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Single-photon-sensitive cameras can now be used as massively parallel coincidence counters for 

entangled photon pairs. This enables measurement of biphoton joint probability distributions with orders-of-
magnitude greater dimensionality and faster acquisition speeds than traditional raster scanning of point 
detectors; to date, however, there has been no general formula available to optimize data collection. Here we 
analyze the dependence of such measurements on count rate, detector noise properties, and threshold levels. 
We derive expressions for the biphoton joint probability distribution and its signal-to-noise ratio (SNR), 
valid beyond the low-count regime up to detector saturation. The analysis gives operating parameters for 
global optimum SNR that may be specified prior to measurement. We find excellent agreement with 
experimental measurements within the range of validity, and discuss discrepancies with the theoretical 
model for high thresholds. This work enables optimized measurement of the biphoton joint probability 
distribution in high-dimensional joint Hilbert spaces.  

 
 
 

I.   INTRODUCTION 
 
Quantum states of light—such as entangled photon pairs 

(biphotons)—offer substantial promise over classical light, 
including enhanced spatial resolution, phase sensitivity, and 
signal-to-noise ratio [1-3]. They also hold great potential in 
quantum metrology, with possible improvements in 
gravitational wave detection [4], biology [5], and microscopy 
[1]. Increasingly, these fields are moving towards higher-
dimensional entanglement, as it offers greater channel capacity 
[2,6-9], security [2,6-9], and computational speed [10,11].  

Garnering these advantages requires detecting both photons 
in coincidence. This is typically performed with two single 
photon-counting modules (SPCMs); as these modules have no 
spatial resolution, both must be scanned over each dimension 
of the joint Hilbert space. In an imaging configuration, for 
example, measuring photon pairs entangled in transverse 
position requires scanning each detector over a 2D plane. The 
number of required measurements scales quadratically with the 
number of modes, making high-dimensional entangled systems 
prohibitively time consuming to characterize and inaccessible 
in practice. Furthermore, coincidence measurements of 
biphotons are typically performed in the low-count regime, 
where the count rate itself may be assumed to be proportional 
to the biphoton joint probability distribution. Operating at a 
substantially higher count rate can yield drastic improvements 
in measurement speed and signal-to-noise ratio (SNR) [12], 
but direct proportionality breaks down as the count rate 
increases (accidental coincidences between photons from 
different pairs become substantial or even dominant). This 
breakdown complicates the relationship between the measured 
detection counts and the true joint probability distribution, 
making interpretation of the results far from straightforward.  

The advent of single-photon-sensitive cameras, such as 
intensified CCD (ICCD) and electron-multiplying CCD 
(EMCCD) cameras, has made rapid characterization of the 
spatially entangled photon pairs feasible [12-21]. We have 

recently developed a method of parallelizing such 
measurements using an EMCCD camera [19]. Each pixel is 
treated as a single-photon counter, with coincidences between 
all pixels measured simultaneously. Using only measured data, 
we have shown how to account completely for genuine and 
accidental coincidences. For a megapixel camera, the 
massively parallel apparatus allows for precise measurement of 
the biphoton joint probability distribution within Hilbert spaces 
of up to 1012 dimensions. Such measurements are impractical 
with traditional scanning (or compressed sensing) methods.  

The goal of this work is to provide a prescription for 
optimizing the measurement of the biphoton joint probability 
distribution. Prior work has examined maximizing the 
visibility of the genuine biphoton coincidences relative to the 
mean accidentals background [22]. There, the authors found an 
optimum visibility when the count rate from photons is equal 
to that from electronic noise events but noted that the SNR 
could be improved by increasing the count rate. Similarly, 
Lantz et al. found that the SNR is improved for higher count 
rates [12], provided that measurements remain within the low 
count-rate regime. Indeed, if the background can be identified 
and removed, only the fluctuations in the background limit the 
quality of the result.  

Here, we develop a general model for the SNR of 
measurements of the biphoton joint probability distribution 
that is valid for arbitrary count rates, up to saturation of the 
detector. Our model is based on binary detection systems and 
accounts completely for multiple photons and their number 
distribution. The SNR is given in terms of the singles count 
rate and detector noise properties and allows optimization of 
any part of the distribution function, including and especially 
coincidence measurements of entangled photon pairs.  

We apply this model to massively parallel coincidence 
counting with EMCCD cameras [19] and compare to 
experimental measurements of spatially entangled biphotons. 
We operate the camera in photon-counting mode and consider 
detection as a function of gray level threshold. For low 



threshold, EMCCDs are well approximated as binary detection 
devices [23,24]. For higher thresholds, this approximation 
breaks down. Experimentally, we explore both regions, with a 
focus on the validity of the binary model and its impact on the 
SNR. Note that while we consider spatial entanglement here, 
the analysis applies to other degrees of freedom as well, such a 
frequency or orbital angular momentum, with appropriate 
projection onto camera pixels.  

 
 

II.   THEORY 
 
The (pure) quantum state of entangled photon pairs, such as 

that generated by spontaneous parametric down-conversion 
(SPDC) in a thin ߯ሺଶሻ nonlinear medium in the low-gain 
regime, may be defined by |Ψۧ ൌ ඵ ߰ሺૉଵ, ૉଶሻ|ૉଵۧ|ૉଶۧdଶૉଵdଶૉଶ, (

1)

where ߰ሺૉଵ, ૉଶሻ is the transverse biphoton wave function and |ૉۧ are states of the transverse position with ૉ ൌ ෝ࢞ݔ   .ෝ࢟ݕ
We want to measure the biphoton probability distribution |߰ሺૉଵ, ૉଶሻ|ଶ using an EMCCD camera. We thus have a 
discretized distribution  

Γ ൌ ඵ ห߰൫ૉଵ െ ૉ, ૉଶ െ ૉ൯หଶdଶૉଵdଶૉଶ௪/ଶ
ି௪/ଶ , (2)

where ݓ is the width of the square pixels centered at positions ൫ૉ, ૉ൯. The marginal distribution is Γ ൌ  Γ  
     ൌ න න|߰ሺૉଵ െ ૉ, ૉଶሻ|ଶ dଶૉଶ൨ dଶૉଵ௪/ଶ

ି௪/ଶ , (3)

which is proportional to the irradiance. 
In general, there are two possible cases: (1) photons from 

pairs are deterministically separated to different detector arrays 
(or different regions of a single array), and (2) photons are all 
sent to a single detector array. The principle difference 
between them is that in (2), both photons from a single pair 
may hit the same pixel,. Case (1) is only possible for 
distinguishable particles, where some degree of freedom 
uniquely identifies which photon is which, e.g., polarization, 
frequency, etc. Here we present equations for case (1) 
explicitly. To convert to case (2), the substitutions Γ ՜ 2Γ െΓ and Γ ՜ 2Γ should be made throughout. In addition, to 
simplify the notation, we omit factors of the detector quantum 
efficiency ߟ; to account for it, one need only make the 
substitutions [25] Γ ՜ Γ Γߟ ՜ ଶΓ (4)ߟ

 

 
A. Coincidence count distributions 

 
The singles count probability at pixel ݅ is given by ܥۦۧ ൌ  ܲ൫ߤ|  పҧ|൯ߤ  (5)

where ܲ is the probability distribution for the number of 
generated pairs ݉ and  is the electronic count probability of 
the detector (dark counts, CIC, etc.). The first term describes 
the probability of counts due to photons, while the second 
describes counts due to electronic noise in the absence of 
photons. The factor ߤపҧ| is the conditional probability, given ݉ 
photon pairs, that no photons are detected in pixel ݅ (indicated 
by the barred ଓҧ), which is related to the marginal distribution 
by ߤపҧ| ൌ ሺ1 െ Γሻ. (6)ߤ| is the conditional probability that at least one photon is 
detected in pixel ݅. Because the two conditionals sum to unity, 
they are related by ߤ| ൌ 1 െ పҧ| (7)ߤ

In a similar fashion, the coincidence count probability 
between pixels ݅ and ݆ may be written ൻܥൿ ൌ  ܲൣߤ|  ఫҧ|ߤ൫  పҧ|൯ߤ  ଶ పҧఫҧ|൧ߤ . (8)

The first term represents coincidences between two photons, 
the second between one photon and one electronic noise event, 
and the third between two noise events. The sum of the ߤ’s 
gives unity: ߤ|  ఫҧ|ߤ  పҧ|ߤ    .పҧఫҧ| = 1ߤ

As before, to find the full expression for ൻܥൿ, it is easiest 
to consider the zero-photon case first. Coincidences between 
two electronic noise events depend on no photon detection in 
either pixel ݅ or ݆, so that ߤపҧఫҧ| ൌ ൫1 െ Γ െ Γ  Γ൯. (9)

The coincidence counts between photons and electronic noise 
requires at least one photon detection in one pixel and zero in 
the other. This is given by the probability that no photons are 
detected in one pixel, i.e., ߤఫҧ|, minus the probability that no 
photons are detected in either pixel, ߤపҧఫҧ|, that is ߤఫҧ| ൌ ఫҧ|ߤ െ పҧఫҧ|. (10)ߤ

where ଔҧ indicates that mode ݆ is unoccupied, and vice-versa for ߤపҧ|. The probability that at least one photon is detected in 
each pixel ݅ and ݆ is then   ߤ| ൌ 1 െ పҧ|ߤ െ ఫҧ|ߤ  పҧఫҧ| (11)ߤ

 Equations (5) and (8) have simple analytic form if the 
number distribution of pairs is Poissonian. In this case, ܲ ൌ ഥ݉ ݁ିഥ /݉!, where ഥ݉  is the mean number of pairs 
emitted within exposure time ߬ [26,27], and we have  



ۧܥۦ ൌ 1 െ ሺ1 െ ሻ݁ିഥ  (12)

and ൻܥൿ ൌ 1 െ ሺ1 െ ሻ൫݁ିഥ   ݁ିഥ ೕ൯ ሺ1 െ ሻଶ݁ିഥ ൫ାೕିೕ൯ (13)

Notice that both ܥۦۧ and ൻܥൿ appear within ൻܥൿ. Using 
Eq. (12), we can rewrite Eq. (13) as ൻܥൿ ൌ ۧܥۦ  ൻܥൿ െ 1  ሺ1 െ ۧሻ൫1ܥۦ െ ൻܥൿ൯݁ଶഥ ఎమೕ (14)

where we have re-introduced the quantum efficiency ߟ. 
Solving for Γ gives Γ ൌ ߙ ln ቈ1  ൻܥൿ െ ൿሺ1ܥۧൻܥۦ െ ۧሻ൫1ܥۦ െ ൻܥൿ൯ (15)

where ߙ ൌ 1/ሺ ഥ݉ߟଶሻ [ߙ ൌ 1/ሺ2 ഥ݉ߟଶሻ for case (2)]. Therefore, 
to within a constant scaling factor, only the mean coincidence- 
and singles-count probabilities are necessary to uniquely 
extract the joint probability distribution.  
 

 
B. Signal-to-noise ratio 

 
We want to relate the signal that we measure to the mean 

count rates and otherwise previously known parameters of the 
camera. This will ensure the use of parameters that result in 
optimized SNR before performing actual measurements of Γ 
(i.e., without requiring iteration). To do so, we write Γ ൌΓΓ| and use Eq. (15) to express Γ in terms of the singles-
count probability: Γ ൌ െߟߙΓ| ln ቆ1 െ ۧ1ܥۦ െ  ቇ. (16)

We are interested in the SNR, which is an experimental 
quantity that describes how well the measurement estimates 
the joint probability distribution. By this definition, the signal 
is the peak measurement of Γ, and the noise is given by the 
fluctuations of the background measured where Γ ൌ 0 (i.e., ൻܥൿ ൌ  ൿ). This form of the SNR stands in contrast toܥۧൻܥۦ
the ratio of the signal to the mean background itself, that is, the 
visibility [22], as the mean background is deterministic (i.e., ܥۦۧൻܥൿ) and can therefore be subtracted [as in Eq. (15)].[28] 
The estimator of the joint probability distribution has standard 
deviation [28] (see Appendix A) ߪොೕ ൌ ܰ√ೕݏ ߲Γ߲ܥ. (17)

where ݏೕ is the sample standard deviation of ܥ. We define 
the noise where Γ ൌ 0, i.e., where ൻܥൿ ൌ  ൿ, since weܥۧൻܥۦ
are interested in our capability of distinguishing the signal 
above the fluctuations of the background. The binary detection 
system (ܥ ൌ ሼ0,1ሽ) this gives [12] (see Appendix A) 

ೕݏ ൌ ටܥۦۧሺ1 െ ൿ൫1ܥۧሻൻܥۦ െ ൻܥൿ൯. (18)

and, taking the derivative of Eq. (15), ߲Γ߲ܥ ൌ ߙ 11 െ ۧܥۦ െ ൻܥൿ  ൻܥൿ (19)

giving 

ොೕߪ ൌ ܰ√ߙ ටܥۦۧሺ1 െ ൿ൫1ܥۧሻൻܥۦ െ ൻܥൿ൯1 െ ۧܥۦ െ ൻܥൿ  ൻܥൿ  (20)

For uniform illumination, ܥۦۧ ൌ ൻܥൿ ൌ  the noise ,ۧܥۦ
becomes  ߪොೕ ൌ ܰ√ߙ 1ۧܥۦ െ (21) ۧܥۦ

(for non-uniform illumination, see Appendix B). The SNR is 
given by the ratio of Eq. (16) over Eq. (21): SNR ൌ ܰ√Γ|ߟ ۧܥۦ െ ۧܥۦ1 ln ቆ1 െ 1ۧܥۦ െ  ቇ (22)

In the low-count-rate limit, this equation reduces to the 
formula provided in [12].   
 
 
 

 

Fig. 1  Normalized signal-to-noise ratio [SNR/ሺߟΓ|√ܰሻ] versus 
mean count rate (solid curves) plotted for several values of  
(indicated by the numbers below each curve, in %). Dashed line 
shows the trend of the maximum SNR of the , given by 1 – ۧܥۦ.  
 

Equation (22) relates the quality of measurements of the 
biphoton joint probability distribution to experimental 
parameters. These are either parameters set by the detection 



system—the quantum efficiency ߟ and electronic noise 
probability —or set by the user—the mean count rate ۧܥۦ 
and number of frames ܰ. Fig. 1 shows the normalized SNR 
(SNR divided by ߟΓ|√ܰ) versus ۧܥۦ for several different 
values of . In the limit of low electronic noise ( → 0), the 
SNR is maximized for low count rate 0 → ۧܥۦ, since the only 
coincidence counts are those between entangled photon pairs. 
Increasing the count rate adds accidental coincidences between 
photons from different pairs, which contribute noise and 
reduce the SNR. When  is nonzero, electronic noise 
dominates at low count rates, and the SNR increases with ۧܥۦ 
until it reaches a maximum and turns back over. For high 
count rates, the number of accidentals grows more rapidly than 
those from entangled pairs, and the SNR → 0 as 1 → ۧܥۦ. 

The optimum count rate, i.e., the one that maximizes the 
SNR, is: ۧܥۦ୭୮୲ ൌ 1  ܹ ൬ െ 1݁ ൰ (23)

where ܹ is the Lambert-W function [29]. ۧܥۦ୭୮୲ depends only 
the noise characteristics of the detector; by identifying , the 
mean count rate may be set by adjusting the pump power or 
exposure time. The corresponding maximum achievable SNR 
[peaks of curves in Fig. 1] falls off with more electronic noise. 
Remarkably, however, its falloff is quite slow; a relatively high  of 0.2 yields a reduction in the maximum SNR of only 50 
% from when  = 0.  

Table I. Parameters for Andor iXon Ultra 897 EMCCD camera based 
on fit of histogram shown in Fig. 3 with Eqs. (25)-(28). EMCCD was 
set to readout rate of 17 MHz, 0.3 μs vertical shift time, vertical clock 
voltage set +4 V above default. 

Parameter Value ݔ/ [30] 536  ݎ 1000     ݃ 12   ݔ      0.012971ߤௗ  167.1035 gl ߪௗ    18.379 gl       6.03 × 10–3 ௦      5.32 × 10–5

 
 
 

C. Electron-Multiplying CCD Camera 
 

Electron-multiplying charge-coupled-device (EMCCD) 
cameras are massively parallel single-photon-sensitive devices 
capable of measuring high-dimensional biphoton joint 
probability distributions [19]. If the camera is operated in 
photon-counting mode, where the gray levels above a  
thresholded value are registered as “clicks” and set to 1 while 
those below threshold are set to zero, then the probability of a 
gray level above threshold is 

ܲሺݔ  ܶ|݇ሻ ൌ  ܲሺݔ|݇ሻஶ
௫வ்  (24)

where ݇ is the number of photoelectrons generated by the 
detector. This conditional probability distribution depends on 
the gain and noise properties of the EMCCD, and has been 
studied extensively [23,24]. In the following, we provide a 
summary of the principal contributions. 
 Photons incident on the camera are absorbed to create 
photoelectrons with quantum efficiency ߟ. The electron-
multiplying gain then amplifies the number ݇ of electrons 
stochastically, producing a random number of electrons at the 
output ݔ, with conditional probability distribution ܲሺݔ|݇ሻ. 
Photoelectrons at the input of the multiplication register 
produce an output number ݔ of electrons with conditional 
probability [23,24,31] 

ܲሺݔ|݊ሻ ൌ ିଵ݁ି௫݃ሺ݊ݔ െ 1ሻ!, (2
5)

where ݃ ൌ ሺ1    is the ሻ is the mean gain, where
multiplication probability in each of the ݎ elements in the 
multiplication register. Finally, an analog-to-digital converter 
produces a gray level value ݔ proportional to the number of 
electrons. 
 
 

 
Fig. 2  Typical conditional probability distributions of gray-level (gl) 
outputs from EMCCD camera given (solid black) zero, (dashed red) 
one, and (dotted blue) two input photoelectron. Plots are based on 
Eqs. (25)-(28), with parameters in Table I. Vertical dotted line 
indicates typical threshold level of ܶ = 210 gl. Shaded regions 
represent ܲሺݔ  ܶ|݇ሻ, the areas of which gives  and ߟாெ for ݇ 
= 0 and 1, respectively. 

 
There are several processes that result in noise independent 

of the presence of photoelectrons. Readout noise yields a 
Gaussian distribution with mean ߤௗ and standard deviation 



  ;ௗߪ

ܲௗሺݔሻ ൌ ௗߪߨ2√1 ݁ିሺ௫ିఓೝೌሻమଶఙೝೌమ . (26)

In addition, there are two noise processes that depend on the 
gain. First, there is a small probability  that a spurious 
electron will be generated at the input of the multiplication 
register. This is predominantly due to clock-induced charge 
(CIC), as thermal dark counts are comparably negligible at low 
operating temperatures and short exposure times [24]. As this 
electron experiences the same gain as the photo-generated 
electrons, it results in a probability of electrons at the output of 
the multiplication 

 ܲሺݔሻ ൌ  ܲሺݔ|1ሻ ൌ  ݁ି௫݃ . (27)

Second, there is a small probability ௦ that a spurious 
electron will be generated at each multiplication register cell, 
which is then amplified by the remaining registers. This results 
in an output probability 

௦ܲሺݔሻ ൌ ௦  ݁ି ௫ሺଵାሻೝషሺ1  ሻሺିሻ
ୀଵ . (28)

Both Eqs. (27) and (28) are valid only for ݔ > 0; their value 
at 0 = ݔ is determined by 1 െ ܲሺݔ  0ሻ. Finally, the total ܲሺݔ|݇ሻ is given by the convolution of Eqs. (25)-(28), followed 
by conversion of electrons ݔ to gray levels ݔ. 

Examples of ܲሺݔ|݇ሻ are shown in Fig. 2 for ݇ = 0, 1, and 2 
input photoelectrons, for the camera parameters listed in Table 
I. Gray levels above threshold—the dotted vertical line at 210 = ݔ gl—contribute a signal proportional to the shaded area 
under the curve, which gives ܲሺݔ  ܶ|݇ሻ. For ݇ = 0, this 
represents the electronic noise probability , which here is 
0.016. For ݇ = 1, it gives the probability of getting a “click” 
from an absorbed photon. This is an effective quantum 
efficiency ܲሺݔ  ܶ|1ሻ ൌ  ாெ, which here has a value ofߟ
0.61. EMCCDs with sufficiently high gain and low read noise 
may operate in photon-counting mode and be approximated as 
an array of single-photon counters. This is the regime in which 
the above analysis is applicable.  

 
  

III.   EXPERIMENTAL RESULTS 
 
We compare our theoretical results with experimental 

measurements of spatially entangled photon pairs using an 
EMCCD camera. Biphotons are generated via collinear type-I 
SPDC in a BBO crystal pumped by a spatially filtered 400 nm 
cw laser diode, and the far field is projected onto an EMCCD 
camera (Andor, iXon Ultra 897) [see Fig. 3(a)]. The EMCCD 
consists of a 512×512 array of 16×16 μm2 pixels, and is 
operated at –85 °C (maintained by water cooling), 17 MHz 
readout rate, with 0.3 μs vertical shift time, and vertical clock 
voltage of +4 V above default. A 101×101 pixel region of 

interest centered on the intensity distribution is selected, and 
the exposure time is fixed to 5 ms. The electronic noise ܲሺ0|ݔሻ 
is measured by obtaining a histogram of gray levels from 104 
frames collected with the shutter closed [Fig. 3(b)]. This is fit 
with the theoretical ܲሺ0|ݔሻ given by the convolution of 
Eqs. (25)-(28) to characterize the EMCCD [23,24]; resulting 
parameters are given in Table I. Here, the gain ݃ is manually 
set to 1000, ݎ is the number of multiplication registers 
(provided in the EMCCD chip specifications [30]), and the 
multiplication probability in each register is calculated by  ൌ ݃ଵ/ െ 1. The remaining values in Table I are altered 
iteratively to minimize the mean squared difference with the 
measured values. 

Measurements of Γ are performed at many values of ۧܥۦ. 
The mean count rate is varied by adjusting the attenuation of 
the pump laser with a continuously variable ND filter. For each 
mean count rate, 104 gray level images are collected, 
thresholded at ܶ = 210 gl—the value which maximizes the 
SNR—and processed. A region with uniform singles count rate 
(uniform irradiance) is selected [Fig. 3(c)], from which Γ is 
calculated via Eq. (15) (with ߙ set to one). Fig. 3(d) shows the 
projection of Γ onto the sum coordinates, (ૉଵ + ૉଶ)/√2, 
where the strong peak in the center indicates anti-correlation of 
the entangled photon pairs. For ideally anti-correlated photons, |߰ሺૉଵ, ૉଶሻ|ଶ ן ሺૉଵߜ  ૉଶሻ, and the conditional probability Γ| 
is unity for pixels oppositely located about the origin (݆ ൌ െ݅). Realistically, however, the conditional distribution is 
spread over several pixels (determined by the correlation 
width/degree of entanglement). As Γ| is normalized (i.e., ∑ Γ| ൌ 1), summing over the pixels ݆ effectively synthesizes 
an ideal anti-correlated case for the purposes of SNR 
measurement [see Eq. (22)]. That is, we simulate the SNR we 
would measure had Γି | ൌ 1 [12]. To determine the SNR, we 
fit the correlation peak to a 2D Gaussian distribution and take 
its area as the signal. The noise is given by the standard 
deviation of the background far from the peak. Defining the 
signal and noise in this way essentially averages the 4D joint 
probability distribution Γ over many pixels. Thus, the 
uniformity of the irradiance (and Γ|) is important to this 
metric, as spatial variation complicates the analysis. As shown 
in  Fig. 3(e) and 3(f), measurements of the signal, noise, and 
SNR agree well with theory 

 Further evaluation of the theory over a large range of  
and ߟாெ can be performed by imaging at different threshold 
levels. For thresholds below the original ܶ = 210 gl, both  
and ߟாெ increase, as a larger portion of ܲሺݔ|݇ሻ is above 
threshold. Fig. 3(f) shows measurements of the SNR at 
thresholds from 147 gl to 210 gl (corresponding to ߪௗ below 
and 1.9ߪௗ above ߤௗ), with good agreement with 
theoretical fits of Eq. (22) over the entire range.  

For higher thresholds, the approximation of the EMCCD 
camera as an SPCM breaks down. Fig. 3(g) shows that 
measurements of the SNR for thresholds between 233 gl and 
388 gl (corresponding to 2.5ߪௗ and 10ߪௗ above ߤௗ), 
disagree with theory. For large ۧܥۦ, the measured SNR is much 



 

Fig. 1  Experimental measurement of SNR of entangled photon pairs. (a) Experimental schematic. A 400 nm laser diode pumps a BBO crystal and 
near-degenerate down-conversed photons are filtered, and the far field projected onto an EMCCD camera (Andor, iXon Ultra 897). (b) 
Conditional probability distribution of gray-level output given zero input photoelectrons. (Black open circles) measured histogram of gray levels 
from ~105 101×101 pixel frames collected with the shutter closed at 5 ms exposure time. (Red curve) Fit of Eqs. (25)-(28) to determine EMCCD 
properties given in Table I. Dotted vertical line shows threshold at ܶ = 210 gl. The EMCCD measures (c) the irradiance distribution and (d) Γ, 
shown projected onto the sum coordinates. A region of uniform irradiance, indicated by the central black boxed region in (c), is selected for SNR 
measurements. The signal and noise are taken as the area of the anti-correlation peak in (d) and the standard deviation of the fluctuations of the 
background far from the peak. Measurements (open circles) are repeated for many values of ۧܥۦ, and (e) the signal (black) and noise (red) are 
calculated and fit (solid curves) to theory. (f) Their ratio is taken to determine the SNR. Black dataset in (f) corresponds to signal and noise in (e). 
Also in (f), many lower thresholds were applied to the gray scale images, resulting in increased  and ߟாெ, all showing agreement with 
theory. Numbers next to each curve indicate threshold level (see Fig. 2 and Table I). (g) We observe disagreement that worsens for higher 
thresholds, where the approximations in treating the EMCCD as an SPCM break down. 

 

greater than predicted, particularly for the highest thresholds. 
In this regime, counts are more likely to originate from more 
than one input electron, ݇ > 1. The reason for this, as discussed 
in section IV below, is that the probably of registering a click 
for more than one input photon scales differently for an 
EMCCD than for an SPCM. 

We also compare the optimum count rate ۧܥۦ୭୮୲ and 
corresponding maximum SNR found from experiment with 
theory. Fig. 4(a) shows that the measured ۧܥۦ୭୮୲ agrees well 
with Eq. (23) for  > 0.01 (smaller values of  correspond 
to higher thresholds, where the model breaks down). Over the 
range of validity, we may incorporate the threshold 
dependence of ሺܶሻ ൌ ܲሺݔ  ܶ|0ሻ [see Fig. 2] and the 
optimum count rate [Eq. (23)] into the expression for the SNR 
[Eq. (22)] to predict the maximum achievable SNR as a 
function of threshold. This curve is plotted in Fig. 4(b), which 
shows a peak at ܶ = 210 gl (thus our preferred operating 

value). As before, agreement with experiment is very good for 
all but the highest thresholds.  

 
 

IV.   DISCUSSION 
 
By characterizing noise properties of the EMCCD camera, 

that is, measuring ܲሺ0|ݔሻ, the optimum operating parameters 
can be deduced. Using Eqs. (22)-(24), the threshold ܶ and 
count rate ۧܥۦ୭୮୲ that maximize the SNR can be found. We 
have experimentally validated the theory for threshold values 
within several standard deviations of ߤௗ. Fortunately, the 
global optimum of the SNR is found in this range, which is 
therefore where measurements of the biphoton joint probability 
distribution should be made.  

The breakdown of the theory at high thresholds arises from 
differences between EMCCDs and SPCMs, i.e., how the 
probability of registering a “click” depends on the number of 



incident photons. SPCMs are Geiger-mode avalanche devices, 
whose output is either zero or one depending on whether or not 
an avalanche was triggered. This results in an avalanche 
probability that scales with the number of incident photons ݊ 
as ܲሺ1|݊ሻ ൌ 1 െ ሺ1 െ ሻ. (29ߟ

)
This form of the “click” probability allows the simple insertion 
of the quantum efficiency as in Eqs. (4) [25]. Applying this 
concept to the EMCCD camera requires the probability of 
getting a gray level above threshold to scale as  ܲሺݔ  ܶ|݇ሻ ൌ 1 െ ሺ1 െ ாெሻ. (3ߟ

0)
where ߟாெ = ܲሺݔ  ܶ|1ሻ (see Appendix C). 
 

 
Fig. 4  Comparison of (circles) measured optimum count rate ۧܥۦ୭୮୲ 
and corresponding maximum SNR (SNRmax) with (curves) theory. 
Curve in (a) is ۧܥۦ୭୮୲ from Eq. (23) plotted versus , which shows 
good agreement for  > 0.01. In (b) the maximum SNR is plotted 
versus gray-level threshold. The red curve shows Eq. (22) with ۧܥۦ ൌ ݔ on threshold, i.e., ܲሺ ୭୮୲ and the known dependence ofۧܥۦ  ܶ|0ሻ. There is agreement between theory and experiment for 
all but the highest thresholds, which correspond to the lowest values .  

 
However, EMCCDs do not have the same form of scaling 

with incident photon number. Fig. 5 shows ܲሺݔ  ܶ|݇ሻ, 
calculated via Eqs. (24)-(28) for the EMCCD parameters in 
Table I. Even for two input photoelectrons, ܲሺݔ  ܶ|2ሻ 
(dotted blue curve) is significantly different from 1 െ൫1 െ ܲሺݔ  ܶ|1ሻ൯ଶ

 (dot-dashed maroon curve). This 
discrepancy grows with both increasing threshold and 
increasing photoelectron number. For sufficiently low 
threshold, the approximation of an EMCCD as an SPCM, Eq. 
(30), is valid. (It even improves with decreasing threshold 
since ܲሺݔ  ܶ|݇ሻ ՜ 1.) This explains the agreement between 
experiment and theory for ܶ ≤ 210 gl [see Fig. 3(f) and 4]. 
However, for higher ܶ this approximation becomes incorrect. 
Because ܲሺݔ  ܶ|݇ሻ > 1 െ ሺ1 െ  ாெሻ, the measured SNRߟ
is greater than the theory predicts for high thresholds and count 
rates, as most counts originate from multiple input 
photoelectrons per pixel.  

To further confirm the origin of the discrepancy, we 
perform numerical simulations using both SPCM and realistic 
EMCCD responses, i.e., ܲሺݔ  ܶ|݇ሻ. Briefly, a Poissonian 
distribution of photon pairs with mean ഥ݉  is sampled for each 
of 106 frames. The pairs then arrive at the detector per an 
ideally anti-correlated biphoton joint probability distribution, Γ ൌ  ,ି. In each pixel, photons are detected with quantumߜ
efficiency ߟ. For the EMCCD, the gray level at the output is 
calculated by sampling ܲሺݔ|݇ሻ, with the appropriate ݇, and 
then thresholded. For SPCM simulations, Poissonian noise is 
added with mean . For both detector systems, simulated 
measurements of Γ are calculated via Eq. (15) (with 1 = ߙ), 
from which the SNR is found. This is repeated for many values 
of ഥ݉  to span the entire range of ۧܥۦ from  to 1.  

Simulations of the EMCCD were performed using the 
parameters in in Table I to model ܲሺݔ|݇ሻ at ܶ = 280 gl, which 
shows excellent agreement with experiment [Fig. 5(b)]. A 
global scaling factor is applied to the simulations to match the 
amplitude with experiment. This accounts for differences in 
unknown quantum efficiency and mean photon number in the 
experiment, as well as the lower number of pixels used in 
simulation for computational speed. The remaining deviations 
from experiment may be due to slight non-uniformity of ܲሺݔ|݇ሻ across the pixels in the frame, inaccuracies in the 
model [23,24], or fitting errors. Simulations of SPCM’s with 
the same  were then performed, and match well with our 
theory. We therefore conclude that the discrepancy between 
theory and experiment is due to the non-SPCM-like behavior 
of EMCCDs at high thresholds. A complete characterization of 
this behavior can be understood by taking into account the full 
properties of the camera [25]. 

 
 

V.   CONCLUSION 
 
We have provided a general analytical expression for the 

SNR for measurements of entangled photon pairs. This 
expression assumes only a Poissonian distribution of photon 



pairs and is valid for the full range of count rates up to 
saturation. There is an optimum count rate at which the SNR is 
maximized that depends only on the detector noise properties, 
and may therefore be specified ahead of any quantum 
experiments. The theory works particularly well for EMCCDs 
at low thresholds, while for high thresholds the cameras 
deviate from ideal binary photon counters. These differences 
are negligible for EMCCDs with low readout noise and high 
gain when operated with the appropriate threshold. Indeed, the 
optimum threshold occurs well within the region of validity, 
even for relatively high read noise, when operated at maximum 
readout rate [14,24,32]. The SNR curve around the peak is 
relatively broad, with a falloff for non-ideal parameters that is 
relatively slow. The results therefore suggest a large operating 
window for collecting data at significantly higher count rates 
than is typically done. 
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Fig. 5  Discrepancy between thresholded EMCCD and SPCM. (a) 
Probability of a gray level above threshold, ܲ൫ݔ  ܶ|݊൯, given (solid 
black) ݊ = zero, (dashed red) one, and (dotted blue) two input 
photoelectrons. Curves were calculated with Eqs. (24)-(28) with 
EMCCD parameters in Table I. Dot-dashed maroon curve is 1 െ൫1 െ ܲሺݔ  ܶ|1ሻ൯ଶ

 which is implicitly assumed in the model. The 
difference between dashed blue and dot-dashed maroon curves, and 
those for larger ݇, is the cause of the discrepancy between 
experimental results at high threshold and theory. (b) Comparison of 
simulations of (black squares) EMCCD and (maroon triangles) SPCM 
with (teal circles) experiment and (curve) theory. Simulation 
parameters were the same as experiment with EMCCD at ܶ = 280 gl 
and SPCM with the same value of  = 0.002, and scaled to the same 
amplitude as experiment. 

 
 

APPENDIX A: SNR Calculations 
 

In general, we wish to determine some parameter ܹ that can 
be expressed as a function of a random variable ܺ, i.e., ܹ ൌ ܹ ሺܺሻ. To estimate the “true” value ofܨ ൌ  , we canݓ
sample ܺ several times and calculate ݓෝ ൌ ෝݓ ҧேሻ, whereݔሺܨ  is 
the “estimator of” ݓ, and ݔҧே is the sample mean of ܰ 



independent measurements of ݔ. Given different sets of ܰ 
independent measurements of ݔ, we expect some variation 
between the resulting ݓෝ’s. This variation can be estimated by 
the standard deviation of ݓෝ ො௪ෝߪ [28]  ൌ ܰ√௫ݏ (A1) ,߲ܺܨ߲

where ݏ௫ ൌ ඥ∑ ሺݔ െ ҧேሻଶேୀଵݔ /ሺܰ െ 1ሻ  is the sample standard 
deviation of ݔ. We define the SNR as the estimate of ݓ (i.e., ݓෝ) divided by its expected variation from multiple repeated 
independent measurements (i.e., ߪො௪ෝ ), ܴܵܰ ؠ ො௪ෝߪෝݓ . (A2)

For our purposes, ܺ ൌ ҧݔ ,ܥ ൌ ൻܥൿ, and ݓෝ ൌ Γ, as given by 
Eq. (16). From Eq. (A1), ߪො௪ෝ  is ߪොೕ ൌ ܰ√ೕݏ ߲Γ߲ܥ, (A3)

which is Eq. (17).  
 In general, for a covariance ܹ defined by 

ܹ ൌ  ܲሺ ܺ െ തܺሻሺ ܻ െ തܻሻ
ୀଵ , (A4)

where ܲ is the probability of each of the ݊ possible values, has 
variance 

Varሺܹሻ ൌ  ܲሺ ܺ െ തܺሻଶሺ ܻ െ തܻሻଶ
ୀଵ . (A5)

In our case ܹ ൌ ൻܥൿ െ   = {0,1}. We areܥ,ܥ ൿ, withܥۧൻܥۦ
interested in the fluctuations in the background, where Γ = 0, 
which means meanሺܹሻ = 0. Its variance is then 

 Varሺܹሻ ൌ ܲሺ1 െ ۧሻଶ൫1ܥۦ െ ൻܥൿ൯ଶ ܲଵሺ1 െ ൿଶܥۧሻଶൻܥۦ ଵܲܥۦۧଶ൫1 െ ൻܥൿ൯ଶ ଵܲଵܥۦۧଶൻܥൿଶ
 

(A6)

where  

ܲ ൌ ሺ1 െ ۧሻ൫1ܥۦ െ ൻܥൿ൯, ܲଵ ൌ ሺ1 െ ൿ, ଵܲܥۧሻൻܥۦ ൌ ۧ൫1ܥۦ െ ൻܥൿ൯, ଵܲଵ ൌ ൿ. (A7)ܥۧൻܥۦ

Simplifying, these give ߪೕଶ ൌ ۧሺ1ܥۦ െ ൿ൫1ܥۧሻൻܥۦ െ ൻܥൿ൯, (A8)

the square root of which is Eq. (18). 
 
 

 
 

APPENDIX B: Non-uniform illumination 
 
For non-uniform illumination, the signal is related by Γ ൌ െߟߙΓ| ln ቆ1 െ ۧ1ܥۦ െ  ቇ ൌ െߟߙΓ| ln ቆ1 െ ൻܥൿ1 െ  ቇ. (B1)

due to the symmetry of the biphoton joint probability 
distribution. The standard deviation where Γ ൌ 0, i.e., where ൻܥൿ ൌ  ൿ, isܥۧൻܥۦ

ೕߪ ൌ ܰ√ߙ ඨ ൿሺ1ܥۧൻܥۦ െ ۧሻ൫1ܥۦ െ ൻܥൿ൯ (B2)

The SNR is given then by the ratio of Eq. (16) over Eq. (21) 

SNR ൌ െߟΓ|√ܰඨሺ1 െ ۧሻ൫1ܥۦ െ ൻܥൿ൯ܥۦۧൻܥൿ ln ቆ1 െ ۧ1ܥۦ െ  ቇ
ൌ െߟΓ|√ܰඨሺ1 െ ۧሻ൫1ܥۦ െ ൻܥൿ൯ܥۦۧൻܥൿ ln ቆ1 െ ൻܥൿ1 െ  ቇ. (B3)

In the limit of low count rate, this reduces to  SNR ൎ ܰ√Γ|ߟ ۧܥۦ െ ൿܥۧൻܥۦට ൌ ܰ√Γ|ߟ ൻܥൿ െ ൿ. (B4)ܥۧൻܥۦට

 
 

APPENDIX C: SPCM-like scaling of EMCCD 
 

For a detector with general gray-scale response to incident 
photons, the conditional probability of a particular gray level ݔ 
on the number of incidence photons ݊ is given by [25] 

ܲሺݔ  ܶ|݊ሻ ൌ  ܲሺݔ  ܶ|݇ሻܲሺ݇|݊ሻ
ୀ , (C1)

where ݇ is the number of generated photoelectrons and ܲሺ݇|݊ሻ ൌ ቀ݊݇ቁ ሺ1ߟ െ ሻ, (C2)ߟ

where ߟ is the quantum efficiency (absorption probability). Let ܲሺݔ|݇ሻ be the probability of generating gray level ݔ given ݇ 
input photoelectrons. If  ܲሺݔ  ܶ|݇ሻ ൌ 1 െ ሺ1 െ ாெሻ, (C3)ߟ

then Eqs. (C1)-(C3) give ܲ൫ݔ  ܶห݊൯ ൌ 1 െ ሺ1 െ ாெሻ. (C4)ߟߟ
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