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We show how one can prepare and detect entanglement and Einstein-Podolsky-Rosen (EPR) steer-
ing between two distinguishable groups (modes) of atoms in a Bose-Einstein condensate (BEC) atom
interferometer. Our paper extends previous work that developed criteria for two-mode entanglement
and EPR steering based on the reduced variances of two spins defined in a plane. Observation of
a planar spin squeezing will imply entanglement, and sufficient planar spin squeezing implies EPR
steering, between the two groups of atoms. By using a two-mode dynamical model to describe BEC
interferometry experiments, we show that the two-mode entanglement and EPR steering criteria
are predicted to be satisfied for realistic parameters. The reported observation of spin squeezing
in these parameter regimes suggests it is very likely that the criteria can be used to infer an EPR
steering between mesoscopic groups of atoms, provided the total atom number can be determined
to sub-Poissonian uncertainty. The criteria also apply to a photonic Mach-Zehnder interferometer.
Finally, we give a method based on the amount of planar spin squeezing to determine a lower bound
on the number of particles that are genuinely comprise the two-mode EPR steerable state − the
so-called two-mode EPR steering depth.

I. INTRODUCTION

The detection of entanglement between mesoscopic
groups of atoms is an important milestone. Two sys-
tems are entangled if the overall wavefunction cannot
be factorised into parts associated solely with each sys-
tem. While there has been significant progress in en-
tangling microscopic systems [1], it is the entanglement
of macroscopic massive systems that provides some of
the strangest predictions of quantum mechanics [2]. This
has motivated experiments that report entanglement and
quantum correlations for massive systems, such as ther-
mal atomic ensembles, cooled atoms, and Bose-Einstein
condensates (BEC) [3–17]. Very recently, entanglement
has been detected between the spatially separated clouds
and groups of atoms of a BEC [18–20].

A subtlety exists with the interpretation of multi-atom
experiments: detecting entanglement within an atomic
group (or between two groups) does not strictly imply
that more than two atoms are entangled. In light of this,
efforts have been made to calibrate the number of atoms
that genuinely comprise the entangled state, the so-called
“depth of entanglement” [21, 22]. This has led to exper-
imental evidence for large numbers of atoms genuinely
entangled at one location [8, 9]. However, so far, the
methods of calibration have mainly focused on the en-
tanglement between particles that are in principle distin-
guishable [21, 23]. This contrasts with the notion of the
“depth of the entanglement” between two groups of in-
distinguishable bosonic atoms, such as occurs for a Bose-
Einstein condensate.

The detection of mesoscopically entangled atomic
states also leads to the question: what type of entan-

glement is certified? A subset of entangled states gives
rise to nonlocal effects, such as the Einstein-Podolsky-
Rosen (EPR) paradox and failure of local hidden variable
theories [2, 24–26]. EPR steerable states are generalisa-
tions of the states considered by EPR in their 1935 para-
dox, which reveal an inconsistency between local realism
and the completeness of quantum mechanics [24, 26–29].
EPR steerable states are important from a fundamental
perspective and also have applications for quantum infor-
mation processing [30, 31]. EPR steering is required for
Bell’s form of nonlocality, which leads to a falsification
of all local hidden variable theories [27].

There has been a growing experimental interest in EPR
steering correlations for atoms. Collective measurements
have been used to indicate the presence of Bell correla-
tions (and hence EPR steering) within a BEC or ther-
mal ensemble of atoms [4, 12, 32]. Experiments have
reported observation of entanglement and EPR steer-
ing correlations between distinguishable atomic groups
[8, 10, 11, 18–20]. The issue of whether entanglement oc-
curs between particles or modes for identical particle sys-
tems has become topical, and has been analysed in some
recent theoretical papers [33, 34] (see also Appendix D
herein). There has however, to our knowledge, been as
of yet no quantification given of the number of atoms
genuinely involved in an EPR steerable state.

In this paper, we introduce the concept of “depth of
EPR steering”. We derive criteria to give evidence of
two-mode EPR steerable states genuinely comprised of
many atoms, and further show how such steerable states
are predicted to be created in a two-mode BEC inter-
ferometer. Methods to generate entangled and steering
correlations have been proposed based on four- or two-
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component BECs using either dynamical evolution or
cooling to a ground state [35–37]. The recent EPR steer-
ing experiments exploit four-component BECs to gener-
ate the correlations [18, 20]. Here, we provide a different
approach, based on the dynamical evolution of a two-
component BEC.

Entanglement and EPR-steering between two modes
can be inferred from the observation of planar quantum
spin squeezing (PQS). The criteria of this paper are based
on the sum of two spin variances, as given by the Hillery-
Zubairy parameter [39]

EHZ ≡
(∆Ŝx)2 + (∆Ŝy)2

〈N̂〉/2
(1.1)

Using the Schwinger representation, the spins are asso-
ciated with two modes. Denoting the boson annihilation
operators for each mode by â and b̂, the total number op-
erator N̂ and spin S are N̂ = â†â+ b̂†b̂ and S = 〈N̂〉/2.
Hillery and Zubairy showed that a sufficient condition
for entanglement between the two modes is EHZ < 1
[39]. On the other hand, the similar condition for EPR-
steering is EHZ < 0.5 [35, 41]. Planar quantum spin
squeezing occurs when the noise in both spins is suf-
ficiently reduced, so that the sum of the variances is
below the shot noise level [22, 42]. For a single spin,
spin squeezing is achieved when (∆Ŝy)2 < |〈Ŝx〉|/2 [43].
When the magnitude of the spin Sx is maximised, so that
〈Ŝx〉 = 〈N〉/2, this corresponds to a variance below the
shot noise level, (∆Ŝy)2 < S/2. PQS occurs for (∆Ŝx)2+

(∆Ŝy)2 < |〈S||〉| where |〈S||〉| =
√
〈Ŝx〉2 + 〈Ŝy〉2 [22],

which when |〈S||〉| is maximised at 〈N̂〉/2 corresponds to
EHZ < 1.

In this paper, we show that the EPR steering corre-
lations are detectable based on the Hillery-Zubairy pa-
rameter, and that a method similar to that developed
by Sørensen and Mølmer [21] can be used to calibrate
the number of atoms in the steerable state. Our cali-
bration of a lower bound on how many atoms are in-
volved in the two-mode steerable state is based on the
tight value CS for the minimum of the sum of the pla-
nar spin variances ((∆Ŝx)2 +(∆Ŝy)2 ≥ CS) given a fixed
spin S value, as derived by He et al [42]. We also explain
how the sensitivity of the estimate is improved, if 〈S||〉
is also measured, based on the lower bound of the func-
tions (∆Ŝx)2 + (∆Ŝy)2 for a given S and 〈S||〉, recently
derived by Vitagliano et al [22]. Although the EHZ signa-
ture involves collective spin measurements, thereby not
directly testing nonlocality, we note that the criteria can
be rewritten in terms of quadrature phase amplitudes to
give a method that allows local measurements on indi-
vidual subsystems [10].

By analysing the predictions for a simple two-mode
BEC interferometer in the limit of stationary wavefunc-
tions, we follow Li et al [44, 45] to show that spin squeez-
ing of the spin vector Ŝθ in the yz plane is possible for cer-
tain θ. We then show that this implies entanglement be-

tween suitably rotated modes that can be created in the
interferometer using the atom-optics equivalent of phase
shifts and beam splitters. In fact, entanglement can be
created without the BEC nonlinearity [35]. However, the
nonlinearity is required to create sufficient spin squeez-
ing to allow detection of steering via the Hillary-Zubairy
parameter. A spin squeezing of Sθ has been observed in
the experiments of Riedel et al [9], which suggests that
the observation of EPR steering is also possible, provided
one can also detect the predicted reduction in the vari-
ance of the spin Sx which describes the Bloch vector.
This requires control of the number fluctuations of the
total atom number N̂ .

In the conclusion, we discuss the effect of the dynam-
ical spatial variation of the wavefunction, as given in Li
et al [45] and accounted for in the multi-mode models of
a BEC interferometer by Opanchuk et al [46, 47]. The
atom interferometer is realisable in different forms includ-
ing where the modes are associated with two hyperfine
atomic levels confined to the potential wells of an optical
lattice [5, 8]; are the outputs of a BEC beam splitter on
an atom chip [9]; and where large numbers of atoms and/
or spatial separations are possible [47–49]. Planar spin
squeezing has been observed for thermal atomic ensem-
bles with significant applications [50–52]. The methods
of this paper can also be applied to optical experiments
based on polarisation squeezing [53].

II. CRITERIA FOR EPR STEERING AND
ENTANGLEMENT

A. Entanglement and EPR steering

Consider two systems A and B described by a quan-
tum density operator ρ. Assuming each system is a single
mode, we define the boson creation and destruction op-
erators â†, â, b̂†, b̂ for A and B respectively. The two
systems are said to be entangled if the combined system
cannot be described by a separable density operator

ρ =
∑
R

PRρ
R
Aρ

R
B (2.1)

[54]. In this notation, ρRA and ρRB are density operators for
systems A and B respectively, and PR are probabilities
satisfying

∑
R PR = 1 and PR > 0. Where the systems

A and B are spatially separated, the entangled state can
give rise to nonlocality [24, 25]. EPR steering of B by
A is certified if there is a failure of all local hidden state
(LHS) models, where the averages for locally measured
observables X̂A and X̂B are given as [27]

〈X̂BX̂A〉 =

ˆ
λ

P (λ)dλ〈X̂B〉ρ,λ〈X̂A〉λ (2.2)

The states symbolised by λ are the hidden variable
states introduced in Bell’s local hidden variable theo-
ries. Here, P (λ) is the the probability density satisfying
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´
λ
P (λ)dλ = 1 [25] and 〈XA〉λ is the average of X̂A given

the system is in the hidden state λ. To test for steer-
ing, an additional constraint has been introduced. This
is symbolised by the subscript ρ for the averages calcu-
lated for B. The average 〈X̂B〉ρ,λ is constrained to be
consistent with that of a local quantum density operator
ρλB . The states can be steerable “one-way” (B by A) as
evidenced by failure of the above model (2.2). Alterna-
tively, by exchanging A ←→ B in the model, failure of
the LHS model

〈X̂BX̂A〉 =

ˆ
λ

P (λ)dλ〈X̂A〉ρ,λ〈X̂B〉λ (2.3)

implies steering of A by B. It is also possible to demon-
strate steering “two-ways” (B by A, and A by B) [55].

B. Criterion for EPR steering based on spin
variances

All separable models (2.1) imply the Hillery-Zubairy
inequality [39]

|〈â†b̂〉|2 ≤ 〈â†âb̂†b̂〉 (2.4)

The LHS model (2.2) implies the inequality

|〈â†b̂〉|2 ≤ 〈â†âb̂†b̂〉+ 〈b̂†b̂〉/2 (2.5)

derived by Cavalcanti et al [40]. These inequalities if
violated confirm entanglement and EPR-steering (of B
by A) respectively. The inequalities can be expressed in
terms of Schwinger spin observables Ŝz = (â†â− b̂†b̂)/2,
Ŝx = (â†b̂+âb̂†)/2, Ŝy = (â†b̂−âb̂†)/2i and N̂ = â†â+b̂†b̂
(~ = 1) to give the conditions

EHZ < 1 (2.6)

and

EHZ <
〈â†â〉
〈N̂〉

(2.7)

sufficient to certify entanglement [39] and EPR-steering
(B by A) respectively [41]. States that are not steer-
able will satisfy both LHS models (2.2) and (2.3), de-
fined to test steering of system A or steering of system
B. Hence non-steerable states satisfy both EHZ ≥ 〈â

†â〉
〈N̂〉

and EHZ ≥ 〈b̂
†b̂〉
〈N̂〉 , which implies that EHZ ≥ 0.5. Thus,

the condition

EHZ < 0.5 (2.8)

will imply EPR steering [35, 41].
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Figure 1. Values of C̃S for a system of fixed spin S. Results
are taken from He et al [42].

III. DEPTH OF TWO-MODE ENTANGLEMENT
AND EPR STEERING

In this section, we show that the degree of reduction
in the value of EHZ will place a lower bound on the
minimum number of bosons in the two-mode entangled or
EPR steerable state. For a system of fixed spin S, He et
al determine the bounds CS of the quantum uncertainty
relation (for S 6= 0) [42]: (∆Ŝx)2 + (∆Ŝy)2 ≥ CS . We
normalise this expression, to write

(∆Ŝx)2 + (∆Ŝy)2

S
≥ CS

S
≡ C̃S (3.1)

The C̃S is a coefficient that determines the tight mini-
mum value of the sums of the two variances: The values
are found in [42] and are plotted in Figure 1. He et al
compute CS using a numerical optimisation procedure.
The lower bounds for S = 1/2 and S = 1 were derived
in Ref. [56]. He et al also determine a precise asymp-
totic dependence CS ∼ a0S

2/3 for large S by analytic
means. The relation indicates the amount of noise re-
duction that is possible in just two spin components and
has been used for the derivation of entanglement crite-
ria [42], interferometry and phase estimation [50], and
for placing ultimate constraints on levels of planar spin
squeezing [51, 52].

A. Depth of two-mode entanglement

The curves of Figure 1 can be used in a similar way
to the Sørensen-Mølmer curves [21] to determine a lower
bound on the number of boson particles that genuinely
comprise a pure two-mode entangled state. This we re-
fer to as the “two-mode entanglement depth”. We note
that the number of particles in the entangled state is not
simply given by the mean 〈N̂〉, because in general an ex-
perimental system will be a mixture of pure states. It is
therefore possible that mixed entangled states with large
〈N̂〉 arise from highly populated separable states. Such
states need only have a small number of particles in the
states that are entangled.
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As summarised in Section II, the observation EHZ < 1
implies entanglement between the two modes (and hence
the two groups of atoms), which we will refer to as a and
b in keeping with the notation for the associated boson
operator symbols. Our first result is as follows:

Result (1): If EHZ is measured experimentally, one
can determine the maximum value s0 such that the fol-
lowing holds:

EHZ
r

< C̃s0 (3.2)

where r = |〈~S〉|
〈N̂〉/2 . Here we introduce the Bloch

vector 〈~S〉 = (〈Ŝx〉, 〈Ŝy〉, 〈Ŝz〉). Hence |〈~S〉| =√
〈Ŝx〉2 + 〈Ŝy〉2 + 〈Ŝz〉2. We restrict to regimes where

|〈~S〉| is measured to be non-zero. The conclusion from the
measurements is that the two-mode entanglement depth
is at least 2s0.

The statement of Result (1) can be clarified for the
different contexts of pure and mixed states. If the system
were a pure state, then the conclusion is that the system
is in a pure bosonic two-mode entangled state which has
a mean particle number N̂ of at least 2s0. If the system
is in a probabilistic mixture of pure entangled and non-
entangled states, then the conclusion is that the system
exists, with a nonzero probability PR, in a pure two-mode
bosonic entangled state |ψR〉 of at least 2s0 particles.

The criteria we derive in this paper apply to all two-
mode systems, including photonic systems, for which a
mixed state analysis is important. Bose-Einstein conden-
sates prepared experimentally have a high degree of pu-
rity, but are nonetheless subject to interactions with the
environment that result in a loss of atoms from the con-
densate. There are hence fluctuations of the atom num-
ber N of the condensate. A complete treatment there-
fore requires consideration of mixed states. Analyses of
Bose-Einstein condensates often assume pure states with
a fixed atom number N . This would imply PR ∼ 1.

Proof of Result (1): The system is described by
a density matrix ρ =

∑
R PR|ψR〉〈ψR| where |ψR〉 is

a pure state and PR are probabilities (
∑
R PR = 1,

PR > 0). Each |ψR〉 either satisfies a separable model
or not. We can write the density operator in the form
ρ = Psepρsep+Pentρent where Psep, Pent are probabilities
such that Psep+Pent = 1. Here ρsep is a density operator
for states described by the separable model. The entan-
gled part of the density operator that does not satisfy the
separable model is written

ρent =
∑
R′

PR′ |ψR′〉〈ψR′ | (3.3)

where
∑
R′ PR′ = 1 and each |ψR′〉 is an entangled pure

two-mode state with nR′ particles. The expression for ρ
that gives the decomposition into a separable and nonsep-
arable part is not required to be unique, as the following
proof holds for any such decomposition. Genuine lower
bounds can thus be established.

For a mixture the following is true [56]

(∆Ŝx)2 + (∆Ŝy)2 ≥
∑
R

PR{(∆RŜx)2 + (∆RŜy)2}

(3.4)

where (∆RŜx)2 +(∆RŜy)2 is the sum of the variances for
the pure state |ψR〉. Each state |ψR〉 may be written as a
linear combination of spin eigenstates |Sm〉 of Ŝ2 and Ŝz
(which form a basis). We note however that where |ψR〉
is a superposition of states with different S, the averages
〈Ŝ2〉 and 〈Ŝx/y〉 are equal to those of the corresponding
mixtures (because states with different S will be orthog-
onal) and hence we do not treat this as a special case: It
suffices to take a fixed sR for each |ψR〉.

We next denote s0 as the maximum value of the set
{sR′ 6= 0} over the entangled states. If all sR′ = 0, then
we take s0 = 1/2. Some states may have a zero spin
sR = 0. However, we need only consider the sum over
states with sR 6= 0 and use the definition C̃s = Cs/s, to
write:

(∆Ŝx)2 + (∆Ŝy)2 ≥
∑
R

PR{∆R(Ŝx)2 + (∆RŜy)2}

≥
∑
R

PRsRC̃sR (3.5)

The first step remains valid with the restriction to R such
that sR 6= 0. In the second step, and in all summations
over R written below, we take this restriction as implicit.
Now we apply the result (∆Ŝx)2+(∆Ŝy)2

|〈~S〉|
≥ 1 that holds

for the separable states, based on |〈~S〉| ≤ 〈N̂〉/2 and
that separable states satisfy EHZ ≥ 1. We find

(∆Ŝx)2 + (∆Ŝy)2 ≥ Psep
∑
R′′

PR′′sR′′

+Pent
∑
R′

PR′sR′C̃sR′

The CS/S functions are monotonically decreasing with
S 6= 0. This implies that

∑
R′ PR′sR′C̃sR′ ≥

C̃s0
∑
R′ PR′sR′ . Hence

(∆Ŝx)2 + (∆Ŝy)2 ≥ Psep
∑
R′′

PR′′sR′′

+PentC̃s0
∑
R′

PR′sR′

Hence

(∆Ŝx)2 + (∆Ŝy)2 ≥ C̃s0
∑
R

PRsR

≥ C̃s0 |〈~S〉| (3.6)

In the last step we use
∑
R PRsR ≥

∑
R PR|〈Ŝθ,φ〉R|

where 〈Ŝθ,φ〉R (for the state denoted R) is the mean of an
arbitrary spin component denoted by Ŝθ,φ, including the
θ and φ that define the orientation of the Bloch vector



5

~SR = (〈Ŝx〉R, 〈Ŝy〉R, 〈Ŝz〉R). This implies
∑
R PRsR ≥∑

R PR|~SR| ≥ |
∑
R PR

~SR| and hence
∑
R PRsR ≥ |〈~S〉|

where 〈~S〉 = 〈〈Ŝx〉, 〈Ŝy〉, 〈Ŝz〉) =
∑
R PR

~SR is the Bloch
vector defined for the state ρ. Using the definition of r
given by (3.2), we obtain

EHZ ≥ rC̃j0 (3.7)

Thus, if we measure EHZ < rC̃s0 , we deduce that one
of the pure entangled states |ψR′〉 must possess a spin
greater than s0. The number of particles nR′ in this
state |ψR′〉 is more than 2s0. This completes the proof.

B. Depth of two-mode EPR steering

We note from Figure 1 that in fact CS < 0.5 for
S > 1/2. It is thus possible to extend Result (1) to
include EPR steerable states. We define the two-mode
EPR steering depth as the number of boson particles that
comprise a pure two-mode EPR steerable state. Next we
give the main result of the paper.

Result 2: If the experiment reveals EHZ < 0.5 , so
that we can identify a value s0 such that

EHZ < rC̃s0 < 0.5 (3.8)

where r = |〈~S〉|
〈N̂〉/2 , then we deduce a two-mode EPR steer-

ing depth of at least 2s0. If the system were a pure state,
the statement means that there is a minimum of 2s0 par-
ticles in the pure two-mode EPR steerable state. If the
system is in a mixture ρ, then the statement means that
(necessarily) there is a nonzero probability PR for the
system being in a pure EPR steerable state |ψR〉 with at
least 2s0 particles.

Proof of Result (2): We extend the previous
proof. In any decomposition of the density operator
ρ =

∑
R PR|ψR〉〈ψR|, each |ψR〉 either satisfies LHS mod-

els (2.2) and (2.3) (and is therefore non-steerable), or
not. We can write the density operator in the form
ρ = Plhsρlhs + Pstρst where Plhs, Pst are probabilities
such that Plhs + Pst = 1. Here ρlhs is a density operator
for states described by the LHS models, which includes
all separable states. The steerable part of the density op-
erator that does not satisfy both LHS models (2.2) and
(2.3) is written

ρst =
∑
R′

PR′ |ψR′〉〈ψR′ | (3.9)

where
∑
R′ PR′ = 1. Here each |ψR′〉 is an EPR steer-

able pure two-mode state. Following the proof of Section
III.A, we denote s0 as the maximum value of the set
{sR 6= 0} over the steerable states. If all sR′ = 0, we
take s0 = 1/2. Some states may have a zero spin sR = 0.
However, we consider the sum over states with sR 6= 0
and use the definition C̃s = Cs/s, to write, following

the lines (3.5), (∆Ŝx)2 + (∆Ŝy)2 ≥
∑
R PR{(∆RŜx)2 +

(∆RŜy)2}. Hence

(∆Ŝx)2 + (∆Ŝy)2 ≥
∑
R

PRsRC̃sR (3.10)

For non-steerable states (which imply that both LHS
models (2.2) and (2.3) hold), we know from Section II

that EHZ ≥ 0.5. Thus, (∆Ŝx)
2
+(∆Ŝy)

2

|〈~S〉|
≥ 0.5 must hold

for the separable and nonsteerable states. We find

(∆Ŝx)2 + (∆Ŝy)2 ≥ 0.5Plhs
∑
R′

PR′′sR′′

+Pst
∑
R′

PR′sR′C̃sR′

Since C̃sR′ ≥ C̃s0 , this becomes

(∆Ŝx)2 + (∆Ŝy)2 ≥ 0.5Plhs
∑
R′′

PR′′sR′′

+PstC̃j0
∑
R′

PR′sR′

Since C̃s0 ≤ 0.5

(∆Ŝx)2 + (∆Ŝy)2 ≥ C̃s0
∑
R

PRsR

≥ C̃s0 |〈~S〉| (3.11)

This implies EHZ ≥ rC̃s0 . Thus, if we measure EHZ <

rC̃s0 , we deduce an EPR steerable state with spin greater
than s0, and thus an EPR steerable state |ψR′〉 with a
total number nR′ of bosons of more than 2s0. The con-
clusion is that there is a minimum of nst = 2s0 bosons
involved in the two-mode EPR steerable state. This com-
pletes the proof.

C. Depth of two-mode EPR steering based on PQS

It is possible to obtain more sensitive criteria for
the depth of two-mode steering by considering the
lower bounds, derived recently by Vitagliano et al.
[22], of (∆Ŝx)2 + (∆Ŝy)2, for a given S and 〈S||〉 =√
〈Ŝx〉2 + 〈Ŝy〉2. These authors applied the bounds to

deduce large numbers of atoms entangled in an atomic
thermal ensemble. In particular, Vitagliano et al. derive
convex functions F (1/2)

S such that for a fixed S

(∆Ŝx)2 + (∆Ŝy)2

〈N̂〉/2
≥ F (1/2)

S

( 〈S||〉
〈N̂〉/2

)
(3.12)

Here we use the superscript (1/2) to indicate we restrict
to spin 1/2 particles i.e. each particle has two levels
(modes) available to it. We prove the following.
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Result 3: If the measurement of EHZ and r|| =
|〈S||〉|
〈N〉/2

yield values such that EHZ < Fs0(
|〈S||〉|
〈N̂〉/2 ) where FS(x) ≤

0.5 for all 0 ≤ x ≤ 1, and if the functions FS(x) are
monotonically decreasing with S for every fixed 0 ≤ x ≤
1, then the EPR steering depth is (at least) 2s0. The
proof is a straightforward extension of the proofs given
in III.B and is given in the Appendix A.

One suitable lower bound are the functions considered
by Vitagliano et al of F (1/2)

S (x) = xζ2
S , where ζ

2
S is the

minimum planar spin squeezing value ξ2
|| =

(∆Sy)2+(∆Sz)2

|〈S||〉|
over all single particle states |ψk〉 of spin S = k/2 . Sub-
stituting into (3.12) leads to the condition

EHZ
r||

< ζ2
s0 (3.13)

for a two-mode s0-particle EPR steering depth. Exami-
nation of the functions ζ2

S evaluated in Ref. [22] reveal
similarity with the C̃S functions (and the Result 2 of
Section III.B) associated with the fact that the planar
squeezed states minimising CS have Bloch vector orien-
tated along ~Sx [35, 42]. The values are seen to be mono-
tonically decreasing with S and satisfy ζ2

S ≤ 0.5, implying
the conditions necessary for the Result 3 (r|| ≤ 1).

IV. TWO-MODE BEC INTERFEROMETER

A. Interaction

To illustrate the usefulness of the criteria, we consider
a simple model for a two-mode interferometer. For con-
venience, we symbolise the systems A and B by the no-
tation for the associated boson operators: a and b. The
two modes become entangled when an initial state con-
sisting of a number state |N〉a in mode a and a vacuum
state |0〉b in mode b are coupled by a 50/50 beam splitter
(Figure 2). The state generated after the interaction is

|ψ〉 =
∑
r

cr|N − r〉a|r〉b (4.1)

where cr =
√
N !/

√
2Nr!(N − r)! [57]. The state |ψ〉 is

entangled. This can be certified experimentally using the
HZ entanglement criterion, EHZ < 1 [35]. It was shown
in reference [35] that for |ψ〉, EHZ → 0.5 as N → ∞.
This result is plotted in Figure 3. Here 〈â†â〉 = 〈b̂†b̂〉
and hence the steering criterion given by (2.7) is EHZ <
0.5, which is not achieved for the simple beam splitter
interaction.

The transformations illustrated in Figure 2 also apply
to a two-mode BEC atom interferometer. For the details
of such interferometers, the reader is referred to Refs.
[9, 44–47, 58]. Here, N atoms are prepared as a single
component BEC in the hyperfine atomic level denoted
|1〉. A second atomic hyperfine level is denoted |2〉. The
beam splitter interaction symbolised BS1 in the Figure

b

a d

ϕ

BS2BS1

c

Figure 2. Entangled modes a and b are created when a number
state |N〉 is incident on the beam splitter BS1. The entan-
glement can be detected when the modes a and b interfere
across a beam splitter BS2 with a phase shift ϕ. The two-
mode number difference M̂ measured at the outputs depends
on φ, which enables measurement of the variances Ŝx, Ŝz and
Ŝx. A nonlinear medium may be present after the first beam
splitter BS1, as modelled by the nonlinear Hamiltonian HNL.
The description of how the beam splitters are implemented for
a BEC interferometer is given in the text.

is achieved by a Rabi rotation. This involves application
of a π/2 microwave pulse to the atomic ensemble, to pre-
pare the atoms in a two-component BEC which is in a
superposition of the two atomic levels. In a two-mode
model, the components of the BEC in levels |1〉 and |2〉
are associated with stationary mode functions which we
identify respectively as modes a and b. The atoms are
no longer distinguishable particles but are N bosons of
a condensate mode. Comparisons with real interferom-
eters show good agreement with experiment in suitable
parameter limits [45]. The two-mode model is relevant
only at low temperatures below the critical value where
the thermal fraction is negligible. After the interaction
denoted BS1, the state given by |ψ〉 can be represented
on a Bloch sphere as a spin coherent state. Here, the
Bloch vector is aligned along the x direction and has a
magnitude N/2, and the variances in the yz plane are
equal ((∆Ŝy)2 = (∆Ŝz)

2).

The variances required for the EHZ criteria can be
measured in terms of number differences at the output of
the BEC interferometer. The interferometer has a second
beam splitter BS2 with the two single mode inputs a
and b (Figure 2). Introducing a relative phase shift φ,
the boson destruction operators of the output modes of
the second beam splitter are ĉ = (â − b̂ expiφ)/

√
2, d̂ =

(â+ b̂ expiφ)/
√

2. In the BEC interferometer, the second
beam splitter is realised as a second microwave pulse [9,
47]. The output number difference operator is given as
M̂ = d̂†d̂ − ĉ†ĉ = 2Ŝx cosφ + 2Ŝy sinφ. Selecting φ = 0

or φ = π/2 enables measurements of Ŝy or Ŝx. The 〈Ŝz〉
and (∆Ŝz)

2 can be measured directly without the second
beam splitter, or by passing the outputs c and d through
a second transformation with φ = 0.

In order to model the nonlinearity of the atomic
medium in a BEC interferometer, we consider that sub-
sequent to the initial Rabi rotation (modelled by BS1)
the system evolves for a time t according to a nonlinear
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0

0.5
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2

Figure 3. Entanglement between the two modes a and b of
the interferometer of Figure 2 in the absence of nonlinear-
ity (χ = 0) is detectable by measurement of the Hillary-
Zubairy parameter EHZ . Also plotted is the value EtHZ for
the rotated spin vectors defined in the text, and the ratio
E = |〈â†b̂〉|2/〈â†âb̂†b̂〉. There is entanglement between the
two modes a and b if EHZ < 1 or E > 1. EtHZ < 1 certi-
fies entanglement between the rotated modes defined by Eq.
(4.4).

Hamiltonian

HNL = χ(â†2â2 + b̂†2b̂2 + 2Kâ†âb̂†b̂+ â†â+ b̂†b̂) (4.2)

HereK is a constant is adjusted to model different atomic
interferometers. For K = −1 the Hamiltonian reduces to
HNL = χ(â†â− b̂†b̂)2 as studied in Refs [44]. This Hamil-
tonian is a generalised form of the well-known Josephson
Hamiltonian (see ref [58] for a discussion) based on as-
suming both the mode functions and their occupancy re-
main fixed. We may also allow K = 0 to model the
interaction HNL = χ(â†â)2 + (b̂†b̂)2. This interaction is
an approximation to the multi-mode BEC interferometer
discussed in Ref. [46]. After a time t the state |ψ〉 evolves
to

|ψ(t)〉 =

∞∑
r−0

cre
−iΩ(r)t/~|N − r〉a|r〉b (4.3)

where Ω(r) = χ
[
(N − r)2 + r2 + 2Kr(N − r)

]
is the

term due to nonlinearity. After a time t, the second
Rabi rotation explained above allows measurement of the
spins Ŝx, Ŝy and Ŝz and their variances. In the atom in-
terferometer, the number difference is measured by atom
imaging techniques.

B. Evolution of Ŝx, Ŝy and Ŝz

In Figure 4, we plot EHZ and the spin variances for
N = 100, versus t for both K = −1 and K = 0. The
solutions show that the Bloch vector is orientated along
Ŝx (〈Ŝy〉 = 〈Ŝz〉 = 0). Initially, 〈Ŝx〉 ∼ N/2. We plot the
evolution of 〈Ŝx〉 noting the drop in value with time. For
small times, the solutions show a noise reduction in Ŝx
with ∆Ŝx → 0 at t→ 0. Spin squeezing is defined when
(∆Ŝz)

2 < |〈Ŝx〉|/2 or (∆Ŝy)2 < |〈Ŝx〉|/2. The plots show

0 0.005 0.01
0

1

2

3

0 0.005 0.01
46

48

50

0 0.005 0.01
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Figure 4. The graphs show the spin variances and mean spin
values for the fields created in the nonlinear interferometer
of Figure 2 after a time t with nonlinearity present (χ 6= 0).
Here time t is in units of 1/χ. N = 100 and K = −1. The top
left graph gives the variances of Ŝx, Ŝy and Ŝz. The top right
graph shows 〈Ŝx〉. The lower graph gives EHZ and EtHZ .
Entanglement is signified if EHZ < 1 or EtHZ < 1. The plots
for K = 0 are similar but with time in units of 2χ.
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-50
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Figure 5. The graphs are as for Figure 4 showing the periodic
behaviour that is evident over longer time scales.

there is no spin squeezing in Ŝz or Ŝy. The moment 〈Ŝ2
z 〉

is independent of time and also of Ω, for both K = 0
and K = −1. In fact, we find that (∆Ŝz)

2 = N/4. The
Figures show that the variance in Ŝy can exceed the level
of N/4.

Figure 4 also plots the Hillery-Zubairy parameter EHZ .
The EHZ entanglement value reduces below 1, due to
the smallness of the variance (∆Ŝx)2, which is due to the
precise number of atoms in the input state |N〉. This
enables a certification of entanglement between modes
a and b. For longer times, the variances (∆Ŝx)2 and
(∆Ŝy)2 increase sufficiently to destroy the entanglement
signature. We also define a rotated EHZ parameter in
terms of a different planar spin squeezing orientation, as

EtHZ =
(∆Ŝx)2 + (∆Ŝz)

2

N̂/2
(4.4)

Details of the mode transformation assoicated with EtHZ
are given in Ref. [35]. We notice that due to the noise



8

reduction in Ŝx, both EHZ < 1 and EtHZ < 1 for smaller
times. The signature for EtHZ lasts longer than that of
EHZ , due to the stability of the variance (∆Sz)

2. The so-
lutions for the nonlinear Hamiltonian are periodic as evi-
dent from Figure 5, and for longer times there is a return
of the entanglement signature EHZ < 1 and EtHZ < 1

coinciding with the vector |〈Ŝx〉| → N/2.

C. Spin squeezing of a spin vector in the yz plane

To optimise the detection of EPR-steering using the
Hillery-Zubairy entanglement criterion, we seek the op-
timal spin squeezing for some Ŝθ in the yz plane. In
that case, where the variance ∆Ŝx → 0, the observation
of (∆Ŝθ)

2 < N/4 for θ in the yz plane would imply an
EPR-steering between two appropriately rotated modes.
In fact, such spin squeezing has been predicted for the
two-mode nonlinear Hamiltonian HNL by Li et al [44]
and has been observed experimentally [9]. With this mo-
tivation, we define a spin vector in the yz plane. Thus

Ŝθ = Ŝy cos θ + Ŝz sin θ (4.5)

Spin squeezing in Ŝθ is observed when [43]

(∆Ŝθ)
2 < |〈Ŝx〉|/2 (4.6)

We define the spin squeezing ratio

ξ2
θ =

(∆Ŝθ)
2

|〈Ŝx〉|/2
(4.7)

and note that where the Bloch vector is along the x axis

and 〈Ŝx〉 ∼ N/2, this is the definition ξ̄2
θ =

〈N̂〉(∆Ŝθ)
2

〈Ŝx〉2

used in Refs. [43]. More generally, where 〈Ŝx〉 < N/2,

we see that ξ̄2
θ =

〈N̂〉ξ2θ
2|〈Ŝx〉| > ξ2

θ and spin squeezing as

defined by ξ2
θ < 1 does not imply ξ̄2

θ < 1, though the
converse is true. Spin squeezing in Ŝθ is observed when
ξ2
θ < 1. Where 〈Ŝx〉 = N/2, there is spin squeezing
when (∆Ŝθ)

2 < N/4. Although not evident in the plots
for the Ŝz and Ŝy of Figures 4 and 5, it is know that
spin squeezing is created for optimal θ by the nonlinear
dynamical evolution given by HNL. Spin squeezing is
predicted by the simple model given by HNL, as has been
shown in Refs [44, 45].

We summarise the calculation of Li et al. [44, 45].
We evaluate (∆Ŝθ)

2 = 〈Ŝ2
θ 〉 − 〈Ŝθ〉2. Here the 〈Ŝθ〉 = 0

because 〈Ŝy〉 = 〈Ŝz〉 = 0. Therefore:

〈Ŝ2
θ 〉 = 〈cos θŜy + sin θŜz〉

=
1

2
(〈Ŝ2

y〉+ 〈Ŝ2
z 〉)− C

cos 2θ

2

− i
4
F sin 2θ (4.8)

where we define

F = 〈â†2âb̂− âb̂† − â†â2b̂† + b̂†b̂(âb̂† − â†b̂)〉
C = 〈Ŝ2

z 〉 − 〈Ŝ2
y〉 (4.9)

We wish to find the angle θ that produces the minimum
value of 〈Ŝ2

θ 〉. We see that

∂〈Ŝ2
θ 〉

∂θ
= C sin 2θ − iF

2
cos 2θ = 0 (4.10)

which implies the stationary condition tan 2θ = i
2
F
C .

Therefore the stationary values are at

sin 2θ =
±iF√

4C2 + |F |2

cos 2θ =
±2C√

4C2 + |F |2
(4.11)

On substituting into 〈Ŝθ〉 we find on taking the minimum
stationary value

〈Ŝ2
θ 〉min =

1

2
(〈Ŝ2

y〉+ 〈Ŝ2
z 〉)−

4C2 + |F |2

4
√

4C2 + |F |2

(4.12)

Following Li et al., we find significant spin squeezing is
possible for an optimal θ and time t. The squeezing ver-
sus time is plotted in the Figure 6, as is the optimal angle
θ for the spin squeezing. Figure 7 plots the optimal spin
squeezing for a given N in agreement with the plots of
Li et al [45].

The paper Li et al makes a careful comparison between
the simplistic two-mode model and more complete mod-
els that account for the dynamical changes in the wave
function [45]. They evaluate χ for Rb condensates. Fig-
ures 2 and 3 of their paper identify parameter regimes for
N ∼ 1000 atoms where the predictions given by Figure
6 correspond to timescales of order milliseconds and sec-
onds and are in good agreement with the more accurate
models.

D. Two-mode EPR steering

Choosing the direction θ for optimal squeezing, we can
now define the planar spin variance parameter in the
plane defined by x and θ as

EθHZ =
(∆Ŝx)2 + (∆Ŝθ)

2

〈N̂〉/2
(4.13)

The EθHZ is plotted in Figure 8. The plots show EθHZ <
0.5 indicating EPR steering (see below). However, the
EPR steering signature implies EPR steering between
two modes cθ and dθ that are rotated with respect to
a and b. We need to define those modes in terms of a
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Figure 6. The graphs show the optimal spin squeezing for the
fields created in the nonlinear interferometer after evolution
for a time t, as in the refs. Li et al. [44, 45]. Here time t is in
units of 1/χ. Top figures show the evolution of spin squeezing
as defined by the spin squeezing parameter ξ̄2θ for K = −1
and N = 100. Spin squeezing is obtained if ξ̄2θ < 1. The right
graph shows the detail over shorter timescales. The plots of
ξ2θ are indistinguishable from those of ξ̄2θ over the timescales
for squeezing. The lower left graph shows the angle θ for the
optimal squeezing where N = 100. The lower right graph
shows the timescales for higher atom numbers.
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Figure 7. The optimum spin squeezing as defined by the pa-
rameter ξ̄2θ for each value of N . Parameters are as for Figure
6. The optimisation is done with respect to time t and angle
θ that defines the squeezing direction.
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Figure 8. The EPR-steering for optimally rotated modes cθ
and dθ of the nonlinear interferometer after evolution for a
time t. The plots show EθHZ for the optimal value of θ at
each time t for N = 100, 1000 and 104 atoms. Here K = −1
and t is in units of 1/χ. Entanglement is signified if EθHZ < 1.
Steering is signified if EθHZ < 0.5. This implies entanglement
and steering between the rotated modes cθ and dθ as defined
in the text.
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Figure 9. The optimum EPR-steering created in the nonlinear
interferometer for a given N . Here we optimise with respect
to both time t and angle θ. Figures show the optimal value
EθHZ (top) and the corresponding value of r = |〈~S〉|

〈N̂〉/2 (lower
left) for those optimised parameters (right). Here K = −1.
Entanglement is signified if EθHZ < 1. EPR steering is signi-
fied if EθHZ < 0.5. The lower right graph gives the angle θ
that corresponds to the optimal EθHZ value for each N .

and b, so that they can spatially separated in a future ex-
periment that may measure an actual EPR steering. In
fact, the rotated modes are defined according to boson
operators

ĉθ = cos(θ/2)â+ i sin(θ/2)b̂

d̂θ = i sin(θ/2)â+ cos(θ/2)b̂

This rotation can be achieved physically by first apply-
ing a phase shifting to mode a by π/2 so that â → iâ
followed by a rotation of angle θ, to give new modes ĉ′ =

i cos(θ/2)â − sin(θ/2)b̂ and d̂′ = i sin(θ/2)â + cos(θ/2)b̂.
A second phase shift of −π/2 is applied to the mode
ĉ′ so that ĉ′ → −iĉ′ and the final transformation is
given by ĉθ = cos(θ/2)â + i sin(θ/2)b̂. Defining spin
operators in the new modes: Ŝθx = (ĉ†θd̂θ + ĉθd̂θ

†)/2,
Ŝθy = (ĉ†θd̂θ − ĉθd̂θ†)/(2i), Ŝθz = (ĉ†θ ĉθ − d̂θ†d̂θ)/2, we find

Ŝθx = Ŝx

Ŝθz = Ŝz cos θ − Ŝy sin θ

Ŝθy = Ŝz sin θ + Ŝy cos θ (4.14)

We note Ŝθy = Ŝθ where Ŝθ is defined above by Eq. (4.5)
and thus (∆Ŝθ)

2 = (∆Ŝθy)2. Applying the results sum-
marised in Section II for two-mode systems, we see that
entanglement is certified between the modes cθ and dθ if
one can verify

EθHZ < 1 (4.15)
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Figure 10. The value of EθHZ
r

for the interferometer with N
atoms is shown by the upper blue line. Here we have evaluated
EθHZ
r

using the angle θ and time t that minimises the value of
EθHZ for a given N , as displayed in Figure 9. Here K = −1.
This value may be compared with the fundamental lower value
given by the plot of C̃S = CS/S with S = N/2 (lower black
line).

An EPR-steering (d by c) is certified if EθHZ < 〈ĉ†ĉ〉
〈N̂〉 or

(c by d) if EθHZ <
〈d̂†d̂〉
〈N̂〉 . Since 〈ĉ

†ĉ〉 = 〈N̂〉/2 + 〈Ŝθz 〉 and
〈d̂†d̂〉 = 〈N̂〉/2 − 〈Ŝθz 〉, these criteria for steering can be
rewritten as

EθHZ <
1

2
± 〈Ŝ

θ
z 〉
〈N̂〉

(4.16)

EPR steering will always be confirmed in at least one
direction if EθHZ < 0.5. Hence, since the plots of Figure
8 show EθHZ < 0.5, EPR steering is predicted possible. In
fact, we can confirm that in this case, 〈ĉ†ĉ〉 = 〈d̂†d̂〉 and
the observation of EθHZ < 0.5 certifies a two-way steering.
Figure 9 shows the optimal EθHZ values for each N .

V. MESOSCOPIC STEERABLE STATES

We now apply the criterion developed in Sections II
and III, to infer the depth of two-mode EPR steering.
The Figures 10-12 give the calibration showing the effec-
tiveness of the criterion versus N , for the steerable states
produced by the nonlinear model. The states generated
by the Hamiltonian are pure steerable states with a to-
tal number of atoms given by N . The criterion is used
to place a rigorous lower bound based only on the ob-
served experimental variances, without the assumption
of a pure state. However a maximally effective criterion
would detect a depth of steering of nst ∼ N . This value
is not detected with the criteria, because the states of the
interferometer are not the maximal planar spin squeezed
states [42]. Summarising the Result 2 proved in Section
III.B, if we measure EHZ

r < C̃s0 where C̃s0 = Cs0/s0 and

r = |〈~S〉|
〈N̂〉/2 , we deduce a depth of EPR steering of (at

least) nst ∼ 2s0.
In the Figures 10 -12 we plot the predictions for EθHZ

r
versus N that are shown in Figure 9 for the two-mode
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Figure 11. Curves are as in Figure 10. For the left graph, the
top horizontal dashed line cuts the CS/S curve just below
CS/S = 0.1581. We see that this value corresponds to N =
2S = 42. Hence if the value EHz/r is indeed measured, we
deduce a steerable state with nst = 42 atoms. A similar line
is drawn for N = 200 The right graph show the calibration
for higher N .

N
EθHZ
r

2S C̃S = CS
S

50 0.1951 21 0.1952

100 0.1572 42 0.1581

200 0.1261 87 0.1262

500 0.0936 223 0.0938

1000 0.07457 456 0.07459

10000 0.034775 4772 0.034776

Table I. Value of the ratio EθHZ
r

for different values of N .
Values of CS for different values of S using the analytical
expressions given in the paper He et al [42] that corresponds
to the minimum value where the condition EHZ

r
< C̃S is

satisfied.

BEC atom interferometer. The graphs also show the cal-
ibration curves based on the results for CS/S as given
in Ref. [42] where we have put N = 2S. These curves
extend Figure 1 to larger S and give the fundamental
lower bound of the Hillery-Zubairy planar spin squeez-
ing parameter EHZ/r. This fundamental lower bound is
determined by quantum mechanics. Figure 10 plots the
comparison for large values of N based on the analytical
expressions given in the paper He et al [42]. For high N
the lines become indistinguishable on the linear scale for
the variances.

Figure 11 gives the close-up of the predictions of E
θ
HZ

r
for the BEC intereferometer for N ∼ 100 − 200 atoms.
For a given value of N , the predictions may be com-
pared with the plot of C̃S = CS/S with N = 2S given
by the lower black line. At N = 100, we see that
EθHZ/r = 0.1572. The horizontal grey dashed line on the
graph gives for N = 100 the minimum value C̃S = 0.1581
satisfying the condition (3.2). We see that this corre-
sponds to N = 2S = 42 on the calibration curve. Hence
if the value EθHZ/r is indeed measured, one can infer an
EPR steerable state with at least nst = 42 atoms. A sim-
ilar line is drawn for N = 200 indicating nst ≥ 87. The
right graph of Figure 11 gives the same analysis but for
N = 1000−10, 000 atoms. If the predicted amount of pla-
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nar spin squeezing EHZ can be observed at N = 10, 000,
then it would be possible to deduce mesoscopic steerable
states with thousands of atoms. The link between the
observed value EθHZ

r and the number of atoms that can
be inferred is given in the Table I for the range of N that
are typical of the spin squeezing experiments.

VI. DISCUSSION

There are two main assumptions of the theory given
in Section IV of this paper. First, the interferometer is
modelled using a simple two-mode Hamiltonian that ig-
nores loss of atoms into other modes, and also ignores the
spatial dynamics of the mode functions. More complete
treatments show the validity of the approximation, at
least for calculations of the spin squeezing, over certain
regimes [45, 46, 59]. A treatment allowing for changes
in both mode occupancy and the mode functions is set
out in Ref. [58]. Li et al give a detailed comparison be-
tween the two-mode model and more complete models
that account for the spatial dynamics. The predictions
of the simple model are found to be achievable for Rb
condensates of N ∼ 104 atoms [45]. The conclusion of
the present paper is that one can expect an evolution
of the EPR steering correlations over similar timescales
as the evolution of spin squeezing. The full calculation
however involves the dynamics of the variance associated
with the Bloch vector, which was not studied earlier.

At higher temperatures and for larger numbers of
atoms, a multi-mode model will be necessary. EPR steer-
ing correlations are known to be sensitive to thermal
noise, which has not been included in this paper [60]. A
multimode treatment that fully accounts for spatial vari-
ation of the wavefunctions has been given by Opanchuk
et al [46]. The depth of EPR steering criterion used in
this paper gives a lower bound of the number of atoms
in the two-mode steerable state. Where other modes are
present, we point out it is possible to extract the relevant
two-mode condensate moments from experimental data,
so that the criteria can be applied. This will be discussed
in another paper.

The second assumption made in the theory is that
there is a fixed number N of atoms incident on the in-
terferometer. While this is typical of many models that
have successfully described the evolution of spin squeez-
ing, in practice the fluctuating number input and the in-
ability to fully resolve the atom number on measurement
will introduce deviations from the theory. Current ex-
perimental strategies do not allow precise control of the
number inputs. The effect of number fluctuations on the
Hillery-Zubairy entanglement parameter has been stud-
ied in the Refs. [37, 50]. The variance of Ŝx (the Bloch
vector) is directly related to the variance of the number
input and will increase with increased number fluctua-
tions. Yet, a reduction in the variance for Ŝx below the
Poissonian level is required for the Hillery-Zubairy EPR
steering signature. However, it was also shown in the

papers [37, 50] that the Hillery-Zubairy criterion can be
modified by a normalisation with respect to total num-
ber, to give greater sensitivity in the presence of number
fluctuations. If the total number of atoms can be accu-
rately counted on detection, then postselection of states
with definite N is possible.

VII. CONCLUSION

In summary, we have analysed theory for a two-mode
nonlinear interferometer and shown that entanglement
and EPR steering correlations between the two modes
are predicted. The correlations may be signified by mea-
suring noise reduction in the sum of two spin variances
(planar spin squeezing) in accordance with a two-mode
Hillery-Zubairy parameter. The required moments are
measurable as the population differences at the output
of the interferometer, after appropriate phase shifts and
re-combinations of the modes. These interactions are re-
alised in atom interferometers as Rabi rotations using
microwave pulses.

In principle, it is possible to spatially separate the two
modes that show the EPR steering correlations. It is also
possible in principle to measure the steering correlations
by performing local measurements. This can be seen by
expanding the two-mode moments of eqs. (2.4) and (2.5)
in terms of the local quadrature phase amplitudes. How-
ever, the proposal of this paper is to give preliminary ev-
idence of the EPR steering correlations, by recombining
the modes at the final beam splitter of the interferometer.

Recent experiments report detection of EPR steer-
ing for Bose-Einstein condensates, including for spatial
separations. The purpose of our work is to provide a
method to extend such analyses, to quantify the number
of atoms genuinely comprising the EPR steerable state.
The method we give here is based on the lower bounds
derived in Ref. [42] for an uncertainty relation involving
two spins, and would be useful where the steering is iden-
tified via planar spin squeezing, or the Hillery-Zubairy
parameter.
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Appendix A: Proof of two-mode depth of steering
criterion

Proof: We follow the steps and definitions of the pre-
vious proof III.B to arrive at the inequality (∆Ŝy)2 +

(∆Ŝz)
2 ≥

∑
R PR{(∆RŜy)2 + (∆RŜz)

2}. We find, using
(3.12) and the result for all non-steerable states

(∆Ŝy)2 + (∆Ŝz)
2 ≥ Plhs0.5

∑
R′′

PR′′sR′′

+Pst
∑
R′

PR′sR′FsR′

( 〈S||〉R′

sR′

)
(A1)

where here we let sR = 〈N̂〉R/2. Using that the functions
FS

(
〈S||〉
S

)
are monotonically decreasing with S, for fixed

〈S||〉R′

sR′
, it follows that

(∆Ŝy)2 + (∆Ŝz)
2 ≥ Plhs0.5

∑
R′′

PR′′sR′′

+Pst
∑
R′

PR′sR′Fs0

( 〈S||〉R′

sR′

)
(A2)

where s0 is defined in III.B, as the maximum value of
the spins of the set of steerable states. Following the
proofs of Refs. [21], we use that the functions FS are
convex. Hence they satisfy the inequality

∑
k ckF (xk) ≥

F (
∑
k ckxk) [21] where ck are real numbers. Thus, on

introducing k = 〈N̂〉/2

Pst
∑
R′

PR′sR′Fs0

( 〈S||〉R′

sR′

)
= Pstk

∑
R′

PR′sR′

k
Fs0

( 〈S||〉R′

sR′

)
≥ kFs0

(∑
R′

PstPR′
〈S||〉R′

k

)
(A3)

Thus

(∆Ŝy)2 + (∆Ŝz)
2 ≥ k

(∑
R′′

PlhsPR′′
sR′′

k
0.5
)

+kFs0

(∑
R′

PstPR′
〈S||〉R′

k

)
(A4)

We have taken the case where it is true that FS
(
x
)
≤ 0.5

for all x [22]. Thus

(∆Ŝy)2 + (∆Ŝz)
2 ≥ k

(∑
R′′

PlhsPR′′
sR′′

k
Fs0(
〈S||〉R′′

sR′′

)
)

+kFs0

(∑
R′

PstPR′
〈S||〉R′

k

)
(A5)

Using convexity, we find

(∆Ŝy)2 + (∆Ŝz)
2 ≥ kFs0(

∑
R′′

PlhsPR′′
〈S||〉R′′

k

)
+kFs0

(∑
R′

PstPR′
〈S||〉R′

k

)
≥ kFs0

(∑
R

PstPR
〈S||〉R
k

)
=
〈N̂〉

2
Fs0

( 〈S||〉
〈N̂〉/2

)
(A6)

The last line can be rewritten

EyzHZ ≥ Fs0
( 〈S||〉
〈N̂〉/2

)
(A7)

Violation of this inequality implies the existence of a
steerable state with spin s > s0, which implies a state
with greater than 2s0 atoms.

Appendix B: Evaluation of moments

Here, we show the expressions for the moments evalu-
ated from the Hamiltonian HNL given in Eq. (4.2). Us-
ing the state |ψ(t)〉 we evaluate the moments needed in
the expressions for the variances, EHZ and spin squeez-
ing of Section IV.

〈â†b̂〉 =
∑
k=0

∑
r=0

c∗kcre
i(Ω(k)−Ω(r))t/~√N − r + 1

√
r ×

〈N − k|N − r + 1〉a〈k|r − 1〉b
=
∑
k=0

c∗kck+1e
i[Ω(k)−Ω(k+1)]t/~√N − k

√
k + 1

〈â†â〉 = 〈b̂†b̂〉
=
∑
r,k=0

c∗kcre
i(Ω(k)−Ω(r))t/~r〈N − k|N − r〉a〈k|r〉b

=
∑
r=0

|cr|2r

〈â†âb̂†b̂〉 =
∑
r=0

∑
k=0

c∗kcre
i(Ω(k)−Ω(r))t/~(N − r)r ×

〈(N − k|N − r〉a〈k|r〉b
=
∑
r=0

c2r(N − r)r

〈â†2âb̂〉 =
∑
r=0

∑
k=0

c∗kcre
i(Ω(k)−Ω(r))t/~ (N − r)×

√
N − r + 1

√
r〈N − k|N − r + 1〉a〈k|r − 1〉b

=

N−1∑
k=0

c∗kck+1e
i(Ω(k)−Ω(k+1))t/~ (N − k − 1)C(k)
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Here we have defined C(k) =
√

(k + 1) (N − k).

〈â†â2b̂†〉 =
∑
r=0

∑
k=0

c∗kcre
i(Ω(k)−Ω(r))t/~ (N − r − 1)×

√
N − r

√
r + 1〈(N − k|N − r − 1〉a〈k|r + 1〉b

=

N−1∑
r=0

c∗r+1cre
i(Ω(r+1)−Ω(r))t/~ (N − r − 1)C(r)

Here we have defined C(r) =
√
N − r

√
r + 1.

〈b̂†b̂âb̂†〉 =
∑
r=0

∑
k=0

c∗kcre
i(Ω(k)−Ω(r))t/~ (r + 1)×

√
N − r

√
r + 1〈(N − k|N − r − 1〉a〈k|r + 1〉b

=

N−1∑
r=0

c∗r+1cre
i(Ω(r+1)−Ω(r))t/~ (r + 1)C(r)

Appendix C: Analytical expression for the spin
squeezing ratio

Here we show the analytical expressions in order to
evaluate the spin squeezing ratio given in Eq. (4.7) or
ξ̄2
θ = 〈N〉(∆Sθ)2

〈Sx〉2
. Here we used the expression given in

Appendix B:

〈Ŝx〉 =
1

2
(〈â†b̂〉+ 〈âb̂†〉)

=

N−1∑
r=0

CnCn+1C(r) cos [2(1−K)(N − 2r − 1)t/~]

=

N−1∑
r=0

N !

2N
ei2χ(K−1)(N−1−2r)t/~

r!(N − r − 1)!
×

cos [2(1−K)(N − 2r − 1)t/~]

=
Ne−2it(K(N−1)−N−1)

2N (e4iKt + e4it)

(
e4i(K−1)t + 1

)N
Here we have used the definition of Ω(r), Cr and C(r) =√
N − r

√
r + 1, as well as

〈â†b̂〉 =

N−1∑
r=0

C∗rCr+1e
i[Ω(r)−Ω(r+1)]t/~

√
(r + 1)(N − r)

Ω(r)− Ω(r + 1) = 2(1−K)(N − 2r − 1)

Next, (∆Ŝθ)
2 for the optimal angle is (∆Ŝθ)

2 = 〈Ŝmin〉.
From Eq. (4.12) we get:

〈Ŝ2
θ 〉min =

1

2
(〈Ŝ2

y〉+ 〈Ŝ2
z 〉)−

√
4C2 + |F |2

4

Similar to the case of 〈Ŝx〉, we use the definition of Ω(r)
and Cr as well as the evaluation of the moments given in
Appendix A. On simplifying terms we find:

〈Ŝ2
y〉 = −1

4
〈â†â†b̂b̂− â†âb̂b̂† − ââ†b̂†b̂+ ââb̂†b̂†〉

=
1

8
{N2 +N − 4

N−2∑
r=0

2−NN !

r!(N − r − 2)!
×

exp [−it4(K − 1)(N − 2(r + 1))]}

=
1

8
{N2 +N −

(N − 1)Ne4it(−K(N−2)+N+2)
(
1 + e8i(K−1)t

)N
2N−2 (e8iKt + e8it)

2 }

〈Ŝ2
z 〉 =

1

4
〈(â†â− b̂†b̂)〉 =

N

4

F = 〈â†2âb̂− âb̂† − â†â2b̂† + b̂†b̂(âb̂† − â†b̂)〉

=
2−N (N − 1)N

(
e4it − e4iKt

)
e−2i(K+1)(N−1)t

(e4iKt + e4it)
2 ×(

e4iKNt
(

1 + e4i(1−K)t
)N

+ e4iNt
(

1 + e4i(K−1)t
)N)

C = 〈Ŝ2
z 〉 − 〈Ŝ2

y〉

=
1

8
[−N2 +N +

(N − 1)Ne4it(−K(N−2)+N+2)
(
1 + e8i(K−1)t

)N
2N−2 (e8iKt + e8it)

2 ]

If we consider the case where K = −1 and χ = 1, the
above terms can be simplified:

〈Ŝx〉 = (N/2) cosN−1(4t).

〈Ŝ2
y〉 =

1

8

[
N2 +N − (N − 1)N

(
cosN−2(8t)

)]
F = iN(N − 1)

(
cosN−2(4t)

)
sin(4t)

C = −1

8

[
N2 −N − (N − 1)N

(
cosN−2(8t)

)]
Appendix D: Discussion of mode entanglement

Entanglement is a feature applying to quantum sys-
tems which are composites of two or more physically dis-
tinguishable sub-systems. Both the overall system and
its sub-systems can be prepared in physically distinct
quantum states. For two sub-systems A,B, typical pure
states for these sub-systems can be listed as |A〉 , |B〉.
Pure states of the overall system are separable if they
can be written as |A〉 ⊗ |B〉, otherwise they are entan-
gled. Hence in general (|A1〉 ⊗ |B1〉+ |A2〉 ⊗ |B2〉) is
an entangled state. The definition can be generalised to
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mixed states, where ρ̂A, ρ̂B are typical sub-system mixed
states. Mixed states are separable if they can be written
as ρ̂A ⊗ ρ̂B , otherwise they are entangled. Hence in gen-
eral ρ̂A1

⊗ ρ̂B1
+ ρ̂A2

⊗ ρ̂B2
is an entangled state. We have

ignored normalisation. Each sub-system will also be as-
sociated with Hermitian operators Ω̂A, Ω̂B representing
physical observables for the sub-system, and there will
also be Hermitian operators Ω̂ involving operators from
both sub-systems (such as Ω̂A⊗ 1̂B + 1̂A⊗ Ω̂B) that will
represent physical observables for the combined system.

In order to define entanglement in many particle sys-
tems three issues arise - (1) How do we distinguish sub-
systems from each other? (2) Are there requirements
that the states and observables for the sub-systems and
for the combined system must comply with? (3) How
are cases where the number of particles is not definite to
be treated? In regard to the third question, experimen-
tal situations do in fact arise (such as in BECs) where
particle numbers are not well-defined. The second ques-
tion is underpinned by the requirement that the states
for the sub-systems must be physically preparable and
the observables physically measureable. The first ques-
tion reflects the idea that in regard to sub-systems we
are referring to an entity which has its own set of phys-
ically preparable quantum states and observable quan-
tities, and which can exist independently without refer-
ence to other sub-systems. It is particularly important to
be precise about what sub-systems are being referred to
when discussing entanglement. A quantum state which
is entangled when referring to one choice of sub-systems
may well be separable when another choice is made - an
example is given below. With regard to these questions,
there are two extreme situations that could be involved.
In the first situation the overall system contains particles
that are all identical. In the second situation the overall
system contains particles that are all different.

To treat systems of different particles the standard ap-
proach is to use the first quantization formalism. Each
distinct particle is associated with a set of orthogonal
one particle states (or modes) that it can occupy. Note
that the choice of modes is not unique - original sets of
orthogonal one particle states (modes) may be replaced
by other orthogonal sets. However, the single particle
states for different particles are obviously distinct from
each other. Modes can often be categorized as localized
modes, where the corresponding single particle wavefunc-
tion is confined to a restricted spatial region, or may be
categorized as delocalized modes, where the opposite ap-
plies. Single particle harmonic oscillator states are an
example of localized modes, momentum states are an ex-
ample of delocalized modes. Basis states for the overall
system or for sub-systems can be obtained as products
of the single particle states for each of the different par-
ticles involved. Subject to certain restrictions discussed
below, general states are quantum superpositions of the
basis states. These can represent physically preparable
states for either the overall system or for a particular sub-
system. Symmetrization principles applying for systems

of identical particles are irrelevant, and physical quan-
tities for each sub-system would be based on operators
specific to the particles involved (such as the momentum
being the sum of momentum operators for each particle),
and hence being symmetrical under particle interchange
does not apply (Issue 2). Sub-systems are distinguished
from each other by just specifying which of the differ-
ent particles they contain (Issue 1), so sub-systems are
defined by particles. Each sub-system would therefore
contain just one particle of each of the type involved.
Cases where the number of particles differ would be re-
garded as different systems and each would have its own
set of states. Compliance with super-selection rules such
as forbidding quantum states that involve coherent su-
perpositions of quantum states for different particles (for
example a linear combination of a neutron state with a
proton state) can be achieved by simply excluding such
states as being unphysical (Issue 2). Although the sys-
tem is defined by the distinct particles it contains, cases
where the number of each particle is not definite can be
described via density operators involving statistical mix-
tures of states with each having precise numbers (0 or 1)
of particles of each type (Issue 3).

To treat systems of identical particles it is convenient
to use the second quantization formalism. The system
is regarded as a quantum field, which is associated with
a collection of single particle states (or modes). Again,
the choice of modes is not unique - original sets of or-
thogonal one particle states (modes) may be replaced
by other orthogonal sets, and modes may be localised
or delocalised. The key requirement is that the modes
must be distinguishable from one another, and this en-
ables both the overall system and its sub-systems to be
specified via the modes that are involved - hence sub-
systems can be distinguished from each other (Issue 1).
In this approach, particles are associated with the oc-
cupancies of the various modes, so that situations with
differing numbers of particles will be treated as differ-
ing quantum states of the same system, not as differ-
ent systems. In second quantization, Fock states defined
via the occupancies of the various modes are obtained
from the vacuum state (containing no particles in any
mode) via the operation of mode creation operators, and
such states act as basis states for the quantum system or
sub-system being considered. These can represent phys-
ically preparable states for either the overall system or a
sub-system, and allowed general states are quantum su-
perpositions of the basis states. In linking second and
first quantization, the basis states are defined to be in
one-one correspondence with the symmetrized products
of one particle states that act as the basis states in the
first quantization approach. Creation and annihilation
operators for each mode are defined to link basis states
where the occupancy changes by ±1. The commuta-
tion (anti-commutation) properties of the mode creation
and annihilation operators for bosons (fermions) reflect
the first quantization requirement that allowed physical
states for these systems (and sub-systems) must be sym-
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metric (anti-symmetric) under the interchange of iden-
tical particles. Furthermore, physical quantities in the
first quantization approach that satisfy the requirement
of being symmetric under interchange of identical par-
ticles are matched in second quantization by operators
based on mode annihilation and creation operators that
are constructed to have the same effect on the basis states
(Issue 2). Compliance with super-selection rules such as
forbidding quantum states that involve coherent super-
positions of quantum states with differing numbers of
identical particles (for example a linear conbination of a
one boson state with a two boson state) can be achieved
by simply excluding such states on physical grounds (Is-
sue 2). As the system is defined by the distinct modes
it contains, the case where the number of each particle
is not definite can be described via density operators in-
volving statistical mixtures of states with each having
precise numbers (not restricted to 0 or 1, apart from the
case of a single mode system for fermions) of particles
(Issue 3).

Clearly, for identical particles an approach in which
sub-systems are specified by which modes are involved
and which is based on using the second quantization for-
malism is quite suitable for discussing entanglement in
such systems, since all three issues are resolved. For dis-
tinguishable particles we can treat entanglement using
an approach in which sub-systems are specified by which
particles are involved and which is based on using the
first quantization formalism For this case the introduc-
tion of the second quantization approach would be super-
fluous. However, because each of the different particles
is associated with its own set of single particle states, it
follows that defining sub-systems via which particles they
contain is actually equivalent to defining them by which
modes they contain - so in the distinguishable particles
case the particle approach is also equivalent to the mode
approach. However, the converse question is – Could the
particle approach for defining sub-systems be applied in
the identical particles case based on the first quantization
formalism ? The first problem is that there is no physical
method that enables us to distinguish one identical par-
ticle from another. In the first quantization formalism
we do label each identical particle with a number, but
when we then construct basis states with various num-
bers of particles in the different one particle states, a sym-
metrization operation is applied that treats them all the
same. Similarly, all the physical quantities are based on
expressions in which each labelled identical particle is in-
cluded in the same way. Hence, if sub-systems are defined
by which labelled identical particles they contain, then
there is an immediate conflict with the requirement of
being physically distinguishable from another sub-system
which has the same number of differently labelled iden-
tical particles. There are of course no numerical labels
physically attached to each identical particles - this is just
a mathematical fiction. As a result of not being based on
distinguishable sub-systems, the labelled identical par-
ticle based specification of sub-systems leads to states

described in first quantization being regarded as being
entangled, whilst exactly the same state described in sec-
ond quantization (with sub-systems specified by modes)
would be regarded as separable. A simple illustration
of this contradiction occurs for a system of two bosons,
in which one boson occupies a single particle state |φA〉
and the other occupies a different single particle state
|φB〉. With mode creation operators ĉ†A and ĉ†B , in sec-
ond quantization the quantum state is given by |Ψ〉 = ĉ†A
|0〉A⊗ĉ

†
B |0〉B = |1〉A⊗|1〉B , which is a separable state for

the combined system consisting of sub-systems specified
as modes φA and φB . In first quantization the same state
is |Ψ〉 = (|φA(1)〉 ⊗ |φB(2)〉+ |φB(1)〉 ⊗ |φA(2)〉) /

√
2,

which would be regarded as an entangled state for the
combined system consisting of sub-systems specified by
labelled identical particles 1 and 2. As the labelled iden-
tical particle based specification of sub-systems is in con-
flict with requirement for sub-systems to be physically
distinguishable, we believe that the mode based specifi-
cation of sub-systems is the correct one to apply in the
case of systems consisting of identical particles, and hence
it is the approach used in the present paper.

Some confusion can occur when discussing the effect
of mode couplers such as beam splitters on a quantum
state. In general, the new state may have a different
entanglement status for the same pair of sub-system to
that of the original state. For the state |Ψ〉 above, it
is well-known that the effect of a suitable beam splitter
could be described by a unitary operator Û such that
Û ĉ†AÛ

−1 = (ĉ†A + ĉ†B)/
√

2, Û ĉ†BÛ
−1 = (−ĉ†A + ĉ†B)/

√
2.

In this case Û |Ψ〉 = (− |2〉A ⊗ |0〉B + |0〉A ⊗ |2〉B) /
√

2,
which is now an entangled state for sub-systems specified
as modes φA and φB . Thus in general, mode coupling cre-
ates entanglement. For a different separable state given
by |Φ〉 = (1/

√
N !)(ĉ†A)N |0〉A ⊗ |0〉B = |N〉A ⊗ |0〉B the

new state for the same beam splitter would be Û |Φ〉 =

(1/
√
N !)((ĉ†A + ĉ†B)/

√
2)N (|0〉A ⊗ |0〉B), and again the

new state is an entangled state for sub-systems speci-
fied as modes φA and φB . However, if we introduce two
new orthogonal modes defined by the one particle states
|φC〉 = (|φA〉+|φB〉)/

√
2 and |φD〉 = (− |φA〉+|φB〉)/

√
2,

then we see that the new state is also a separable state
for sub-systems specified as modes φC and φD, having
N bosons in sub-system φC and none in sub-system φD.
This is a clear example of a quantum state that is en-
tangled for one choice of sub-systems yet is separable for
another choice.

There is however, one situation for a system of identical
particles where the particle approach for defining sub-
systems is appropriate. This is where the sub-systems
each consist of one or more localised modes and the only
states considered are where each sub-system just con-
tains one particle. Here each particle may be considered
as distinguishable from another one because it is just as-
sociated with distinguishable localised modes. This sit-
uation applies for certain experiments in quantum infor-
mation theory, such as where two state identical qubits
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each involving a single atom are localised by trapping in
different places. Reseachers in such quantum informa-
tion situations generally think of entanglement in terms
of separated qubit sub-systems. However, researchers in

cold quantum gases are involved with identical particles
occupying delocalised modes, so here entanglements is
best defined in terms of modal sub-systems.
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