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Einstein-Podolsky-Rosen (EPR) steering is an intermediate quantum correlation that lies in be-
tween entanglement and Bell non-locality. Its temporal analogue, temporal steering, has recently
been shown to have applications in quantum information and open quantum systems. Here, we
show that there exists a hierarchy among the three temporal quantum correlations: temporal insep-
arability, temporal steering, and macrorealism. Given that the temporal inseparability can be used
to define a measure of quantum causality, similarly the quantification of temporal steering can be
viewed as a weaker measure of direct cause and can be used to distinguish between direct cause and
common cause in a quantum network.

I. INTRODUCTION

The concept of quantum steering was first articulated
by Shrödinger [1] in response to the apparently non-local
phenomenon of quantum correlations questioned by Ein-
stein, Podolsky, and Rosen (EPR) [2]. Thanks to the
celebrated inequality proposed by Bell [3], a great deal of
theoretical and experimental investigation has been fo-
cused on quantum non-locality in the past few decades.
Empowered by practical quantum information task re-
quirements, spatial EPR steering was recently able to
be studied in a more quantitative way [4–8]. Together
with the concepts of Bell nonlocality and entanglement,
EPR steering forms a hierarchy, and as such acts as an
intermediate quantum correlation that lies in between
the others [4–6], i.e., EPR steering is, in general, weaker
than Bell nonlocality but stronger than quantum entan-
glement. Research on EPR steering in the past few years
has seen the development of several interesting new av-
enues of study [9–23]. In addition to these theoretical
developments, EPR steering has also been observed ex-
perimentally [24–26].
The notion of causality, cause and effect, is an intu-

itive concept. In quantum mechanics, however, applying
the concept of causality is not always that straightfor-
ward. For example, quantum mechanics allows the super-
position principle to be applied to causal relations, such
that indefinite casual order may occur with proper de-
sign [27, 28]. A measurement of a superposition of causal
orders has been demonstrated very recently [29]. Another
driving force for the research on quantum causality [30]
comes from Bell’s theorem, and its generalizations, that
can be analyzed with a causal approach [31–34]. Poten-
tial applications of quantum casual relations in quantum
information tasks have also been proposed [35–38].
In contrast to creating an indefinite causal order, some
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other experimental works related to quantum causal re-
lations have also attracted attention, e.g. distinguish-
ing different causal structures (common cause and direct
cause) [39] and defining a measure of quantum causal
effects (direct cause) [40].
Our goal in this work is to relate temporal steering

to the notion of a quantum causal effect. To do so we
first show that there also exists a hierarchy among the
three temporal quantum correlations (temporal insepa-
rability, temporal steering, and nonmacrorealism), which
are provided when the condition of no-signalling in time
(NSIT) [41–43] is obeyed. When NSIT in temporal steer-
ing is violated, non-vanishing temporal steering may oc-
cur under a dephasing process, which we prove to be the
same as the distinguishability between two purely classi-
cal assemblages. Given that the temporal inseparability
can be used to define a measure of quantum causal ef-
fects, we conclude that temporal steering can be viewed
as a weaker measure of quantum causal effect and can
be used to distinguish between direct cause and common
cause in a quantum network.

II. MACROREALISM

Consider a system that evolves with time, and on
which one can measure a physical quantity Q at time
t1, t2, or t3 to obtain the corresponding values Q(t1),
Q(t2), andQ(t3), respectively. In 1985, Leggett and Garg
(LG)[44, 45] proposed an inequality:

K ≡ C′
12 + C′

23 − C′
13 ≤ 1, (1)

where Cij ≡ 〈Q(ti)Q(tj)〉 is the expectation value of the
measurement outcomes at time ti and tj [46, 47]. This
inequality holds if the dynamics of the system is classi-
cal, in the realism sense, and the measurements are non-
invasive. Violation of the inequality shows the incompat-
ibility between quantum mechanics and macrorealism.
One can consider a more general scenario to investi-

gate temporal correlations. For instance, there can be
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FIG. 1. Beginning with quantum state ρ0, one can construct
three different temporal quantum correlations: (a) the tem-
poral correlations scenario associated with nonmacrorealism,
(b) the temporal steering scenario, and (c) constructing the
pseudo density matrix of a single system. Here, the x and y

denote two classical inputs at time t1 and t2 with classical out-
comes a and b, respectively. The quantum channel is denoted
by Λ. Quantum state tomography is denoted as QST.

two or more quantities being measured at each moment
of time. For simplicity, we consider the scenario with
two times t1 = 0 and t2 = t, at which the quantity
x ∈ {x}nx

x=1 and the quantity y ∈ {y}ny

y=1 are measured
respectively during each round of the experiment. Ac-
cordingly, one obtains the outcome a ∈ {a}na

a=1 and the
outcome b ∈ {b}nb

b=1 (see Fig. 1). After many rounds of
the experiment, one can obtain a set of probability distri-
butions {p(a, b|x, y)}a,b,x,y. Then, a macrorealistic (MS)
theory restricts the probability distributions to be of the
following form:

p(a, b|x, y) MS
=
∑

λ

p(a|x, λ) p(b|y, λ) p(λ) ∀a, b, x, y. (2)

The physical interpretation of the above equation is the
following: The probability distribution p(a, b|x, y) be-
tween time t1 and t2 does not depend on the history of the
experiment. Therefore, there exist hidden parameters λ,
which can be deterministic or stochastic [48], defining all
physical properties and forming the probability distribu-
tions p(a|x, λ) and p(b|y, λ).
In quantum theory, a measurement outcome is typ-

ically not pre-determined due to intrinsic uncertainty.
The probability distributions follow Born’s rule:

p(a, b|x, y) Q
= tr

[

Eb|y · E(
√

Ea|x ρ0

√

Ea|x)
]

∀a, b, x, y,
(3)

where ρ0 is the initially prepared quantum state,
{Ea|x}a denotes the positive-operator valued measure-
ment (POVM), Ea|x ≥ 0,

∑

a Ea|x = 11 of each x, sim-
ilarly {Eb|y}b is POVM of each y, and E describes the
dynamics of the system from t1 = 0 to t2 = t. In the

following, the sets of probability distributions which do
not admit Eq. (2) will be called nonmacrorealistic.
Similar to the spatial case, one can also write down

the so-called temporal Bell inequalities [49] to be a set
of constraints for the macroscopical probability distribu-
tions. For instance, setting nx = ny = na = nb = 2
and shifting a, b ∈ {1, 2} to a, b ∈ {±1}, the temporal
Clauser-Horne-Shimony-Holt (CHSH) kernel is written
as

〈B〉T-CHSH ≡ Cxy + Cx′y + Cxy′ − Cx′y′ , (4)

where

Cxy ≡ p(a = b|x, y)− p(a 6= b|x, y) (5)

is the expectation value of a · b. For a qubit system,
〈B〉T-CHSH is upper bounded by 2 and 2

√
2 for the MS

model and quantum mechanics, respectively.
To give a proper quantification of the degree of non-

macrorealistic dynamics, we follow the techniques used
for standard Bell inequalities, i.e., optimizing all possible
combinations of the measurement settings which give the
maximal quantum violation of 〈B〉T-CHSH:

〈B〉max
T-CHSH = max

x,x′,y,y′

{

0,
〈B〉T-CHSH − 2

2
√
2− 2

}

. (6)

III. TEMPORAL STEERING

Now, consider that one can perform quantum state to-
mography (QST) to obtain the quantum state at time
t2 = t instead of obtaining the probability distribu-
tions. After many rounds of the experiment, one can
obtain a set of quantum states {σ̂a|x(t)} correspond-
ing to those states found after the measurement event
a|x at time t1 = 0. It is rather convenient to define
the so-called temporal assemblage as a set of subnormal-
ized state {ρa|x(t) ≡ p(a|x) σ̂a|x(t)}. Through this, a
temporal assemblage contains the information on both
p(a|x) = tr[ρa|x(t)] and σ̂a|x(t) = ρa|x(t)/ tr[ρa|x(t)]. If
one believes the measurement at time t1 = 0 is noninva-
sive, i.e., knowing the outcome a in prior, without dis-
turbing the system and its subsequent dynamics, then the
observed temporal assemblage should satisfy the hidden-
state model [17, 18, 50]

ρa|x(t)
noninvasive

=
∑

λ

p(λ)p(a|x, λ)σλ ∀a, x. (7)

The physical interpretation of the temporal hidden-state
model is the following: During each experimental round,
there exists an ontic state λ, which predetermines the
outcome a when performing the measurement x at t1 = 0,
as well as pre-determining the quantum state σλ at time
t2 = t.
A temporal assemblage which admits a quantum me-

chanical model can be written as:

ρa|x(t)
Q
= E(

√

Ea|xρ0

√

Ea|x). (8)
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Given a temporal assemblage, one can know if it admits
the hidden-state model Eq (7) by the feasibility problem
of

{find σλ | ρa|x(t) =
∑

λ

p(λ)p(a|x, λ)σλ}. (9)

We refer to those assemblages, which do not admit the
hidden-state model, as temporal steerable, and the degree
of the temporal steerability is quantified by the measure
of temporal steerable weight [18] and temporal steering

robustness (TSR) [20]. In the following, we will use TSR
to quantify the degree of temporal steerability for a given
temporal assemblage:

TSR = min α subject to
{

1

1 + α
ρa|x(t) +

α

1 + α
τa|x(t) =

∑

λ

p(λ)p(a|x, λ)σλ

}

a,x

(10)
where τa|x(t) is a valid noisy temporal assemblage. This
can be formulated as a semidefinite programming prob-
lem (SDP) [10, 51–54] as follows:

TSR = min

(

tr
∑

λ

σλ − 1

)

, with σλ ≥ 0 ∀ λ

subject to
∑

λ

p(a|x, λ)σλ − ρa|x(t) ≥ 0 ∀ a, x.

(11)

IV. PSEUDO DENSITY MATRIX AND

TEMPORAL INSEPARABILITY

To complete the picture of a hierarchy of correlations,
we give a brief introduction to the so-called pseudo den-

sity matrix introduced by Fitzsimons et al. [40]. A
pseudo density matrix is a way to define the state of
one (or more) system between two (or more) moments
of time. By definition, the pseudo density matrix R of
a qubit passing through a quantum channel is obtained
by performing the QST before and after the evolution
(see Fig. 1). Therefore, the pseudo density matrix is ex-
pressed as:

R =
1

4

3
∑

i,j=0

Cij · σi ⊗ σj , (12)

where {σi}i=0,1,2,3 = {11, X̂, Ŷ , Ẑ} is the set composed
of the identity operator and the Pauli matrices. Here,
Cij = tr(R ·σi⊗ σj) are the expectation values of the re-
sult of these quantum measurements. A pseudo density
matrix is hermitian and normalized, but not necessarily
positive-semidefinite. In general, a pseudo density ma-
trix can also describe the state between two systems at
different time. One can see that R becomes a standard
density matrix, which is positive-semidefinite, when the

time-separation t2 − t1 = 0. Therefore, the relation be-
tween two measurement events is called space-like corre-
lated when R is positive-semidefinite.
Conversely, if R is not positive-semidefinite, it is def-

initely not constructed from a standard spatially sepa-
rated system. In this case, the relation between two
measurement events is called time-like correlated. In
Ref. [40], the authors proposed a measure, called the
f -function, to quantify the degree of such a temporal
relation:

f =
∑

i

|µi|, (13)

which is the summation over all the negative eigenval-
ues {µi} of a given R. In the rest of the discussions,
all the pseudo density matrices are obtained by consid-
ering a single qubit at different times. Due to the math-
ematical similarity to a separable quantum state, in the
following we will refer to the situation f 6= 0 as tem-

porally inseparable. It is worth noting that the “sepa-
rability” here does not denote the separability with re-
spect to two spatially separable systems, but indicates
the pseudo density matrix can be written in the separable
form R =

∑

λ p(λ)ω
A
λ ⊗ θĀλ , where p(λ) is the probability

distribution, ωA
λ and θĀλ are some valid quantum states

acting on Hilbert spaces HA at t1 = 0 and HĀ at t2 = t,
respectively [55]. Note that, in general, a temporal sep-
arable model implies f = 0, but not vice versa.

V. A HIERARCHY OF TEMPORAL QUANTUM

CORRELATIONS

Now we show a hierarchical relation between three
temporal relations: nonmacrorealism, temporal steer-
ability, and temporal inseparability. To this end, we show
one can obtain the temporal assemblage {ρa|x(t)}a,x by
performing a set of POVMs {Ea|x}a,x on the pseudo den-
sity matrix R, in which {Ea|x}a,x are the POVMs pro-
ducing {ρa|x(t)}a,x. More precisely, we show

ρa|x(t) = trA(Ea|x ⊗ 11 · R), (14)

where

ρa|x(t) = E(ρa|x(0)) = E
(√

Ea|x ρ0

√

Ea|x

)

(15)

and ρ0 = 11/2. The proof is given in Appendix A. Once
Eq. (14) holds, the following formulation of an assem-
blage can be derived:

ρa|x(t) = trA(Ea|x ⊗ 11 ·
∑

λ

p(λ)ωA
λ ⊗ θĀλ )

=
∑

λ

p(λ)pQ(a|x, λ)θĀλ ,
(16)

where the set of probabilities pQ(a|x, λ) := Tr(Ea|xω
A
λ ) is

constrained by the uncertainty relation [56]. In Eq. (7),
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we assume that the pseudo density matrix R is tempo-
rally separable. Since the set of probability distributions
p(a|x, λ) in a hidden-state model Eq. (7) is only con-
strained by the normalization property, a hidden-state
model can reproduce an assemblage given by the above
equation, but not vice versa. Therefore, we arrive at
the hierarchical relation between temporal separability
and temporal hidden-state model: a temporal assemblage
constructed from a dynamical evolution admits a tem-
poral hidden-state model if the corresponding pseudo-
density matrix is temporally separable. Similarly,

p(a, b|x, y) = tr
[

Eb|y · ρa|x(t)
]

= tr

[

Eb|y ·
∑

λ

p(λ)p(a|x, λ)σλ

]

=
∑

λ

p(λ)p(a|x, λ)pQ(b|y, λ)

(17)

can be reproduced by macroscopic correlations [Eq. (2)],
but not vice versa, i.e., there is a hierarchical relation
between the temporal hidden-state model and macro-
realism: a temporal correlation is macrorealistic if the
corresponding temporal assemblage admits a temporal
hidden-state model. The hierarchy can be described in
a converse way: a nonmacrorealistic dynamics leads to
a temporal steerable assemblage, and a dynamics which
leads to a temporal steerable assemblage gives an insep-
arable pseudo density matrix.

In the following, we propose a proposition which will
be used in the example.

Proposition. When the initial state of the qubit is
prepared in the maximally mixed state, the pseudo den-
sity matrix constructed under the amplitude-damping,
the phase-damping, and the depolarizing channels are
temporal-separable if f = 0, i.e.,

f = 0 ⇒ ∃ ωA
λ , θ

Ā
λ , such that R =

∑

λ

p(λ)ωA
λ ⊗ θĀλ .

(18)
The purpose of using the maximally mixed state as the
initial condition is to produce assemblages which admit
NSIT (cases which violate NSIT will be discussed later).
The proof of the proposition is given in Appendix B.

As a simple example, we consider a qubit experiencing
a depolarizing channel, described by Eq. (B1c). In Fig. 2,
we plot the dynamics of the f , the TSR, and 〈B〉max

T-CHSH.
We can see that the vanishing time, in which the cor-
responding classical model emerges, of each quantifier is
different, demonstrating the hierarchical relation among
the three temporal quantum relations.

VI. CLASSICAL STEERING

In the above discussions, the scenario we consider is
under the condition of NSIT. That is, the obtained tem-

0 0.5 1 1.5
0

1

t

TSR

T-CHSH
max

T
S
R

T
-C
H
S
H

m
ax

FIG. 2. The blue-dotted, red-solid, and black-dashed curves
represent, respectively, the dynamics of the f , the TSR,
and 〈B〉max

T-CHSH of a qubit undergoing the depolarizing chan-
nel Eq. (B1c). We can see that the order of the three
quantifiers (from the earliest to the latest vanishing time) is
〈B〉T-CHSH, TSR, and f , demonstrating the hierarchy relation
proposed in this work. Here, t is in units of depolarizing rate
γD.

poral assemblages {ρa|x(t)} obey

∑

a

ρa|x(t) =
∑

a

ρa|x′(t) ∀x 6= x′. (19)

Given that temporal hidden-state model and temporal
Bell inequalities assume non-invasive measurements, ob-
serving non-macrorealism and temporal steering while
satisfying NSIT gives a stricter example of both prop-
erties [57, 58] (in that it rules out certain types of ex-
amples of false signatures of both effects due to classical
clumsiness). In this section, we give a simple example of
such a false-signature, which appears when the obtained
temporal assemblages are not restricted to NSIT.
First, we show that, by the following explicit example,

instead of performing measurements on an initial quan-
tum state, one can prepare a temporal assemblage which
leads to temporal steerability by just preparing a set of
“classical (subnormalized) states”:

ρa|x(0) = diag[αa|x, βa|x], (20)

where αa|x and βa|x are non-negative real numbers with
a, x ∈ {1, 2}. We refer to these states as “classical”
since all of them have just diagonal terms. Therefore,
each state can be created by mixing, say, the spin of
electrons in just one direction (e.g., z-direction). Such
a temporal assemblage is steerable but trivial, and this
is the reason that this scenario is not considered in the
previous discussion, and ruled out by assuming NSIT.
In Appendix C, we show that if the measurement set-

tings at time t1 = 0 are set to be two, the asymptotic
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FIG. 3. Schematic diagram for the quantum causality schemes
considered here. (a) The quantum correlations of two qubits
arise from a “black box”. The correlations may be due to (b)
a common cause (space-like correlation) or (c) a direct cause
(time-like correlation). (d) and (e): We propose to include an
auxiliary qubit (qubit-3) coherently coupled to qubit-1. By
examining the time-like steering of qubit-3 to qubit-2, one can
infer whether the correlations are due to a common cause or
a direct cause. This is because, if the correlations are from
the common cause, there is no time-like steering of qubit-3 to
qubit-2 (dashed line), while an oscillatory time-like steering
(blue curve) exists if they are from a direct cause.

value of TSR (or temporal steerable weight) when time
goes to infinity will be the same as the trace distance
between the summation of the elements of the temporal
assemblage in different measurement settings, i.e.,

TSR({ρa|x(t → ∞)}) = D

(

∑

a

ρa|x ,
∑

a

ρa|x′

)

, (21)

where D is the trace distance between two quantum
states. One notes that the trace distance in the clas-
sical case represents the distinguishability between two
probability distributions. Equation (21) means that the
quantification of temporal steering arises from a classi-
cally “clumsy” experiment if the condition of NSIT is
violated.

VII. INFERRING CAUSAL STRUCTURE WITH

TEMPORAL STEERABILITY

Finally, motivated by Ref. [40] proposing the f -
function as a measure of quantum causal effect, which
discriminates between spatial and temporal correlations,
we propose that the degree of temporal steeribility can
also be another measure of a quantum causal effect.
First of all, let us define the scenario of quantum

causality discussed here. Consider two quantum systems
that interact with each other through a black box as
shown in Fig. 3(a). The correlations between the two sys-
tems may be due to spatial correlations (common cause)
in Fig. 3(b) or temporal correlations (direct cause) in
Fig. 3(c). The problem we would like to address is that
how to discriminate between these two scenarios without
knowing the mechanism of the black box.
To illustrate that temporal steering can discriminate

between common and direct cause, we propose to include
an auxiliary qubit (qubit-3) coherently coupled to qubit-
1 as shown in Fig. 3(d). For illustrative purpose, we
consider the following two scenarios. The first scenario is
that qubit-1 and -2 initially share a maximally entangled
state, while, for the second scenario, qubit-1 and -2 are
coherently coupled with each other via the Hamiltonian

H = ~J(σ+
1 σ

−
2 + σ−

1 σ
+
2 ), (22)

where J is the coupling strength and σ±
i are the raising

and lowering operators of qubit-i. To obtain the tem-
poral assemblage of qubit-2 at t2 = t, three measure-
ments in mutually unbiased bases of X̂, Ŷ , and Ẑ are
performed on qubit-3 at time t1 = 0. Actually, this is
the so-called spatio-temporal steering scenario [53], which
is a generalization of temporal steering. The TSR of
qubit-2 TSR3→2({ρ2a|x(t)}) is plotted in Fig. 3. We can

see that in the case that two qubits share a common
cause, TSR3→2({ρ2a|x(t)}) is always zero, while in the

case that two qubits are connected by a direct cause,
TSR3→2({ρ2a|x(t)}) oscillates with time. This simple ex-

ample illustrates how, as one might expect, given the hi-
erarchy of temporal correlation introduced earlier, that
the temporal steerability can be used to distinguish be-
tween the direct and common causal effect in a quantum
network.

VIII. CONCLUDING REMARKS

It is worth to note that a hierarchy relation between
temporal steerability and macrorealism is also considered
in Ref. [59]. However, in their work, neither the steer-
ability witness nor the temporal CHSH inequality is op-
timized. The results of our work fill this gap. Open
questions include: does the separable property of propo-
sition Eq. (18) hold for any quantum channel? Can a
temporal assemblage be obtained directly from a pseudo
density matrix under the requirement of the violation of
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no-signaling in time? How will the hierarchical relation
change if we consider another formulation of “a state over
time”, e.g., the one in [60] or the one constructed by a
discrete Wigner representation [61, 62] (see Ref. [63] for
more comparisons between the three methods.)
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Appendix A: Obtaining a set of temporal

correlations and a temporal assemblage from a

pseudo density matrix

Now, we show that one can obtain the temporal as-
semblage {ρa|x(t)}a,x by performing a set of positive-
operator valued measurements (POVMs) {Ea|x}a,x with
Ea|x ≥ 0, satisfying

∑

a Ea|x = 11, on the pseudo density
matrix R, in which {Ea|x}a,x is the POVMs producing
{ρa|x(t)}a,x. More precisely, we show

ρa|x(t) = trA(Ea|x ⊗ 11 R) ∀a, x, (A1)

where

ρa|x(t) = E(ρa|x(0)) = E
(√

Ea|xρ0

√

Ea|x

)

(A2)

and ρ0 = 11/2.

Proof.— Without the loss of generality, we assume
{Ea|x}a=±1 be projectors for each x, i.e.,

Ea|x =
1

2
(11 + a · ~x · ~σ), (A3)

with a · ~x being the vector corresponding to projector
Ea|x in the Bloch sphere and ~σ = (X̂, Ŷ , Ẑ) being the
Pauli matrices. Besides, the post-measurement states for
each measurement event a|x will be Ea|x. The temporal
assemblage would be

ρa|x(t) = p(a|x) E
(

Ea|x
11

2
Ea|x

)

=
1

2
E
(

11

2

)

+
a

8

3
∑

j=1

tr
[

σj [E
(

E1|x

)

− E
(

E−1|x

)

]
]

σj

=
1

2
· 1
2

3
∑

k=0

tr

[

σk · E
(

11

2

)]

σk +
a

8

3
∑

j=1

tr
[

σj [E
(

E1|x

)

− E
(

E−1|x

)

]
]

σj

=
11

4
+

1

4

3
∑

k=1

tr

[

σk · E
(

11

2

)]

σk +
a

8

3
∑

j=1

tr
[

σj [E
(

E1|x

)

− E
(

E−1|x

)

]
]

σj .

(A4)

Then, by the definition of the pseudo density matrix R in the main text, we can write down the pseudo density
matrix in the Pauli bases:

R =
1

4



11⊗ 11 +
3
∑

k=1

tr

[

σkE
(

11

2

)]

11⊗ σk +
1

2

3
∑

i,j=1

tr

[

σj [E(E1|i)− E(E−1|i)]

]

σi ⊗ σj



 . (A5)

Finally, the target quantity trA(Ea|x ⊗ 11 R) in Eq. (A1) would be
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trA(Ea|x ⊗ 11 R) =
1

4
trA(Ea|x ⊗ 11) +

1

4

3
∑

k=1

tr

[

σkE
(

11

2

)]

trA(Ea|x ⊗ σk)

+
1

8

3
∑

ij=1

tr

[

σj [E(E1|i)− E(E−1|i)]

]

trA(Ea|x ⊗ 11 · σi ⊗ σj)

=
11

4
+

1

4

3
∑

k=1

tr

[

σkE
(

11

2

)]

σk +
1

8

3
∑

ij=1

tr

[

σj [E(E1|i)− E(E−1|i)]

]

tr(Ea|xσi) σj .

(A6)

Using the fact that tr(Ea|xσi) = a · δx,i, the above equa-
tion will be the same as Eq. (A4). Since now we have the
temporal assemblages, obtained from the pseudo density
matrix, it is straightforward to obtain a set of temporal
correlations p(a, b|x, y).
We should note that from Eq. (A1), the way one ob-

tains the temporal assemblage by performing measure-
ment on the pseudo density matrix is merely a mathe-
matical relation between ρa|x(t), Ea|x, and R, instead of
a physical system being measured. This is different from
the case in the standard spatial scenario that one obtains
an assemblage by performing a set of local measurements
on a subsystem of a quantum state. On the other hand,
as we mentioned before, the reason to use the maximally
mixed state as initial state is to obey the condition of
no-signalling in time (NSIT).

Appendix B: Proof of Proposition

To support the proposition, in the following we will
show the partial transpose of pseudo density matrix R is
always positive semidefinite, i.e. RTA ≥ 0, by considering
the three standard quantum channels - the amplitude-

damping channel, the phase-damping channel, and the
depolarizing channel - which are often used to describe
the dynamics of a system. Then, using the positive-
partial-transpose (PPT) criterion [65] and [66], it is easy
to show that R is separable.
The dynamics of a qubit undergoing the amplitude-

damping, the phase-damping, and the depolarizing chan-
nels, can be respectively described by the following three
Lindblad-form master equations:

ρ̇s =
γA
2

(2σ−ρs(t)σ+ − σ+σ−ρs(t)− ρs(t)σ+σ−) ,

(B1a)

ρ̇s =
γP
4

(

2σ3ρs(t)σ3 − σ2
3ρs(t)− ρs(t)σ

2
3

)

, (B1b)

ρ̇s =
γD
8

∑

i

(

2σiρs(t)σi − σ2
i ρs(t)− ρs(t)σ

2
i

)

, (B1c)

where ρs is the standard density matrix of the qubit,
{γi}i=A,P,D denote the decay rates of the dynamics in the
different channels, and σ+ (σ−) is the creation (annihila-
tion) operator. Assisted by the definition of the pseudo
density matrix, one can obtain the pseudo density matrix
in each scenario:

RA =









1
2
e−tγA 0 0 0
0 1

2
(1− e−tγA) 1

2
e−tγA/2 0

0 1
2
e−tγA/2 0 0

0 0 0 1
2









, (B2a)

RP =









1
2

0 0 0
0 0 1

2
e−tγP 0

0 1
2
e−tγP 0 0

0 0 0 1
2









, (B2b)

RD =









1
4
(1 + e−tγD) 0 0 0

0 1
4
(1− e−tγD) 1

2
e−tγD 0

0 1
2
e−tγD 1

4
(1 − e−tγD) 0

0 0 0 1
4
(1 + e−tγD)









. (B2c)

It can be shown that the partial transpose of each above
pseudo density matrix is always positive semidefinite, i.e.,

RTA ≥ 0 for t ∈ (0,∞). The fact that f = 0 implies R ≥
0, indicating R can be treated as a valid density matrix
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describing a qubit-qubit system. By using the positive-
partial-transpose (PPT) criterion [65] and [66]: a density
matrix ̺AB describing a qubit-qubit (or a qubit-qutrit)
system is separable if and only if its partial transpose
̺TA

AB is positive-semidefinite. In summary, we prove the
proposition by the following steps:

R ≥ 0 ∧ RTA ≥ 0 ∧ PPT criterion ⇒ R is separable.
(B3)

Appendix C: Proof of Eq. 10 in the main text

Following the property of temporal steerable weight
(TSW) [18], one realizes that

σT
a|x −

∑

λ

Dλ(a|x)σλ ≥ 0, (C1)

where Dλ(a|x) are the extremal deterministic values, λ
represents a local hidden variable, x is the measure-
ment basis, and a is the measurement outcome. Since
∑

a Dλ(a|x) = 1, one has the following

∑

a

σT
a|x −

∑

λ

σλ ≥ 0, (C2)

If we are limited to two measurement inputs and prepar-
ing the assemblages with a classical way (without the
off-diagonal terms), the summation of the temporal as-
semblages σT

a|x can be written as

∑

a

σT
a|1 =

(

α 0
0 1− α

)

, (C3)

∑

a

σT
a|2 =

(

β 0
0 1− β

)

. (C4)

Let us assume α > β. The summation of the local hidden

assemblage
∼
σλ =

∑

λ σλ that can best mimic the tempo-
ral assemblages and fulfill the requirement of Eq. (B2) is
thus written as

∼
σλ =

(

β 0
0 1− α

)

. (C5)

To prove that Eq. (C5) is the optimal solution, one can
add a non-negative number ǫ into the diagonal terms of
the matrix in Eq. (C5). It is easy to see that Tr(σ̃λ) is
maximum when ǫ = 0. Therefore, the TSW is equal to
the trace distance between the two states

∑

a σ
T
a|1 and

∑

a σ
T
a|2, i.e.

TSW = 1− Tr(
∼
σλ) = α− β. (C6)

A similar argument can also be applied to the temporal
steering robustness (TSR) [20] with the following require-
ment

∑

λ

σλ −
∑

a

σT
a|x ≥ 0. (C7)

This leads one to write the summation of the local hidden
assemblage as

∼
σλ =

(

α 0
0 1− β

)

, (C8)

and the corresponding TSR is written as

TSR = Tr(
∼
σλ)− 1 = α− β. (C9)

These conclude our proof that, in the classical scenario
(no off-diagonal elements), the temporal steering is equal
to the trace distance between the summation of the ele-
ments of the temporal assemblage in different measure-
ment settings.
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