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We show that 2D fractal subsystem symmetry-protected topological phases may serve as re-
sources for universal measurement-based quantum computation. This is demonstrated explicitly for
two cluster models known to lie within fractal symmetry-protected topological phases, and compu-
tational universality is shown to persist throughout those phases. One of the models considered is
simply the cluster model on the honeycomb lattice in one limit. We discuss the importance of rigid
subsystem symmetries, as opposed to global or (D− 1)-form symmetries, in this context.

I. INTRODUCTION

An entangled quantum state can serve as a re-
source for universal quantum computation using only
non-entangling (single qubit) measurements, via a
scheme called measurement-based quantum computation
(MBQC)1–6. A wide variety of states have been shown
to be computationally useful as resources for MBQC7–22,
with the standard (and first) examples being the cluster
states1. The concept of computational usefulness has also
been extended to phases of matter21–30, which possess
uniform computational usefulness throughout an entire
phase. In particular, this was proven generally for 1D
symmetry-protected topological (SPT) phases25–28, and
is intimately related to their classification31–37.

However, MBQC is only universal in 2 or higher di-
mensions, as one spatial dimension must play the role of
time in the quantum circuit. In 2D, regions of computa-
tional usefulness have been shown numerically to coincide
with the phase diagram of nontrival SPT phases21,22,29,
and proven to persist within small perturbations about
the cluster state fixed point of the square lattice clus-
ter model38. Recently, this same cluster model was
proven to possess universal computational power every-
where within a cluster phase, protected by rigid line-
like symmetries39. This phase is in fact a 2D subsystem
SPT40, which in higher dimensions are more generally re-
lated41 to models of fracton topological order42–50. The
backbone of the proof in Ref. 39 relies on the emergence
of a symmetry-protected cellular automaton acting on the
virtual (computational) space. Recently, fractal subsys-
tem SPT phases50–52 have also been discovered, which
are protected by fractal symmetries arising from cellular
automata.

In this paper, we show that some of the fractal SPT
phases of Ref. 51 constitute a computationally useful
phase for universal MBQC. This provides a second prov-
able class of such phases in 2D, after Ref. 39. The cellu-
lar automaton generating the fractal symmetries directly
leads to the same symmetry-protected cellular automa-
ton acting on the virtual space, the vital component in
the proof of Ref. 39. Two fractal symmetric cluster mod-

els are considered explicitly. We finally discuss the im-
portance of SPTs protected by rigid (either line-like or
fractal) subsystem symmetries, as opposed to higher form
SPTs53–55.

After the initial posting of this paper, another related
work appeared56 which also establishes a connection be-
tween subsystem SPTs and computational usefulness,
building off of the existence of a quantum cellular au-
tomaton on the virtual space. We note that a quantum
cellular automaton is (by definition) reversible, which is
not true for general fractal SPTs.

II. FRACTAL SYMMETRIC CLUSTER STATES

Here, we first give a practical review of the fractal sym-
metric cluster models51. The cluster state on any lattice
is the unique ground state of the commuting-projector
cluster Hamiltonian,

HC = −
∑

s

Xs

∏

s′∈Γ(s)

Zs′ (1)

where s denotes a site, Γ(s) is the set of all sites connected
to s by an edge, and Xs, Zs, are the Pauli matrices acting
on the spin-1/2 degree of freedom at site s. We consider
symmetries given by products of X operators of the form
S({qs}) =

∏
sX

qs
s where each qs ∈ {0, 1} is an element

of F2, and [S({qs}), HC ] = 0. In the cluster models we
consider here, the symmetries act on some fractal subset
of sites. These arise naturally by considering {qs} as the
space-time evolution of a 1D additive cellular automa-
ton44,51.

We work explicitly with two specific models, the Sier-
pinski cluster model (SC) and the Fibonacci cluster
model (FC). These are defined on the square lattice with
a unit cell composed of two sites, which we label as the a
and b sublattices. Let us label each site by s = (i, j, α),
where ~r(i, j) = i~e1 + j~e2 give the Cartesian coordinates
of the unit cell, and α ∈ {a, b} the specific site in the
unit cell. We take ~e1 = (1, 0) and ~e2 = (0,−1), such that
increasing j corresponds to moving “downwards” in the
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xy plane. For convenience we denote the Pauli matrix

Zs = Z
(α)
i,j , and similarly for X and Y .

The SC Hamiltonian is given by

HSC = −
∑

i,j

X
(a)
i,j Z

(b)
i,j−1Z

(b)
i,j Z

(b)
i+1,j

−
∑

i,j

X
(b)
i,j Z

(a)
i,j+1Z

(a)
i,j Z

(a)
i−1,j (2)

which describes the cluster model on the lattice shown in
Fig. 1 (left), and is isomorphic to the honeycomb lattice.
We remark here that the honeycomb lattice cluster model
may even be easier to realize practically than the square
lattice cluster model, due to a smaller coordination num-
ber. We always consider the SC model on cylinders of
circumference L = 2l − 1 along ~e1.

Our second model is the Fibonacci cluster (FC) model,
given by the Hamiltonian

HFC = −
∑

i,j

X
(a)
i,j Z

(b)
i,j−1Z

(b)
i−1,jZ

(b)
i,j Z

(b)
i+1,j

−
∑

i,j

X
(b)
i,j Z

(a)
i,j+1Z

(a)
i−1,jZ

(a)
i,j Z

(a)
i+1,j (3)

which describes the cluster model on the lattice shown in
Fig. 1 (right). We always consider this model on cylinders
of circumference L = 2l along ~e1.

Let us briefly discuss the symmetries. First, we de-
fine the vector qα(j) such that (qα(j))i = q(i,j,α), which
has the interpretation of being the state of the cellu-
lar automaton α at time j. Then, S({qs}) represents
a valid symmetry if qα(j) is a valid space-time trajec-
tory of the cellular automaton: qa(j + 1) = fqa(j) and
qb(j − 1) = f̄qb(j) for all j, where f, f̄ are the F2-linear
evolution operators, defined for the SC acting on a state
q as

(fSCq)i = qi + qi−1; (f̄SCq)i = qi + qi+1 (4)

and for the FC as

(fFCq)i = (f̄FCq)i = qi−1 + qi + qi+1 (5)

recall that all addition is modulo 2. These rules lead to
self-similar fractal structures44. For example, fSC leads
to the Sierpinski gasket at large scales, hence its name.
For the sizes we have chosen, the total symmetry group
is simply (Z2 × Z2)k(L), where k(L) = L− 1 for the SC,
and k(L) = L for the FC. The crucial difference between
the SC and FC here is that on the specified cylinders,
fFC corresponds to a reversible cellular automaton, while
fSC does not. Nevertheless, fSC is effectively reversible
when restricted to only even (

∑
i qi = 0) states. As we

shall see, in the quantum computation this translates to
the identity gate only being realized on the even parity
subspace. We may therefore define the inverse evolution
f−1, such that f−1fq = q for all q for the FC, but only
for even q for the SC. These inverses are discussed in
detail in Appendix A.
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FIG. 1: The lattices on which the SC (top left) and FC (top
right) are simple cluster models (Eq. (1)). In our tensor net-
work description, we group the a and b sites as shown into
one tensor C[p] = (Cnews[p]), indexed by the internal virtual
indices for each compass direction (n, e, w, and s) and 4-
dimensional physical index p = papb. For the SC, all virtual
indices have dimension 2, while for the FC, w = w1w2 and
e = e1e2 are 4-dimensional indices. CSC [p] (CFC [p]) is defined
according to the tensor network diagrams in the bottom left
(right). Here, small circles represent a scaled � tensor which is
1p
2

if all indices are equal in the computational (Z) basis and

0 otherwise, and the small squares represent 2⇥ 2 Hadamard
gates.

These models lie within their own nontrivial SPT
phases, protected by the full set of fractal symme-
tries51,52. Next, we demonstrate a scheme for universal
MBQC using the unperturbed cluster state, which can
then be generalized to elsewhere in the phase.

III. UNIVERSAL MEASUREMENT BASED
QUANTUM COMPUTING WITH THE CLUSTER

STATE

First, we remark that the universality of MBQC with
the cluster state is not surprising7. Following the scheme
of Ref. 2 it is always possible, via measurements in the Z
basis, to e↵ectively isolate 1D chains — MBQC then fol-
lows in a similar manner as for the square lattice. How-
ever, this scheme fails far away from the cluster state
fixed point. In this section we present a di↵erent scheme
for universal MBQC, inspired by Ref. 39, which adapts
more straightforwardly to elsewhere in the fractal SPT
phase.

The computational scheme goes as follows. The cluster
state is prepared on a long cylinder with circumference L
along ~e1 and some much larger length L2 along ~e2. The
direction ~e2 is interpreted as the time direction of the
quantum circuit. All physical spins in each L⇥Lb block
(for some Lb of order L) are measured, which induces
an application of some quantum gate to some number of
logical qubits in the virtual (computational) space, up to
byproduct operators unavoidable in MBQC1,2. The pre-
cise gate depends on the basis in which the measurements

FIG. 1: The lattices on which the SC (top left) and FC (top
right) are simple cluster models (Eq. (1)). In our tensor net-
work description, we group the a and b sites as shown into
one tensor C[p] = (Cnews[p]), indexed by the internal virtual
indices for each compass direction (n, e, w, and s) and 4-
dimensional physical index p = papb. For the SC, all virtual
indices have dimension 2, while for the FC, w = w1w2 and
e = e1e2 are 4-dimensional indices. CSC [p] (CFC [p]) is defined
according to the tensor network diagrams in the bottom left
(right). Here, small circles represent a scaled δ tensor which is
1√
2

if all indices are equal in the computational (Z) basis and

0 otherwise, and the small squares represent 2× 2 Hadamard
gates.

These models lie within their own nontrivial SPT
phases, protected by the full set of fractal symme-
tries51,52. Next, we demonstrate a scheme for universal
MBQC using the unperturbed cluster state, which can
then be generalized to elsewhere in the phase.

III. UNIVERSAL MEASUREMENT BASED
QUANTUM COMPUTING WITH THE CLUSTER

STATE

First, we remark that the universality of MBQC with
the cluster state is not surprising7. Following the scheme
of Ref. 2 it is always possible, via measurements in the Z
basis, to effectively isolate 1D chains — MBQC then fol-
lows in a similar manner as for the square lattice. How-
ever, this scheme fails far away from the cluster state
fixed point. In this section we present a different scheme
for universal MBQC, inspired by Ref. 39, which adapts
more straightforwardly to elsewhere in the fractal SPT
phase.

The computational scheme goes as follows. The cluster
state is prepared on a long cylinder with circumference L
along ~e1 and some much larger length L2 along ~e2. The
direction ~e2 is interpreted as the time direction of the
quantum circuit. All physical spins in each L×Lb block
(for some Lb of order L) are measured, which induces
an application of some quantum gate to some number of
logical qubits in the virtual (computational) space, up to
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byproduct operators unavoidable in MBQC1,2. The pre-
cise gate depends on the basis in which the measurements
are performed. At the end, one can terminate with a fi-
nal row of unmeasured a sites after the final block, which
then contains the output state of the circuit.

We first introduce a tensor network representation of
the FC and SC states. These states are described exactly
by the translationally invariant tensor networks with ten-
sors C[p] = (Cnews[p]), defined in Fig. 1 (bottom). We
use the notation C[|p〉] to denote contraction of the physi-
cal index with the state vector |p〉. The tensors C[p] obey
the following cluster-like symmetries

CSC [|p〉] = XnXeXsCSC [Xpa |p〉] = XwXsCSC [|p〉]
= ZsZwZnCSC [Xpb |p〉] = ZeZnCSC [|p〉]

CFC [|p〉] = XnXe1Xw2
XsCFC [Xpa |p〉] = Xe2XsCFC [|p〉]

= Xw1XsCFC [|p〉] = ZsZe2Zw1ZnCFC [Xpb |p〉]
= Zw2

ZnCFC [|p〉] = Ze1ZnCFC [|p〉] (6)

for the SC or FC, and the following cluster symmetries
(for both SC and FC)

C[|p〉] = XsC[Zpb |p〉] = ZnC[Zpa |p〉] (7)

where Xn is the X Pauli matrix operating on the n leg
of C, and so on. Together, all these symmetries are suffi-
cient to fully specify C. The cluster-like symmetries will
be shown to hold anywhere within the phase, while the
cluster symmetries are only true at the cluster state fixed
point39.

We now take the system on a cylinder of circumfer-
ence L. Consider the transfer matrix T [p] = (T [p]s,n)
obtained when the state of all the spins i along a row has
been fixed (by measurement) to p = (|pi〉),

T [p]s,n =

n0 n1 n2 n3 n4 n5

s0 s1 s2 s3 s4 s5

|p0〉 |p1〉 |p2〉 |p3〉 |p4〉 |p5〉
. . . . . .

where all internal e and w indices have been summed
over, and s = (si), n = (ni), are the remaining virtual
indices, which are combined to form the indices of the
matrix T [p].

First, consider T0 where all physical spins have been
fixed to |pi〉 = |+a+b〉, where |±〉 ≡ (|0〉 ± |1〉)/

√
2. Let

Z(v) =
∏L−1
i=0 Zvii be an L-qubit Pauli Z operator acting

on the virtual space, and similarly for X(v), where vi ∈
{0, 1}. Then, Eq. (6) implies that T0 has the symmetry

T0 = X(fv)T0X(v) = Z(v)T0Z(f̄v) (8)

for arbitrary vectors v. These completely specify T0,
which therefore enacts the same cellular automaton, f
and f̄ , as that of the protecting symmetry.

Now, consider making measurements on all physical
spins along this row in the XY plane, such that

|pi〉 =
1

2

(
|0〉a + (−1)η

a
i eiδ

a
i |1〉a

)(
|0〉b + (−1)η

b
i eiδ

b
i |1〉b

)
,

(9)

where δαi is the angle in the XY plane of the measure-
ment on the α spin at site i (which we have full control
over) and ηαi ∈ {0, 1} is the measurement result (which
we do not have control over). Then, the symmetries of C
give

T [p] =

[∏

i

X
ηbi
i e

iδbiXi

]
T0

[∏

i

Z
ηai
i eiδ

a
i Zi

]
(10)

The unitary gates will be implemented by choosing δ ap-
propriately, while the non-zero η will contribute to the
byproduct operator.

One computational step will consist of an L×Lb block
of the cylinder. Let LFCb = L/2 and LSCb = L. The
identity operator is obtained by measuring all physical
spins in the X basis. Ignoring byproduct operators for
now (setting all η = 0), the identity operation is obtained

as I ≡ T Lb
0 . While IFC = 1 as desired, we have instead

that ISC = Pe + XPo, where Pe(o) = [1 + (−)Z]/2 is

the projector on to the even(odd) subspace, X = X⊗L,
and Z = Z⊗L. That is, the action of ISC maps each
odd state onto its even partner. Computation with the
SC proceeds in the even subspace, on which ISC acts as
identity. In general, for a non-reversible f , computation
will take place in some wired subspace W of the full 2L-
dimensional virtual Hilbert space (general f and L are
treated in Appendix B). By setting a single δ = θ in
one row of the L × Lb block, it is possible to realize the

gates eiθX(fki) and eiθZ(f̄ki), where i is the vector with all
zeros except 1 at i. These may therefore serve as single or
multi-qubit entangling gates. In particular, we note that
due to the fractal structure of f , qubits separated by a
large power of 2 may be easily entangled in a single step
— this feature may have useful practical applications. In
Appendix C, we prove that these operations are universal
on some number of logical qubits, and also give the form
of the byproduct operators.

The full computation begins with an initialization of
the state (which can be done by measuring the a sites of
the first row of the first block in the Z basis). Each L×Lb
block then implements a unitary gate. We consider a
setup with a final row of a sites at the end of the cylinder.
After the final block has been measured, this last row of
unmeasured a sites contains the computation result (up
to byproduct operators).

IV. AWAY FROM THE CLUSTER FIXED
POINT

We have carefully set up our MBQC scheme such that
it may be easily extended away from the cluster state
fixed point, provided the full set of fractal symmetries
are respected. From here on, the proof for universal-
ity throughout the fractal SPT phase follows that of the
square lattice cluster model in Ref. 39 without issue. We
briefly outline the proof here.
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The set of fractal symmetries pose a strict constraint
on the possible allowed perturbations. Any state in the
fractal SPT phase, |ψ〉, may be connected to the cluster
state |C〉 via a finite depth symmetry-respecting local uni-
tary circuit, |ψ〉 = U |C〉. Expanding U in the Pauli basis
of L × L2 spins, U =

∑
cX(·)Z(·), the only symmetry

respecting Z(·) terms must be products of
∏
s′∈Γ(s) Zs′

(a proof of this claim is in Appendix D). Making use
of a property of |C〉, ∏s′∈Γ(s) Zs′ |C〉 = Xs|C〉, leads to

the following fact39: Anywhere in the fractal SPT phase
the tensor network state is described by tensors Aij [|p〉]
(where ij labels the unit cell) which have the property
that for |p〉 = |±a±b〉 in the symmetry-protected X basis,

Aij [|±a±b〉] = Bij [|±a±b〉]⊗ C[|±a±b〉] (11)

factors into a non-universal junk part, B, and the univer-
sal cluster part C from earlier. Crucially, the symmetry
operators Xa and Xb act trivially on B. Aij therefore
obeys all our cluster-like symmetries, Eq. (6) (note that
we never used the cluster symmetries from Eq. (7) in any
of our arguments). This alone is enough to prove that the
identity gate Tiden can be realized exactly, as in Ref. 25,
and this state therefore acts as a quantum wire on k(L)
qubits. To perform non-identity gates, the oblivious wire
is used to turn quantum wire into computation27,28. In
this procedure, a unitary evolution is maintained only to
first order in the angle δ away from the X axis. Thus, a
unitary rotation is accomplished by repeated rotations of
a small angle, along with taking into account a measur-
able non-universal scale factor28. The measurement and
initialization procedure should also be modified accord-
ingly28. The computational scheme presented in previous
sections generalize in a straightforward manner to this
type of procedure away from the fixed point.

V. WHY RIGID SUBSYSTEM SYMMETRIES?

The schemes considered here and in Ref. 39 are qual-
itatively different to previous approaches to universal
MBQC in two dimensions. Previous approaches21,22,29

for performing 2D MBQC in the presence of perturba-
tions essentially rely upon distilling an almost exact clus-
ter or valence-bond state via measurement and then us-
ing further measurements to decouple effective quantum
wires and perform entangling gates between them. Here
we instead consider resource states that reduce, on a long
cylinder, to quantum wires for a number of qubits that
grows with the radius, without the requirement that re-
gions of qubits are measured in the Z basis to decouple
quantum wires. This allows results developed for 1D SPT
quantum wires to be applied25–28,39. In this section we
demonstrate the importance of rigid (line40 or fractal51)
subsystem symmetry, as opposed to global or (D − 1)-
form (deformable line) symmetries53.We do this by show-
ing that systems with such symmetries, when viewed as
a 1D system on a cylinder, do not host a maximally non-

V γ0
g

V
γ′0
g

V γ1
g

V
γ′1
g

UγgUγ
′

g

FIG. 2: 1-form symmetries with endpoint operators.

commutative projective representation of a large symme-
try group scaling with system size.

Suppose we have a unique short-range entangled
ground state |ψ〉 of a gapped local Hamiltonian that is
symmetric under a (D−1)-form symmetry Uλg , for g ∈ G
and λ a closed path on the lattice. Applying Uγg to |ψ〉
along an open path γ, with domain [0, 1], creates ex-
citations in the neighborhood of its end points (possi-
bly located at lattice boundaries). These exciations can
be locally annihilated by some operators V γ0g , V γ1g , with
support size on the order of the correlation length, i.e.

(V γ0g ⊗ V γ1g )Uγg |ψ〉 = |ψ〉 (12)

where V γ0g , V γ1g , can always be chosen to not overlap
with Uγg , see Fig. 2. Unlike in 1D, where these end point

operators may form a projective representation31–37, in
2D or higher we can consider a disjoint path γ′ sharing
an end point with γ, without loss of generality assume
γ0 = γ′0, and the other end points separated by a distance
much larger than the correlation length, see Fig. 2. Then

[V γ0g , V
γ′0
h ] = 0 since [Uγg , U

γ′

h ] = 0 and [V γ1g , V
γ′1
h ] = 0

as they are pairs of operators with disjoint support. Fur-
thermore, since the symmetry is deformable the endpoint
operator should only depend on the endpoint location
γ′0 = γ0. This implies [V γ0g , V γ0h ] = 0 and hence Vg can-
not form a nontrivial projective representation as all the
matrices commute. Therefore, when the state is viewed
as a 1D SPT on a long cylinder, with respect to the
(D − 1)-form symmetries running along the cylinder, it
must lie in the trivial phase and generically will not be
useful as a quantum wire.

If one additionally considers a global symmetry (such
as the cluster state in the Appendix of Ref. 51), the
boundary operators for the (D−1)-form symmetry do not
necessarily commute with the boundary operators for the
global symmetry. This can lead to nontrivial projective
representations at the end of a long cylinder and hence
a nontrivial 1D SPT phase under the combined global
and (D − 1)-form symmetries along the cylinder. How-
ever, the 1D SPT phases produced in this way can only
support a constant stable edge degeneracy as the radius
of the cylinder increases, and hence can only wire a con-
stant number of qubits. Consequently, for schemes such
as the one considered in this paper and in Ref. 39 global
and (D−1)-form symmetries do not suffice and rigid sub-
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system symmetries are necessary for robust MBQC on a
number of qubits growing with L.

We remark that the mere existence of a nontrivial sub-
system SPT phase alone does not imply that a universal
set of logical gates are possible via single spin measure-
ments — this is a property of the underlying cellular au-
tomaton. For example, consider the 2D phase consisting
of decoupled 1D SPT chains oriented vertically (a “weak
subsystem SPT”40). On a cylinder this phase serves as
a quantum wire for a number of qubits growing with L,
but entangling gates between qubits from different chains
cannot be accomplished using only single qubit measure-
ments.

VI. CONCLUSION

We have shown that 2D cluster models with fractal
symmetries, exemplified here by the SC and FC, may
serve as resources for universal measurement-based quan-
tum computation. Furthermore, this is a property of the
entire fractal SPT phase, not just the cluster state fixed
point. Despite the fractal structure of the symmetries,
we reiterate that the underlying models are simple clus-
ter models on regular lattices.

Further questions involve other types of symmetries.
The square lattice cluster model in the proof of Ref. 39
is protected by rigid subsystem symmetries40. These are
fundamentally different from (seemingly similar) (D−1)-
form symmetries53, as we have shown. A particular 2D
cluster model possessing global and (D−1)-form symme-
tries on a cylinder can only wire a single qubit — is there
a scheme by which such a model is useful for universal
quantum computation beyond small perturbations of the
cluster model fixed point?

Another interesting question is whether there exists
a rigid subsystem SPT MBQC scheme for a 3D model
where the boundary qubits are topologically protected.
This may allow rigid subsystem SPT MBQC to persist
to nonzero temperatures57,58.
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Appendix A: Reversing the cellular automata

Here, we discuss reversing the evolution of the cellular
automata fFC and fSC on rings of circumference L = 2l

and 2l − 1, respectively.
It is helpful to use a polynomial representation to de-

scribe these linear cellular automata. Let us define the

Laurent polynomial q(x) over F2 corresponding to the

state q as q(x) =
∑L−1
i=0 qix

i. Periodicity is enforced
by setting xL = 1. In this language, the evolution
of the cellular automaton is encoded in a single poly-
nomial f(x), such that if qt(x) describes the state at
time t, then the state at the next time is described by
qt+1(x) = f(x)qt(x). The evolution f̄ in the main text is
obtained by f̄(x) = f(x−1).

For the FC, fFC(x) = x−1 + 1 + x. In particular,
suppose we apply the evolution 2l−1 = L/2 times, we

have that f
L/2
FC (x) = x−L/2 + 1 + xL/2 = 1, where we

have used the fact that x−L/2 = xL/2, and that the

binomial coefficient
(
L/2
k

)
is 0 (mod 2) for all k except

k = 0, L/2. Thus, f
L/2
FC (x) = 1, which therefore implies

that fFC is reversible, and the inverse evolution is given

by f−1
FC(x) ≡ fL/2−1

FC (x). Starting with an arbitrary state
qt(x), this guarantees that it will have a cycle with period
L/2, qt+L/2(x) = qt(x). This is why we took the funda-
mental computational step to be an L× (L/2) block for
the FC.

For the SC, fSC(x) = 1 + x. Applying it 2l − 1 = L
times, we have

fLSC(x) = 1 + x+ x2 + · · ·+ xL−1 + xL

= x+ x2 + · · ·+ xL−1 (A1)

Letting u(x) =
∑L−1
i=0 xi, we have that fLSC(x) = 1+u(x),

where u(x) has the property that xiu(x) = u(x). Now,
consider the action of fLSC on an even state, which we
define as a state with q(0) =

∑
i qi = 0. This may be

written as

fLSC(x)q(x) = (1 + u(x))q(x)

= q(x) +

L−1∑

i=0

qix
iu(x)

= q(x) +

(
L−1∑

i=0

qi

)
u(x)

= q(x) + q(0)u(x) = q(x) (A2)

Thus, fLSC acts as the identity on any even state. We

may therefore define the inverse f−1
SC(x) ≡ fL−1

SC (x) which
reverses the evolution of fSC restricted to even states.
This also implies that for any even initial state qt(x), the
SC has a cycle with period L, qt+L(x) = qt(x).

Finally, for completeness, we give the form of the in-
verse evolutions explicitly. They are given by

(f−1
SCq)i =

i−1∑

j=0

zj2qj +

L−1∑

j=i

z1+j
2 qj (A3)

(f̄−1
SCq)i = (f−1

SCq)i + qi (A4)

(f−1
FCq)i = (f̄−1

FCq)i =

L−1∑

j=0

(1− z|i−j|−2
3 )qj (A5)

where znm = 1 if n is a multiple of m, else 0.
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The number of symmetries for the FC and SC models
are given by 22k(L), where 2k(L) is the number of distinct
cycles of f . For the FC, we saw that for any arbitrary
state, qt+L/2(x) = qt(x), and so k(L) = L. For the SC,
we found that only for even states, qt+L(x) = qt(x), while
an odd state never returns to itself, and so k(L) = L− 1.

Appendix B: General cellular automaton

Let us now consider a general additive cellular automa-
ton f and circumference L. As there are only a finite
number (2L) of possible polynomials, we must have that
after some time t0, f t0(x) = f t0+T (x). That is, starting
with the initial state q0(x) = 1, after some time t0 it must
converge on to some cycle with period T > 0. Further,
let t0 and T be the minimal choices for which this holds.

Then, we conclude that any state r(x) that can be
written as r(x) = f t0(x)q(x), under evolution by f , must
have a cycle with period dividing T : fT (x)r(x) = r(x).
We define the set of such states to be the wired states,

W = {r(x)|fT (x)r(x) = r(x)} (B1)

which is a subset of S, the set of all 2L states.
We can then define a linear surjective mapping of states

from S to W , defined as I : q(x)→ I(x)q(x) where

I(x) = fnT (x) (B2)

for n chosen such that nT ≥ t0. Indeed, one can readily
verify that I(x)q(x) ∈W for any q(x). Similar to before,
we may also write I(x) = 1 + u(x), where u(x) satisfies
u(x)q(x) = 0 for q(x) ∈ W . The inverse evolution is
therefore defined for any state q(x) ∈W as fnT−1(x).

In the computation described in the main text, one
works with states within a wired subspace W. The ba-
sis vectors for W are in one-to-one correspondence with
states in W ,

W = span{
L−1∏

i=0

Xri
i |0〉

⊗L | r(x) =
∑

i

rix
i ∈W} (B3)

One uses an L×Lb block of the cylinder, with Lb = nT ,
to realize an identity gate on the wired subspace while
also implementing the mapping I.

Appendix C: Byproduct operators and universality

One computational step consists of performing mea-
surements on an L × Lb block of the cylinder, where
LFCb = L/2 and LSCb = L. This is represented by the

matrix T =
∏Lb−1
j=0 T [pj ] where (pj)i is the measured

state of the ith spin in the jth row of this block, which
we again parameterize by δαij and ηαij , as in Eq. (9). Let
us further define the vector (ηαj )i = ηαij .

1. Fibonacci cluster state

Let us first discuss the FC. Measuring all physical spins
in the X basis (δαij = 0) leads to the realization of the
identity gate. Using Eqs. (8) and (10), we may show that
for the FC,

TFCiden = UFCΣ ({ηαij})IFC (C1)

where IFC ≡ T Lb
0 = 1, and UΣ, a product of Pauli oper-

ators, is the byproduct operator obtained by moving X
and Z factors in Eq 10 to the left of the product using
Eq 8.

The byproduct operator for the FC is given, up to an
overall sign, by

UFCΣ =

Lb−1∏

j=0

X
(
f jFCη

b
Lb−1−j

) Lb−1∏

j=1

Z
(
f̄−jFCη

a
Lb−j

)

(C2)

If we measure a single physical spin at an angle θ in
the XY plane (setting δai0,j0 or δbi0,j0 to θ), we get

TFCa,θ = UFCΣ ({ηαij})IFCe±iθZ(f̄j0 i0) (C3)

for an a spin, or

TFCb,θ = UFCΣ ({ηαij})e±iθX(fL−1−j0 i0)IFC (C4)

for a b spin, where i0 is a vector with zeros everywhere
except a 1 at i0. These may therefore act as single or
multi-qubit rotations. The ± sign in the exponent arises
from commutation with potential byproduct operators,
which can be corrected for by choosing θ → ±θ if the
necessary measurements have been completed prior. For
TFCa,θ , one must measure all b spins with j < j0 to deter-

mine the correction, and for TFCb,θ , one needs to measure
all a spins with j ≤ j0.

To prove universality, let us consider the elementary
gates, which are obtained by setting a single δαij = θ,

while keeping the rest 0. Using non-zero δak,0 or δbk,L−1
results in an arbitrary single qubit rotation about the
Z or X axis, eiθZk or eiθXk , from which all single-qubit
unitary gates can be obtained (assuming the ± sign from
the byproduct operator has been corrected for). Next,
using δak,1 results in the unitary eiθZk−1ZkZk+1 . Note that
it is not possible to directly perform any two-qubit en-
tangling gates. One of many ways to obtain universality
is to use only the even L/2 qubits as our logical qubits,
`Zk = Z2k for k = 0 . . . L/2− 1. Then, after initialization
in the Z basis, every odd qubit can be rotated into the
Z = 1 state. On the logical qubits, arbitrary single qubit

unitaries and eiθ`
Z
k `

Z
k+1 are possible, which constitutes a

universal set on L/2 logical qubits.

2. Sierpinski cluster state

Measuring all physical spins in the X basis also leads to
the realization of the identity gate for the SC. However,
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not all Pauli operators may be moved to the left (f̄−1
SC is

only defined acting on even v). We may express

TSCiden =

Lb−1∏

i=0

X(ηbi )T0Z(ηbi ) (C5)

=

Lb−1∏

i=0

X(ηbi )T0Z(η̃bi )Z
σ(ηi)

(C6)

where σ(η) =
∑
ηi (mod 2) is the parity of the state,

and η̃ ≡ 1σ(η) + η is guaranteed to be even (which we
can then apply f̄−1

SC on). All X(·) and Z(·) may then
be moved to the left of the full expression using Eq (8).

Finally, all Z
σ(ηi)

may be eliminated using ZT0 = T0, for

all except Z
σ(η0)

. Thus, we are left with

TSCiden = USCΣ ({ηαij})ISCZ
σ(ηa

0 )
(C7)

As stated in the main text, ISC = T Lb
0 = Pe + XPo,

where Pe(o) = [1 + (−)Z]/2, X = X⊗L, and Z = Z⊗L.
It is therefore not simply the identity. We restrict com-
putations only to states within the wired subspace W,

which is the even subspace. Thus, while Z
σ(η0)

cannot
be moved to the end of the computation, as long as we
remain in the even subspace, Z = 1 can be ignored.

The byproduct operator is given, up to a sign, by

USCΣ = X
σ(ηb

Lb−1) × (C8)
Lb−1∏

j=0

X
(
f jSC η̃

b
Lb−1−j

) Lb−1∏

j=1

Z
(
f̄−jSC η̃

a
Lb−j

)

Note that the byproduct operator USCΣ may change the
parity of the state, but recall that we propagate all
byproduct operators to the end of the computation where
they are corrected for post-measurement.

If we measure a single physical spin at an angle θ in
the XY plane, we get

TSCa,θ = USCΣ ({ηαij})ISCZ
σ(ηa

0 )
e±iθZ(f̄j0 i0) (C9)

for an a spin, or

TSCb,θ = USCΣ ({ηαij})e±iθX(fLb−1−j0 i0)ISCZ
σ(ηa

0 )
(C10)

for a b spin. As for the FC, the ± sign in the expo-
nent arises from commutation with potential byproduct
operators.

However, there is an additional subtlety in this case:
the ± sign in TSCb,θ depends on ηaij for j ≤ j0 + 1. The
dependence on j = j0+1 is because the state temporarily
leaves W, and ZeiθXk = e−iθXkZ. This means if we set
δbk,Lb−1 = θ, then Tb,θ takes the form

USCΣ ({ηαij})e±iθXkISCZ
σ(ηa

0 )
(C11)

which, before the byproduct operator, may leave W. In
this case, to fully correct for the ± sign requires measure-
ment of ηa0 of the next L×Lb block. To keep each block

self-contained, we may then always follow up with an
identity block, TSCb,θ → TidenTSCb,θ . The net effect is that
the gate in Eq C11 is replaced by the parity-respecting

gate, eiθXk → eiθXXk .
Universality on (L − 1)/2 qubits may be established

by defining the logical qubits `Zk = Z2kZ2k+1 for k =

0 . . . (L− 3)/2. Using δa2k,1, one obtains eiθ`
Z
k , and using

δb2k,Lb−1, one obtains eiθ`
X
k , which are universal for single

qubits (where `Xk ≡ XX2k). Then, using δa2k,3, we get

eiθ`
Z
k `

Z
k+1 (for all k except k = (L − 3)/2). These consti-

tute a universal set of gates on (L− 1)/2 logical qubits.
Furthermore, many other gates are easily realized in sin-
gle measurement steps — for example, two logical qubits
separated by a large power of 2 may be entangled by a
two-qubit gate in a single step.

Appendix D: Restrictions on the form of symmetric
Z operators

Here, we prove the claim that any symmetry-
respecting operator consisting of only Z Pauli opera-
tors, Z(v) =

∏
s Z

vs , must be composed of a product
of Fs ≡

∏
s′∈Γ(s) Zs′ . First, consider a O = Z(·) term

purely on the a sublattice, localized within some L× Ly
block. The F operators acting on the a sublattice spins
are given by

FSCij = Zi,j+1Zi,jZi−1,j (D1)

for the SC, and

FFCij = Zi,j+1Zi−1,jZi,jZi+1,j (D2)

for the FC, where Zi,j acts on the a sublattice spin at
the (i, j)th unit cell. Utilizing the fact that Fij consists
of only one Z operator on the (j + 1)th row, and the
remaining on the jth row, we can use products of Fij
to move any Z operator in O from the bulk of the L ×
Ly block to some product of Z operators acting only
on the top row. Thus, O within an L× Ly block can be
related to some operator O′ acting only on the top row by
applications of Fij . As O respects all fractal symmetries,
so does O′.

However, there are 2k(L) distinct symmetries acting
on only the a sublattice on a cylinder of circumference
L. By the cellular automaton analogy, knowing how the
symmetry acts on one row fully determines its action on
all other rows. For the FC, k(L) = L, and so there are
2L distinct symmetries. Hence, on the top row, each of
the 2L possible X(·) operators appear in some symme-
try. If O′ (which is a product of Zs on the top row)
is to commute with all such symmetries, it must be the
identity. For the SC, k(L) = L − 1. The 2L−1 distinct
symmetries acting on the top row are all possible X(·)
operators that are tensor products of an even total num-
ber of Xs. Therefore, O′ must be either identity or

∏
Z,
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a product of Zs along the whole top row. A product of
all Zs on a row may be eliminated by FSCij .

Hence, all O on the a sublattice can be connected to
identity by applications of Fij and therefore are com-

posed of Fij . A similar procedure applies for operators
on the b sublattice (now evolving down to the bottom
row).
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