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Abstract: We studied the change of the nonlocal correlation of the entanglement in 

Rindler spacetime by showing that the Unruh effect can be interpreted as a noisy 

quantum channel having a complete positive and trace preserving map with an 

“operator sum representation.” It is shown that the entanglement fidelity is obtained in 

analytic form from the “operator sum representation”, which agrees well numerically 

with the entanglement monotone and the entanglement measure obtained previously. 

Non-zero entropy exchange between the system Q and the region II of the Rindler 

wedge indicates the nonlocal correlation between casually disconnected regions. We 

have also shown the sub additivity of entropies numerically.  
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The Unruh effect [1-4] discovered over four decades ago predicts that a non-inertial 

observer in an accelerated motion would see the Minkowski vacuum as thermal bath 

of excited particles. The discovery of Unruh effect is regarded as one of the 

monumental achievements of our understanding of quantum field theory in curved 

space-time despite the lack of direct experimental confirmation. Recently, there has 

been renewed interest of the Unruh effect especially associated with the entanglement 

harvesting [5-8] and the detection of possible signature of Unruh effect in the 

quantum radiation [9-11]. Iso et al. [11] pointed out that this quantum radiation is 

related to the nonlocal correlation nature of the Minkowski vacuum state, which has 

its origin in the entanglement of the state between the left and the right Rindler 

wedges.  

In this work, we study the change of the nonlocal correlation of the entanglement 

in Rindler space from a quantum information point of view by showing that the 

Unruh effect can be interpreted as a noisy quantum channel having a complete 

positive and trace preserving map with an “operator sum representation.” The setting, 

in which Alice and Rob are two observers, one inertial and the other non-inertial, 

describes the entanglement between two modes of free scalar field from the point of 

their detectors [12-14]. When a non-inertial observer, Rob, is under the influence of 

the acceleration, the measure of entanglement seen by the non-inertial observer is 

affected by the presence of quantum thermal fields. The state observed by an inertial 

observer Alice and a non-inertial observer Rob is an 2 × ∞  dimensional space in 

which case the necessary and sufficient criteria for the entanglement is not so well 

established [14]. When a quantum system is coupled to the Unruh radiation, it is 

inevitably treated in an infinite dimensional space, in which case only a Gaussian 

state has an entanglement measure [15-17]. For this reason, Alsing and Milburn [12] 

used an indirect measure of entanglement as they calculated teleportation fidelity. 

Fuentes-Schuller and Mann [13] calculated lower bound of entanglement. Ahn and 

Kim [14] studied an entanglement measure by calculating the symplectic eigenvalues 

of the matrix obtained through the partial transposition of the variance matrix.  

Here, we obtain the entanglement fidelity directly from the “operator sum 

representation [18]” of the complete positive super-operator εQ , which acts on the 

initial density operator ρQ in analytical form. It is shown that our analytical result 
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agrees very well with the entanglement monotone [13] and the entanglement measure 

[14] obtained numerically. We assume that the quantum state Q describes an 

entanglement between Alice and Rob in stationary states, i.e., the state in which Rob 

also stays stationary without acceleration. We will describe the evolution of the 

system Q by allowing Rob to experience uniform acceleration a  through the 

acceleration parameter r defined by tanh r = exp(−2πΩ) , 		Ω=|k |c /a=ωk /a  , 

� 

k  the 

wave vector, 

� 

c  the speed of light, 

� 

a the uniform acceleration. We consider the real, 

scalar field of modes, s and k, in the Minkowski and the Rindler spacetime, 

respectively. Let Alice be an observer at event P with zero velocity in the Minkowski 

spacetime and non-inertial observer Rob be moving with positive uniform 

acceleration in the z direction with respect to Alice (Fig. 1).  We assume that Alice 

has a detector which only detects mode s and Rob has a detector sensitive only to 

mode k as in reference 13. So we are assuming that there is no global mode detected 

by Alice and Rob and the Hilbert space for Alice and Rob are independent. If Rob is 

under a uniform acceleration, the corresponding ground state should be specified in 

Rindler coordinate [19-21] in order to describe what Rob observes. Let us denote the 

ground states, which Alice and Rob detect in the Minkowski spacetime as 
	
OA
s

M
 and 

	
OR
k

M
 (Fig. 1), respectively. Then ground state from the non-inertial point of view can 

be written as 
		
OR
k

M
= 1
coshr tanhn r nRk I

⊗ nR
k

II
n=0

∞

∑ , with 
	
nR
k

I
 and 

	
nR
k

II
 the mode 

decompositions in Rindler regions I and II, respectively [13,14]. The excited state for 

Rob in Minkowski spacetime in mode k is obtained by applying the Minkowski 

creation operator 		akR
†  to the vacuum state successively [14].  For example, 

 		
1Rk M

= akR
† OR

k

M
, 	 2Rk M

= 1
2
akR
†( )2 ORk , 	!,mR

k

M
= 1

m!
akR
†( )m ORk  .  (1) 

The particle creation and annihilation operators for the Rindler space-time are 

expressed as 		bkσ
† and 	bkσ , respectively. Here, the subscript 

� 

σ = I  or 

� 

II , takes into 

account the fact that the space-time has an event horizon, so that it is divided into two 

causally disconnected Rindler wedges I and II (Fig. 1).	The Minkowski operators 		akR
†  

and 	akR  can be expressed in terms of the Rindler operators 		bkσ
† and 	bkσ by Bogoliubov 

transformations [14]: 
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  akR
† = bkI

† cosh r − bkII sinh r = GkbkI
† Gk

†,   akR = bkI cosh r − bkII
† sinh r = GkbkIGk

†  , (2) 

 

with 
  
Gk = exp r bkI

† bkII
† − bkIbkII( ){ } .  Then, the Minkowski ground state 

	
OR
k

M
 seen by 

the Rindler observer, i.e., Rob, is given by 
	
OR
k

M
=Gk O

I
⊗ O

II( ) . Here 
	
O

I
 and 

	
O

II
 are the Rindler vacuum states of region I and II,  regarding Rob. This is the basis 

of the Unruh effect, which says that a non-inertial observer with uniform acceleration 

would see thermal quantum fields. In other words, Rob would see the quantum bath 

populated by thermally excited states of mode k. The quantum fields arising from the 

solution of the Klein-Gordon equation can be described either in the Minkowski 

spacetime or the Rindler spacetime and the equivalence of two solutions is obtained 

by matching them on 	H−  (Fig. 1) as described in the Appendix C. An Unruh Dewitt 

detector model with localised modes with compact support can be used to construct 

independent Hilbert space for Alice and Rob and is described in Appendix D. The 

resulting Bogoliubov transformation may be more complicated than the one described 

in (2) and will be the subject of future study. Modified Bogoliubov transformation 

within the first order approximation is described by Landulfo and Matsas [24] and 

Kok and Yurtserver [25]. 

 

The excited states for Rob in Minkowski spacetime are now given by [14] 

   
akR

† OR
k

M
= GkbkI

† O
I
⊗ O

II( ),!, akR
†( )m

OR
k

M
= Gk bkI

†( )m
O

I
⊗ O

II( ) . (3) 

For example 		1R
k

M
is given by 

		
1Rk M

= 1
cosh2r tanhn r (n+1)k I

⊗ nk II
n=0

∞

∑ .  (3a) 

We now consider the system Q’ described by  

ρQ ' = TrII ψ ψ( ) ,        (4) 

where 
  
ψ = 1

2
OA

s

M
⊗ 1R

k + 1A
s

M
⊗ OR

k( )        (5) 

and TrII  denotes the partial trace over all modes of Rindler wedge II except for modes 

2 of mode k. We are considering detectors sensitive to a single Minkowski mode s for 

Alice and k for Rob. The initial quantum state ρQ  is given by  
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ρQ = lim

a→0
TrII ψ ψ( )⎡⎣ ⎤⎦

     = 1
2

01 + 10( ) 01 + 10( ),
       (6) 

where  
nm = nA

s ⊗ mR
k .  Here the limit 		a→0  means considering the initial 

stationary state for the Rob before the acceleration.  Equation (5) describes an 

entanglement between Alice and Rob in Minkowski spacetime. The state of Rob 

under acceleration is also entangled between the Rindler wedge states I and II. Since 

we are tracing out for the Rindler wedge state II, we are mostly considering the 

entanglement between Alice and Rob.  

 

Here, we would like to treat the Unruh effect as a noisy quantum channel [18] where 

the system Q prepared in an initial state ρQ is described by the dynamical process, 

after which the system is in ρQ ' . The dynamical process is described by a map εQ , so 

that the evolution is [18] 

 ρQ → ρQ ' = εQ ρQ( ) .        (7) 

The map is a channel between the initial state of the field and the field seen by  an 

accelerating Rob. 

If the map εQ  is given by  

 εQ ρQ( ) = An
QρQAn

Q†

n
∑         (8) 

where An
Q  is an operator on the Hilbert space of Q only, then the map is a complete 

positive map [18].  From Eqs. (1) to (5), we obtain after some mathematical 

manipulation (Appendix) [13] 

 ρQ ' = 1
cosh2 r

tanh2 r( )n ρn = ρAR
n=0

∞

∑        (9) 

 
ρn =

1
2

1n 1n + n +1
cosh r

1n 0(n +1) + 0(n +1) 1n( )⎧
⎨
⎩⎪

     + (n +1)
cosh2 0(n +1) 0(n +1) ⎫⎬

⎭
.

    (10) 

By comparing Eqs. (6) and (10), we obtain  

 An
Q = 1

n!
tanhn r
cosh2 r

cosh r( )n̂A ⊗ bI
†( )n        (11) 

εQ
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where n̂A = aA
†aA  is a number operator acting on Alice’s Hilbert space. From this one 

can see that the Unruh effect can be described by a completely positive map acting on 

the quantum state Q of Alice and Rob, when both parties are in the stationary state, 

i.e., zero acceleration for Rob. Let φQ  be a quantum state of ρQ , then after some 

manipulation we obtain 

 

φQ An
Q†An

Q φQ

n=0

∞

∑

= 1
2

tanh2 r( )n
cosh2 r

1n + n +1
cosh r

0(n +1)
⎛

⎝⎜
⎞

⎠⎟
1n + n +1

cosh r
0(n +1

⎛

⎝⎜
⎞

⎠⎟n=0

∞

∑

= 1
2cosh2 r

tanh2 r( )n 1+ n +1
cosh2 r

⎛
⎝⎜

⎞
⎠⎟n=0

∞

∑
= 1

= Tr An
Q φQ φQ An

Q†

n=0

∞

∑⎛⎝⎜
⎞
⎠⎟

= TrρQ ' .

   (12) 

This indicates that the map is trace preserving. The map is complete positive, trace 

preserving and as a result can be represented by an “operator sum representation” [18]. 

Conversely, if the map can be represented by the “operator sum representation”, the 

map is (i) trace preserving, (ii) Hermiticity preserving, and (iii) complete positivity. 

Moreover, the “operator sum representation” is independent of the specific density 

operator. The Unruh effect transforms the stationary entangled state into the mixed 

state in Rindler space by a complete positive trace preserving map. Here, we have 

used the following relations: 

 

1
cosh2 r

tanh2 r( )n
n=0

∞

∑

= 1
cosh2 r

1
1− tanh2 r( )

= 1
cosh2 r

cosh2 r
cosh2 r − sinh2 r( )

= 1

        (13) 

and 
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1
cosh4 r

(n +1) tanh2 r( )n
n=0

∞

∑

= 1
cosh4 r

d
d tanh2 r( ) tanh2 r( )n+1

n=0

∞

∑

= 1
cosh4 r

d
d tanh2 r( )

tanh2 r
1− tanh2 r

= 1
cosh4 r

1
1− tanh2 r( )2

= 1.

       (14) 

According to Schumacher [18], for complete positive and trace preserving map, the 

entanglement fidelity Fe  which measures how successfully the quantum channel 

preserves the entanglement of Q can be represented by 

 Fe = TrρQAn
Q( ) TrρQAn

Q†( )
n
∑ .       (15) 

From Eqs. (6) and (11), we obtain 

 

TrρQAn
Q

= Tr 1
2
10 + 01( ) 10 + 01( ) 1

n!
tanhn r
cosh2 r

cosh r( )n̂A ⊗ bI
†( )n⎡

⎣
⎢

⎤

⎦
⎥

= 1
2

1
cosh r

1+ 1
cosh r

⎛
⎝⎜

⎞
⎠⎟ δ n,0

   (16) 

and as a result 

  

Fe = TrρQAn
Q( ) TrρQAn

Q†( )
n
∑

   = 1
4

1
cosh2 r

1+ 1
cosh r

⎛
⎝⎜

⎞
⎠⎟

2

.
       (17) 

When Rob is in stationary state a→ 0  and cosh r→1 . Then, from Eq. (17) the 

entanglement fidelity approaches unity, i.e., Fe →1 . On the other hand, when the 

value of the acceleration is large, then cosh r  is increasing monotonically and the 

entanglement fidelity also decreases monotonically approaching zero for very large 

value of the acceleration (Fig. 2). Our analytical result for the entanglement fidelity 

agrees very well with the entanglement monotone obtained by Feuntes-Schuller and 

Mann [13] and Ahn and Kim [14].  

Since the final state ψ  is a pure state, the von Neumann entropy S ψ ψ( ) = 0  and 

as a result, we obtain  
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 S(ρQ ' ) = S ρAR( ) = S ρII( )         (18) 

where ρII = TrAI ψ ψ( ) . The entropy defined by Eq. (18) is called an entropy 

exchange Se [18], which is common entropy for two initially uncorrelated systems. 

Another measure of correlation is the mutual information I(ρAR ) , which is defined by 

[13]  

 I ρAR( ) = S(ρA )+ S(ρR )− S ρAR( )        (19) 

where ρA = TrI ρAR( )  and ρR = TrA ρAR( ) . The detailed expressions for entropies are 

given by (Appendix) [13] 

 S ρAR( ) = − an 1+
n +1
cosh2 r

⎛
⎝⎜

⎞
⎠⎟ log2 an 1+

n +1
cosh2 r

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥n

∑ ,   (20) 

 S ρR( ) = − an 1+
n

sinh2 r
⎛
⎝⎜

⎞
⎠⎟ log2 an 1+

n
sinh2 r

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥n

∑ ,    (21) 

 S ρA( ) = 1 ,         (22) 

with an =
tanh2 r( )n
2cosh2 r

 .        (23) 

The mutual information I ρAR( )  is a measure of total correlation between Alice and 

Rob in the their entangled state.  In Fig. 3 we plot the entropy exchange (solid line) 

and the mutual information (dashed line) as a function of the acceleration r. As 

acceleration increases the mutual information is approaching unity, which indicates 

that the states become more mixed by way of von Neumann entropy [13]. A 

maximally mixed state of maximally entangled states has mutual information equal to 

one [13]. From Eq. (6), the eigenvalues of the reduced density matrix ρAR  for r→ 0  

are 0,0,0,1 and as a result we have S ρAR( ) = 0 . On the other hand, when the 

acceleration becomes infinite, we have an 1+
n +1
cosh2 r

⎛
⎝⎜

⎞
⎠⎟ → 0  and as a result  

 an 1+
n +1
cosh2 r

⎛
⎝⎜

⎞
⎠⎟ log2 an 1+

n +1
cosh2 r

⎛
⎝⎜

⎞
⎠⎟ → 0       (24) 

and we obtain S ρAR( )→ 0 . The peak value of the entropy exchange exceeds 2 and 

this is the amount of correlation that Alice and Rob’s entangled states have with the 

quantum bath due to the Unruh effect. In Fig. 4, we show the sub-additivity [18] 

Se = S ρAR( ) ≤ S ρA( ) + S ρR( )  numerically.  According to the interpretation of non-
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relativistic quantum information theory [18], the entropy exchange characterizes the 

information exchange between the system Q and the external world during the 

evolution given by εQ . Since, the region I and region II of the Rindler wedges are 

causally disconnected and the entropy exchange as the information exchange between 

the system Q and causally disconnected external world, i.e., region II of Rindler 

wedge, can be interpreted as a measure of non-local correlation. 

 

In summary, we studied the change of the nonlocal correlation of the entanglement in 

Rindler spacetime by showing that the Unruh effect can be interpreted as a noisy 

quantum channel having a complete positive and trace preserving map with an 

“operator sum representation.” It is shown that the entanglement fidelity is obtained in 

analytic form, which agrees well with entanglement monotone [13] and the 

entanglement measure [14], numerically. Non-zero entropy exchange between the 

system Q and the region II of the Rindler wedge indicates the nonlocal correlation 

between casually disconnected regions. We have also shown sub additivity of 

entropies numerically.  
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Appendix: 

A. Derivation of equation (9): 

From (1)-(5), we have 

		

ψ ψ = 12
tanhn r tanhn'r

cosh2r
n+1
coshr 0(n+1) + 1n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪I
1n' + n'+1

coshr 0(n'+1)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪In ,n'
∑

																	⊗ n
II
n' .

  (A1) 

If we take the partial trace of (A1) with respect to the Rindler state of wedge II, we 

get 
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TrII ψ ψ( )
= 1
cosh2r tanh2n r12

n+1
coshr 0(n+1) + 1n

⎛

⎝
⎜

⎞

⎠
⎟

n
∑ n+1

coshr 0(n+1) + 1n
⎛

⎝
⎜

⎞

⎠
⎟

= 1
cosh2 tanh2n ρn

n
∑ .

  (A2)   

 

B: Derivation of equation (20) 

We need to find the eigenvalues of 	ρn  which is given by  

 

		

ρn =

0 0 0 0

0 n+1
2cosh2r

n+1
2coshr 0

0 n+1
2coshr

1
2 0

0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,     (B1) 

in the bases 		 0n , 0(n+1) , 1n , 1(n+1){ } . 

From 
		
det ρn −λI = λ3 λ − 12−

n+1
2cosh2r

⎛
⎝⎜

⎞
⎠⎟
=0  ,    (B2) 

we obtain the eigenvalues 

		
λ =0,0,0,12+

n+1
2cosh2r  .       (B3) 

The von Neumann entropy is then given by 

,   (B4) 

with 

		
an =

tanh2n r
2cosh2r  .        (B5) 

 

C: Revisit to Bogoliubov transformation 

Here, we follow Unruh and Wald [23]’s and Birrell and Davies [19]’s derivation 

closely. The solutions of Klein-Gordon equation, which are positive frequency with 

S ρAR( ) = − an 1+
n +1
cosh2 r

⎛
⎝⎜

⎞
⎠⎟ log2 an 1+

n +1
cosh2 r

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥n

∑
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respect to inertial time are those with positive frequency with respect to η  on 	H−  (Fig. 

1), whereas the solutions which are positive frequency with respect to Rindler time in 

region I are those whose value on the portion of 	H−  with 		t − z <0  is positive with 

respect to η . Let 	φIk  be a single mode solution to the Klein-Gordon equation which 

on 	H−  is given by 

		
φIk =

Φke
− iωkη ,t − z <0

0,t − z >0,
⎧
⎨
⎪

⎩⎪
        (C1) 

where 	Φk  is the mode function. Then 	φIk  give rise to a purely positive-frequency 

solution in region I. Similarly, the solution which is valid in region II is given by 

		
φIIk =

0,t − z <0
Φk

*eiωkη ,t − z >0.
⎧
⎨
⎪

⎩⎪
         (C2) 

Corresponding positive-frequency solution in Minkowski spacetime is given by 

	ψ Mk = Fke
− iωkt .         (C3) 

By matching solutions on 	H−  we obtain 

		
Fk =

φIk +e
−πωk/aφIIk

*

1−e−2πωk/a( )1/2
 .        (C4) 

From above equations, the field operator for the Minkowski spacetime is given by 

		

akR(Fk )=
bkI(φIk )−e

−πωk/abkII
† (φIIk )

1−e−2πωk/a( )1/2
													 = bkI coshr −bkII† sinhr.

       (C5) 

Appendix D: Unruh-DeWitt dector model for the local modes 

In this section, we describe the Unruh-Dewitt detector model [23] for local modes 

when one (or both) is in a local mode with compact support. We extend the approach 

of Landulfo and Matsas [24] and Kok and Yurtserver [25].  We model Alice’s qubit 

in Minkowski spacetimeby a two-level detector. As Rob is accelerated, his detector 

would see the thermally excited Rindler photons, as a result, the detector proper 

Hamiltonian for Alice and Rob is defined as [24] 

 		HA =ΩA
†A,          (D1) 

and 
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HR = ωkRk

†Rk ,
k
∑         (D2) 

where 		A† ,A  are the creation and annihilation operators for Alice, respectively and 

		Rk
† ,Rk are the creation and annihilation operators for Rob, respectively. The 

interaction Hamiltonian between the detector and a massless scalar field operator 

		φ(x)  is defined as [24] 

 
		 
Hint(t)= ε(t) d3!x −gφ(x) ψ ( !x)D+ψ ( !x)D†⎡⎣ ⎤⎦Σt

∫  ,   (D3) 

where 		g= det(gµν ) , 	gµν  the metric tensor, 		D= A,R , 	 
!x  the coordinates defined on 

the Cauchy hyper surface 	Σt , 	t  the Minkowski time, 		ε(t)∈C0
∞(R)  is a smooth 

compact-support real-valued function which keeps the detector switched on for a 

finite amount of proper time and 		ψ ∈C0
∞(Σt )  is a smooth compact-support complex-

valued function which models the fact that the detector interact only with the field in a 

neighborhood of its world line. In the interaction picture, the state defined at the 

future null infinity is given by [24] 

  

		

Ψ∞
Dφ =Texp −i dt '

−∞

∞

∫ Hint
I (t ')⎡

⎣⎢
⎤
⎦⎥
Ψ−∞

Dφ

										 =Texp −i d4x −gφ(x) fD+ fD†( )∫⎡
⎣

⎤
⎦ Ψ−∞

Dφ ,
    (D4) 

where 		 f = ε(t)e
− iΩtψ ( !x)  is a compact support complex function defined in 

Minkowski spacetime.  

We also have [24,26] 

 		φ( f )= d4x −gφ(x) f∫ = i a(λ )−a†(λ)⎡⎣ ⎤⎦      (D5) 

is an operator valued distribution defined by smearing out the field operator by the 

testing function 	f . Here 		a(λ )  and 		a
†(λ)  are annihilation and creation operators of 

λ  modes, respectively. From (D4) and D(5), we obtain [24] 

 		Ψ∞
Dφ = exp a(λ)D−a†(λ )D† −a†(λ)D+a(λ )D†⎡⎣ ⎤⎦ Ψ−∞

Dφ .  (D6) 

The above describes the excitation and de-excitation of an Unruh-DeWitt detector 

associated with the absorption and emission, respectively, of a particle as “naturally” 

defined by the observers co-moving with the detector, i.e., Minkowski and Rindler 

particles for inertial and uniformly accelerated observers, respectively [24]. The 
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corresponding Hilbert space for Alice and Rob can be constructed independently 

following Landulfo and Matsas [24].  
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Figure captions 

 

Figure 1 Rindler spacetime. In region I and II, time coordinates 

� 

η = constant are 

straight lines through the origin. Space coordinates 

� 

ζ =constant are hyperbolae with 

null asymptotes 

� 

H+ and 

� 

H− , which act as event horizons. The Minkowski coordinates 

� 

t,  z  and Rindler coordinates 

� 

η,  ζ  are given by t = a−1 exp(aζ )sinhaη  and 

� 

z = a−1 exp(aζ )coshaη , where 

� 

a is a uniform acceleration. Alice and Rob initially 

share a two-mode squeezed state at the event P. We consider the case of Alice in 

stationary and Rob (green hyperbola) under uniform acceleration. 

� 

  

 

Figure 2 Entanglement fidelity Fe  versus acceleration r. This measure of 

entanglement is obtained in analytical form, i.e., Fe =
1

4cosh2 r
1+ 1
cosh2 r

⎛
⎝⎜

⎞
⎠⎟
2

 as a  

function of the acceleration r from the “operator sum representation [18].”  The 

results agree well with the entanglement monotone [13,14]. 

 

Figure 3 Comparison of mutual information I ρAR( )  and entropy exchange Se .  The 

mutual information is a measure of total correlation between Alice and Rob in the 

their entangled state while the entropy exchange is a common entropy for two initially 

uncorrelated systems. A maximally mixed state of maximally entangled states has 

mutual information equal to one [13]. 

 

Figure 4 Numerical proof of sub additivity for the entropy S ρAR( ) ≤ S ρA( ) + S ρR( ) .     
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