ⃗) is the He
+
 ion wave function, and 𝐶(𝑟12⃗⃗⃗⃗  ⃗) is the post-collision interaction.  The 

perturbation is V = (Vi - Ui), with Vi  being the Coulomb interaction between the projectile 

electron and target atom and Ui a spherically symmetric distorting potential for the target atom.   

The coordinate system used here has the incident projectile momentum along the positive 

z-axis, with the projectile scattering at an angle θs toward the positive x-axis.  The quantization 

axis of the final state ion’s angular momentum is located at an angle γ measured 

counterclockwise from the z-axis.  This is the ion orientation direction for the 2p0 substate.  

Figure 1 depicts the coordinate system with the quantization axis and momentum transfer 

directions shown.   

 

 Figure 1 Coordinate system for the collision scattering plane.  The incident projectile 

momentum (not shown) is along the z-axis and the scattered projectile momentum (not shown) is 

oriented at an angle θs counterclockwise from the z-axis.  The solid blue arrow indicates the 

quantization axis of the He
+
(2p) ion and the dashed arrow indicates the momentum transfer 

direction.  

    

The results presented below are for an entirely coplanar geometry in which the incident 

and scattered projectile momenta, as well as the ionized electron momentum, lie in a plane.  In 
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addition, the orientation of the final state ion is restricted to this same plane (the x-z plane of Fig. 

1).  Double differential cross sections (DDCS) can be obtained from the FDCS of Eq. (1) by 

integrating over the ionized electron angle for fixed scattering angle and incident projectile 

energy.  The transition matrix for coplanar geometry and different orientations of the residual ion 

in the scattering plane for the 2p0 magnetic substate can be found from [28] 

𝑇0
𝑅 =

sin𝛾

√2
(𝑇−1 − 𝑇1) + cos 𝛾𝑇0.        (5) 

This can be rewritten in terms of the real orbitals 2px and 2pz as  

𝑇0
𝑅 = 𝑇𝑧

𝑅 = sin 𝛾 𝑇𝑥 + cos 𝛾 𝑇𝑧        (6) 

where T0, T1, and T-1 are the 2p0, 2p1, and 2p-1 transition matrices with quantization along the z-

axis (γ = 0).  The transition matrices Tx and Tz are for excitation to the 2px and 2pz states.  Note 

that γ = 0 does not imply that any of the magnetic sublevel T-matrices are zero, rather it results in 

the T-matrix for excitation to a sublevel with the quantization axis along the incident beam 

direction.  In coplanar geometry, T-1 = -T1 and Eq. (5) becomes  

 𝑇0
𝑅 = −√2sin 𝛾 𝑇1 + cos 𝛾𝑇0.        (7) 

From Eqs. (6) and (7), it is evident that the distribution of ion orientations is determined by the 

magnitude and relative phase of the amplitudes.  Thus, examining the cross sections as a function 

of orientation angle γ provides information about the relative distribution of ions. 

III. Results 

A. FDCS  

Using our 4DW model, we have calculated FDCS and DDCS for coplanar excitation-

ionization of helium.  In Fig 2, we present the 2p0 FDCS as a function of ionized electron 

momentum components for several different ion orientations.  The parallel and perpendicular 

momentum components are chosen relative to the beam direction and in the scattering plane.  



The radial distance from the center is equal to the magnitude of the ejected electron momentum, 

and higher energy ejected electrons are shown in the outer rings of the plots.  Calculations were 

performed for ejected electron energies between 1 and 30 eV, and the hole in the center of each 

plot is for ejected electron energies below 1 eV.  Due to having data for only discrete ejected 

electron energies, the color plots of Fig. 2 show sharp changes at the boundary of each energy 

ring.  This boundary is an artifact of the plots and has no physical significance.     

Three sets of kinematic conditions are shown.  In the top row of Fig 2, the scattered 

electron energy is fixed at 60 eV with a scattering angle of 8°.  In the middle row, the scattered 

electron energy is fixed at 130 eV with a scattering angle of 8°.  In the bottom row, the incident 

electron energy is fixed at 200 eV and the scattering angle is 5°.  These results show a clear 

dependence of FDCS on orientation of the ion, consistent with previous work [27-28].  In the 

case of orientation along the beam direction or along the momentum transfer direction, almost no 

forward ejection is observed, but a strong backward recoil peak is seen.  This feature has 

previously been traced to the post-collision interaction between outgoing the electron and 

scattered projectile, as well as projectile-ion interactions [31].  For orientation perpendicular to 

the beam direction or perpendicular to the momentum transfer direction, a broader distribution of 

ejected electrons is observed, although the magnitude of the FDCS for these orientations are 5-10 



times smaller than orientations along the beam or momentum transfer directions.    

 

Figure 2 FDCS for excitation-ionization of helium by electron impact as a function of ionized 

electron momentum components.  Four different alignments of the He
+
(2p0) ion (labeled columns in 

figure) and three different sets of kinematic conditions (rows) are shown.  Specifics for the kinematics are 

described in section III.A.  The white arrow indicates the momentum transfer direction.  The magnitude 

of the FDCS is represented by the color bar in atomic units.      

 

Figure 2 also shows that as the ionized electron energy increases, the magnitude of the 

FDCS decreases, indicating that the collision process produces more low energy ejected 

electrons.  These features hold, regardless of whether the incident projectile energy or scattered 

projectile energy is held fixed.  One notable difference between the results for the different 

kinematical conditions can be seen in the FDCS for all alignments.  In this case, the FDCS are 

larger by up to a factor of two for faster projectiles (Ei = 200 eV and Ef = 130 eV) compared to 



the slower projectile case (Ef = 60 eV).  This is consistent with total cross section values for the 

excitation-ionization process, which have a maximum around Ei = 200 eV [20].    

B. DDCS 

By integrating the FDCS over ionized electron angles in the scattering plane, a DDCS 

can be obtained.  We present DDCS for fixed scattering angle as a function of ejected electron 

energy, but undetermined ejected electron angle in Fig. 3.  In column 1 of Fig. 3, the DDCS as a 

function of ejected electron energy are compared to the experimental data of [20] and [21].  In 

order to compare with experiment, the substate cross sections must be summed (2p0 + 2p1 + 2p-

1) because the magnetic substate of the ion is unknown.  The experimental data are cross-

normalized to the 4DW 2p sum for Ef = 60 and 130 eV by normalizing the experimental cross 

section for Ee = 1 eV and Ef = 130 eV to the 4DW 2p sum for this case.  This value was then 

used to normalize the Ef = 60 eV data.  Because the Ei = 200 eV data are from a different 

experiment, they were normalized independently by scaling the experimental cross section to the 

4DW DDCS at Ee = 1 eV.     

In general, the experimental data and 4DW theory show the same overall trend of nearly 

exponential decrease in the cross section as ionized electron energy increases.  However, 

experiment shows a double peak structure at lower ionized electron energies, while no evidence 

of a peak structure is observed in any of the 4DW calculations.  This peak structure is most likely 

due to interference with the doubly excited 3l3l’ states [24].  Because the 4DW calculations 

include only the amplitudes for the excitation-ionization process, no interference between the 

two processes can occur and the peak structure is not present in the 4DW results.  



 

Figure 3 DDCS for EI of heliumto the 2p0 state by electron impact as a function of 

ejected electron energy (left-hand column) and orientation angle (right-hand column).  The 

kinematics are the same as in Fig 2.  In column 1, the 4DW results are shown for He
+
 

orientations along the beam direction (dashed red line), the momentum transfer direction (dash 

dot dot purple line), perpendicular to the beam direction (dash dot blue line), and perpendicular 

to the momentum transfer (dotted green line).  The experimental data of [20] and [21] are 

depicted as crosses.  The sum of the substate DDCS is the solid black line in column 1, but is not 

shown in column 2 because it is constant with respect to γ.  The dashed curves in column 2 

decrease in magnitude with ejected electron energy.  The largest DDCS corresponds to an 

ejected electron energy of 1 eV (dashed black line), and those below are in descending order of 

5, 10, 15, 20, 25, and 30 eV.   

  

In addition to the DDCS sum, which is independent of ion orientation, we also show in 

column 1 of Fig 3 the DDCS for the magnetic substates of the ion for the four orientations of Fig 

2.  The orientation dependence of the FDCS is carried through to the DDCS, although integration 

over the ejected electron angle naturally washes out any structure that would show binary to 

recoil peak ratios.  Consistent with the FDCS results of Fig. 2, the DDCS as a function of ejected 



electron energy for orientation along the beam or momentum transfer direction are very similar 

and nearly an order of magnitude larger than the DDCS for orientations perpendicular to the 

beam or momentum transfer directions.  Column 2 of Fig. 3 shows a clear oscillatory structure to 

the DDCS as a function of orientation direction.  The 2p0 DDCS are largest for orientations near 

the beam direction (γ = 0 or 180°) and smallest for orientations perpendicular to the beam 

direction (γ = 90 or 270°).  This is easily predicted from Eq. (7), where if |𝑇1| ≪ |𝑇0|, the ion is 

oriented near the beam direction.  However, when |𝑇0| and |𝑇1| are of similar magnitude, the 

relative phase between the two amplitudes becomes important.   

The relative magnitudes and phase between the 2p0 and 2p1 DDCS can be studied by 

fitting the data in column 2 of Fig. 3 with a function of the form  

𝐷𝐷𝐶𝑆 = 𝐴[1 − 𝐵 cos(2(𝛾 − 𝜅))]        (8) 

where A is a normalization constant, B is defined as the anisotropy parameter, and κ is the 

DDCS phase shift.  These parameters can be written in terms of the 2p0 (𝜎0) and 2p1 (𝜎1) DDCS 

for quantization axis along the beam direction by  

𝐴 =
1

2
(2𝜎1 + 𝜎0)          (9) 

𝐵 =
√𝜎1

2+
𝜎0
2

4
+𝜎0𝜎1 cos(2𝛿)

𝐴
          (10) 

tan(2𝜅) = 2√2
√𝜎0𝜎1 cos𝛿

2𝜎1−𝜎0
,         (11) 

where 𝛿 is the relative phase between the substate amplitudes T0 and T1.  A detailed derivation of 

these expressions is contained in Appendix A.   

The anisotropy parameter B is a measure of the sensitivity of the DDCS to the orientation 

of the ion and has a value between 0 and 1.  B is zero when the amplitudes are exactly out of 

phase (δ = π/2 or 3π/2) and 𝜎0 = 2𝜎1.  In this case, as B approaches zero, the DDCS as a 



function of alignment angle become more uniform, and are perfectly isotropic when the 2p0 and 

2p1 amplitudes are out exactly of phase and 𝜎0 = 2𝜎1  B is 1 when the amplitudes are exactly in 

phase (δ = 0 or π).  Larger values of B result in greater variation of the DDCS as a function of 

alignment angle.    

 Because the relative phase between substate amplitudes is related to the DDCS phase 

shift 𝜅 by Eq. (11), we can find its value as a function of ejected electron energy.  Recall that to 

calculate the DDCS, the FDCS are integrated over ejected electron angle.  Because the FDCS is 

calculated from the square of the transition matrix amplitude, phase information for the DDCS 

amplitudes cannot be found directly from the 4DW cross sections.  Figure 4 shows κ, δ, A, and B 

as functions of ejected electron energy, along with plots of the momentum transfer magnitude 

and momentum transfer angle.   

 



Figure 4 Normalization (A), anisotropy (B), phase angle (δ), and DDCS phase shift (κ) as a 

function of ejected electron energy for EI of helium.  Also shown are the momentum transfer 

magnitude (q) and angle (𝜃𝑞) as a function of ejected electron energy.   

 

Because parameter A is simply half of the 2p DDCS sum, it exhibits the same nearly 

exponential decay as the results shown in Fig 3.  The relative phase δ between the 2p0 and 2p1 

amplitudes increases with increasing ejected electron energy.  The anisotropy parameter B is 

greatest for the lowest energy projectile.  This indicates that these DDCS are less uniform than 

those for a higher energy projectile, consistent with the results of Fig. 3.  None of the parameters 

A, B, or δ appear to be correlated with the momentum transfer vector magnitude or direction.  

The DDCS phase shift κ exhibits interesting behavior at larger ionized electron energy.  For the 

two largest projectile energies, κ decreases with increasing ejected electron energy, while for the 

lowest projectile energy, it increases.  This is likely indicative of the relationship between the 

2p0 and 2p1 DDCS since all projectile energies show similar behavior of the relative phase with 

increasing ejected electron energy and have nearly identical values of the phase at Ee = 30 eV.   

In addition to the parameters described above, the anisotropy parameter B can be used to 

define a relative length and width of the DDCS  

𝑙 =
1

2
(1 + 𝐵)           (12) 

𝑤 =
1

2
(1 − 𝐵).          (13) 

Figure 5 shows the ratio l/w as a function of ejected electron energy.  As B goes to zero, 

the relative length and width become equal and the DDCS is perfectly isotropic.  This is exactly 

what is observed in Figs. 3-5; as ionized electron energy increases, B tends to zero and the 

DDCS as a function of alignment angle become more isotropic.   The change in shape happens 

quite rapidly with increasing ionized electron energy, as seen by the rapid decay in the l/w ratio 



in Fig 5.  Based on the trend shown in Fig. 5, we might expect that DDCS for ejected electron 

energies greater than 30 eV will be nearly isotropic.  However, further study is needed to confirm 

this.  It is tempting to assume that the DDCS become more isotropic for larger ejected electron 

energy because faster outgoing electrons are less influenced by the He
+
 ion charge distribution.  

However, this cannot be the case for the 4DW model because the ejected electron distorted wave 

is calculated using a spherically symmetric distorting potential that does not change with ion 

orientation.  The quantization axis of the ion is only included in the calculation in the He
+ 

wave 

function.  Therefore, the change in anisotropy with increasing ejected electron energy is likely 

due to the relative magnitude and/or phase between the 2p0 and 2p1 amplitudes.   

 

Figure 5 Ratio of relative length to width of the DDCS as a function of ejected electron energy.  

Results are derived from Eqs. (12) and (13) for the kinematics of Fig 2.  

 

IV. Conclusion 



 We have presented fully differential cross sections and ionized electron angle integrated 

double differential cross sections for simultaneous excitation-ionization of helium by electron 

impact using the 4DW model.  In particular, we focused on alignment effects and showed that 

the shape of the FDCS varies significantly with ion alignment.  By examining the 2p0 magnetic 

substate of the He
+
 ion, we were able to show that alignment effects persist from the FDCS 

through to the DDCS.  Comparison of the DDCS with experiment showed a similar behavior 

between experiment and theory as a function of ejected electron energy, although no resonances 

peaks were observed in the 4DW results, as was expected.  The DDCS as a function of alignment 

angle were shown to fit a function that yielded normalization, anisotropy, and relative phase 

information.  These values showed that the DDCS become more isotropic with increasing 

ionized electron energy.  From the anisotropy parameter, relative lengths and widths of the 

DDCS were calculated.  Experiments corresponding to these types of calculations are quite 

difficult, but some limited results are available and we hope this work encourages further study 

of alignment effects in the excitation-ionization process.   

 

Appendix A 

We show here the derivation of the parameters used in Eq. (8).   

We begin by taking the magnitude squared of Eq. (7) 

|𝑇0
𝑅|2 = |−√2 sin 𝛾 𝑇1 + cos 𝛾  𝑇0|

2
.        (A1) 

Expanding this equation yields 

|𝑇0
𝑅|2 = 2 sin2 𝛾 |𝑇1|

2 + cos2 𝛾|𝑇0|
2 − 2√2 sin 𝛾 cos 𝛾 𝑅𝑒(𝑇0

∗𝑇1).    (A2) 

Grouping terms and simplifying leads to  

|𝑇0
𝑅|2 = cos(2𝛾) [

|𝑇0|2

2
− |𝑇1|

2] + [
|𝑇0|2

2
+ |𝑇1|

2] − √2 sin(2𝛾)  𝑅𝑒(𝑇0
∗𝑇1).   (A3) 



Let 𝐴 =
1

2
[|𝑇0|

2 + 2|𝑇1|
2] =

1

2
[𝜎0 + 2𝜎1], as in Eq. (9).  Note that we have used the definition 

𝜎0 = |𝑇0|
2 and 𝜎1 = |𝑇1|

2.  Then, Eq. (A3) becomes 

|𝑇0
𝑅|2 = 𝐴 {1 +

cos2𝛾[𝜎0−2𝜎1]

2𝐴
−

√2 sin2𝛾 𝑅𝑒(𝑇0
∗𝑇1)

𝐴
}.      (A4) 

Next, let  𝐶 = 2𝜎1 − 𝜎0 and factor this term out from the last two terms to get 

|𝑇0
𝑅|2 = 𝐴 {1 −

𝐶

2𝐴
 [cos(2𝛾) +

2√2 sin(2𝛾)𝑅𝑒(𝑇0
∗𝑇1)

𝐶
] }.      (A5) 

Define tan(2𝜅) = 2√2
𝑅𝑒(𝑇0

∗𝑇1)

𝐶
 .  Then, using some trigonometric identities 

  |𝑇0
𝑅|2 = 𝐴 {1 −

𝐶 cos(2(𝛾−𝜅))

2𝐴 cos(2𝜅)
}.          (A6) 

We can then identify 𝐵 =
𝐶

2𝐴 cos(2𝜅)
.  The parameter B can be rewritten using the trigonometric 

identity cos(tan−1 𝑥) =
1

√𝑥2+1
  such that 

𝐵 =
𝐶√8[𝑅𝑒(𝑇0

∗𝑇1)]
2

𝐶2 +1

2𝐴
=

𝐶

2𝐴
 √

(8𝜎0𝜎1 cos2(𝜃0−𝜃1)+𝐶2)

𝐶2        (A7) 

or 

 𝐵 =
1

𝐴
√𝜎0

2

4
+ 𝜎1

2 + 𝜎0𝜎1 cos(2(𝜃0 − 𝜃1)), which is Eq. (10).    (A9) 

Note that 𝜃0 and 𝜃1 come from writing T0 and T1 in polar form, i.e. 𝑇0 = |𝑇0|𝑒
𝑖𝜃0 and 𝑇1 =

|𝑇1|𝑒
𝑖𝜃1.  Then, we define the relative phase between the 2p0 and 2p1 amplitudes as 𝛿 = 𝜃0 −

𝜃1.  Finally, we arrive at Eq. (8) with the parameters A, B, and 𝜅 defined as in Eqs. (9-11).   

𝐷𝐷𝐶𝑆 ∝ |𝑇0
𝑅|2 = 𝐴[1 − 𝐵 cos(2(𝛾 − 𝜅))].       (A10) 

Note that both B and the DDCS phase shift 𝜅 depend on the relative phase 𝛿, and therefore can 

be used to calculate δ 

cos 𝛿 =
(2𝜎1−𝜎0) tan2𝜅

2√2𝜎0𝜎1
 .           (A11) 



   

Acknowledgements 

We gratefully acknowledge the support of the NSF under Grant No. PHY-1505217.    

References 

[1] K. L. Nixon and A. J. Murray, Phys. Rev. Lett. 112, 023202 (2014).   

[2] A. D. Stauffer, Phys. Rev. A 89, 032710 (2014). 

[3] S. Amami, A. J. Murray, A. D. Stauffer, K. L. Nixon, G. Armstrong, J. Colgan, and D. H. 

Madison, Phys. Rev. A 90, 062707 (2014).  

[4] L. Ph. H. Schmidt, S. Schössler, F. Afaneh, M. Schöffler, K. E. Stiebing, H. Schmidt-

Böcking, and R. Dörner, Phys. Rev. Lett. 101, 173202 (2008). 

[5] S. F. Zhang, X. Ma, A. B. Voitkiv, Phys. Rev. A 90, 022706 (2014). 

[6] L. Ph. H. Schmidt, J. Lower, T. Jahnke, S. Schößler, M. S. Schöffler, A. Menssen, C. 

Lévêque, N. Sisourat, R. Taïeb, H. Schmidt-Böcking, and R. Dörner, Phys. Rev. Lett. 111, 

103201 (2013). 

[7] C. A. Tachino, F. Martín, R. D. Rivarola, J. Phys. B: At. Mol. Opt. Phys. 45, 025201 (2012). 

[8] G. S. J. Armstrong, J. Colgan, M. S. Pindzola, S. Amami, D. H. Madison, J. Pursehouse, K. 

L. Nixon, and A. J. Murray, Phys. Rev. A 92, 032706 (2015). 

[9] N. Anderson and K. Bartschat, J. Phys. B: At. Mol. Opt. Phys. 30, 5071 (1997). 

[10] N. Anderson, J. W. Gallagher, and I. V. Hertel, Phys. Rep. 165, 1 (1988). 

[11] U. Fano and J. H. Macek, Rev. Mod. Phys. 45, 553 (1973). 

[12] I. C. Percival and M. J. Seaton, Philos. Trans. Royal Soc. A 251, 15 (1958). 

[13] “Impact Ionization,” N. Anderson and K. Bartschat, Springer International Publishing A G 

(2017). 



[14] G. Sakhelashvili, A. Dorn, C. Hohr, J. Ullrich, A. S. Kheifets, J. Lower, and K. Bartschat, 

Phys. Rev. Lett. 95, 033201 (2005). 

[15] X. L. Chen, A. L. Harris, J. M. Li, T. P. Esposito, J. K. Deng, and C. G. Ning, Phys. Rev. A 

90, 042701 (2014). 

[16] S. Bellm, J. Lower, K. Bartschat, X. Guan, D. Weflen, M. Foster, A. L. Harris and D. H. 

Madison, Phys. Rev. A 75, 042704 (2007). 

[17] X. G. Ren, C. G. Ning, J. K. Deng, G. L. Su, S. F. Zhang, Y. R. Huang, and G. Q. Li, Phys. 

Rev. A 72, 042718 (2005). 

[18] N. Watanabe, M. Takahashi, Y. Udagawa, K. A. Kouzakov, and Yu. V. Popov, Phys. Rev. 

A 75, 052701 (2007). 

[19] R. Schwienhorst, A. Raeker, K. Bartschat, and K. Blum, J. Phys. B: At. Mol. Opt. Phys. 29, 

2305 (1996). 

[20] P. A. Hayes and J. F. Williams, Phys. Rev. Lett. 77, 3098 (1996). 

[21] M. Dogan, A. Crowe, K. Bartschat, and P. J. Marchalant, J. Phys. B: At. Mol. Opt. Phys. 31, 

1611 (1998). 

[22] K. Bartschat and A. N. Grum-Grzhimailo, J. Phys. B: At. Mol. Opt. Phys. 35, 5035 (2002). 

[23] A. Götz, W. Mehlhorn, A. Raeker, and K. Bartschat, J. Phys. B: At. Mol. Opt. Phys. 29, 

4699 (1996). 

[24] P. A. Hayes, D. H. Yu, and J. F. Williams, J. Phys. B: At. Mol. Opt. Phys. 31, L193 (1998). 

[25] H. Merabet, R. Bruch, S. Füling, K. Bartschat, and A. L. Godunov, J. Phys. B: At. Mol. Opt. 

Phys. 36, 3383 (2003). 

[26] V. V. Balashov and I. V. Bodrenko, J. Phys. B: At. Mol. Opt. Phys. 32, L687 (1999) 



[27] A. L. Harris, S. Amami, T. Saxton and D. H. Madison, J. Phys. B: At. Mol. Opt. Phys. 51, 

015203 (2017). 

[28] A. L. Harris and T. P. Esposito, J. Phys. B: At. Mol. Opt. Phys. 49, 165202 (2016). 

[29] A. L. Harris, M. Foster, Ciarán Ryan-Anderson, J.L. Peacher, and D.H. Madison, J. Phys. 

B: At. Mol. Opt. Phys. 41, 135203 (2008); J. Phys. B: At. Mol. Opt. Phys. 45, 059501 (2012). 

[30] J. F. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957). 

[31] A. L. Harris and T. P. Esposito, J. Phys. B: At. Mol. Opt. Phys. 48, 215201 (2015). 


