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We derive a spatiotemporal equation describing nonlinear optical dynamics in Fabry-Perot (FP)
cavities containing a Kerr medium. This equation is an extension of the equation that describes
dynamics in Kerr-nonlinear ring resonators, referred to as the Lugiato-Lefever equation (LLE) due to
its formulation by Lugiato and Lefever in 1987. We use the new equation to study the generation and
properties of Kerr frequency combs in FP resonators. The derivation of the equation starts from the
set of Maxwell-Bloch equations that govern the dynamics of the forward and backward propagating
envelopes of the electric field coupled to the atomic polarization and population difference variables
in a FP cavity. The final equation is formulated in terms of an auxiliary field ¢ (z, ¢) that evolves over
a slow time ¢ on the domain —L < z < L with periodic boundary conditions, where L is the cavity
length. We describe how the forward and backward propagating field envelopes can be obtained
after solving the equation for . This formulation makes the comparison between the FP and ring
geometries straightforward. The FP equation includes an additional nonlinear integral term relative
to the LLE for the ring cavity, with the effect that the value of the detuning parameter « of the ring
LLE is increased by an amount equal to twice the spatial average of |1/)|2. This feature establishes
a general connection between the stationary phenomena in the two geometries. For the FP-LLE,
we discuss the linear stability analysis of the flat stationary solutions, analytic approximations of
solitons, Turing patterns, and nonstationary patterns. We note that Turing patterns with different
numbers of rolls may exist for the same values of the system parameters. We then discuss some
implications of the nonlinear integral term in the FP-LLE for the kind of experiments that have
been conducted in Kerr-nonlinear ring resonators.

I. INTRODUCTION

Optical frequency combs have revolutionized the mea-
surement of optical frequencies and enabled a wide ar-
ray of basic research applications in fields such as time-
keeping, cosmology, and astronomy [1-3]. Now, the re-
alization of broadband frequency combs using the whis-
pering gallery modes of high-Q ring microresonators with
the Kerr nonlinearity (first described in [4]) promises
to bring the capabilities of frequency combs to a new
set of applications outside the laboratory. In con-
trast with mode-locked laser-based frequency combs,
microresonator-based Kerr frequency combs arise from
the parametric four-wave mixing (FWM) processes acti-
vated by the interaction between the driving field and the
Kerr medium. The potential of these combs for applica-
tions relies on the fact that, under suitable conditions,
the newly-generated frequency components can mode-
lock to form well-behaved dissipative Kerr-cavity solitons
[5-12]. These combs can yield natively octave-spanning
spectra [13, 14], and they can be regarded as novel mul-
tiwavelength sources where all the lines except for the
pump laser are created by the gain induced by the FWM
processes.
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Kerr-microresonator-based frequency combs (micro-
combs) are anticipated to have a significant impact as
a compact, low cost, low power technology. Microcavi-
ties can be conveniently pumped with a variety of laser
wavelengths, can be embedded on photonics chips, can
be integrated in fiber networks, and are compatible with
CMOS/metal oxide semiconductors. These properties
make microcombs quite promising and have inspired a
worldwide effort to develop the technology [15].

The effects of the Kerr nonlinearity in passive, driven
optical cavities were analyzed in the 1970s in the field
of optical bistability [16, 17]. In this context the possi-
bility that such systems can spontaneously emit cavity
modes different from the mode quasi-resonant with the
injected driving frequency, then referred to as the multi-
mode instability, was theoretically predicted [17-19] and
experimentally observed [20] before the concept of a fre-
quency comb was introduced.

As shown e.g. in Refs. [6, 21-25] the model that is ap-
propriate for the description of comb generation in Kerr
resonators and for the exploration and prediction of comb
characteristics is an equation formulated thirty years ago
by one of us and Lefever [26, 27] in our investigation of op-
tical bistability. This model is referred to as the Lugiato-
Lefever equation (LLE) in the field of microcombs. The
equation was originally formulated to provide a paradigm
for transverse spatial pattern formation & la Turing [28]
in nonlinear optical systems, which arises through the si-
multaneous effects of Kerr nonlinearity and diffraction.
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The temporal/longitudinal version of the LLE that de-
scribes Kerr-comb formation was introduced some years
later ([29], also [30, 31]) and is characterized by the re-
placement of diffraction by group velocity dispersion. It
is mathematically equivalent to the transverse LLE in
1D. This equation has been applied both to fiber ring
cavities (e.g. [32, 33]) and to high-Q microresonators
(e.g. [6, 21-25]). The spontaneous formation of traveling
spatiotemporal patterns along the ring cavity, described
by the LLE, corresponds to the generation of new op-
tical frequencies. It is a remarkable development that
the rather idealized physical conditions assumed in the
LLE thirty years ago have been perfectly realized by re-
cent progress in the field of photonics, and the LLE and
higher order corrections to it have provided a framework
in which the vast majority of experimental microcomb re-
sults are now understood. In this way the investigations
of pattern formation based on the LLE have acquired
significant practical importance.

An interesting variation on microcomb experiments,
which to our knowledge has only recently been performed
for the first time ([34], see also [35]), is the generation of
cavity solitons in resonators with the Fabry-Perot (FP)
geometry. This is depicted schematically in Fig. 1. In
their study, Obrzud and colleagues report on dissipative
Kerr-cavity soliton generation in a passive, high-Q Fabry-
Perot resonator constructed of standard (anomalous dis-
persion) single-mode fiber (SMF) with high-reflectivity
end-coatings. It is worth mentioning that this work also
makes use of a pulsed pump laser (see also e.g. Ref. [36]).

Practical differences with the ring geometry make mi-
crocomb generation in FP cavities appealing. In partic-
ular, the FP geometry offers different methods for tailor-
ing the cavity dispersion, which dictates the bandwidth
and temporal duration of cavity solitons. Engineering of
the core-cladding index contrast is analogous to engineer-
ing of the geometrical dispersion in ring resonators [37],
while there exists for FP cavities the additional opportu-
nity to employ chirped mirror end-coatings. Further, in
the particular case of an FP cavity constructed of SMF
the cavity naturally has a single transverse mode family,
which avoids the practical difficulties of comb generation
in a resonator populated with higher-order mode fami-
lies, each with its own free spectral range.

In this article we provide a theoretical treatment of the
nonlinear dynamics in a passive, driven FP cavity con-
taining a Kerr medium as they apply to frequency comb
formation. A brief treatment within the formalism of
coupled-mode equations was provided by Obrzud et al.
in Ref. [34]. Here, we derive and explore the properties of
a complementary spatiotemporal equation analogous to
the LLE for the FP geometry. This FP-LLE differs from
the ring LLE in the existence of an additional nonlinear
term that represents phase modulation by the average
of the intracavity intensity. The effects of this term are
similar to the effects of the thermal shift of the cavity
resonance frequency present in all microresonator exper-
iments [6, 38], but the additional nonlinear term acts
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FIG. 1. Experimental geometries for microresonator fre-
quency combs. (a) The ring geometry. A pump laser is cou-
pled into the ring resonator through a bus waveguide, and
the intracavity intensity envelope (here a soliton pulse) is
coupled out once per round trip. (b) The Fabry-Perot ge-
ometry. A pump laser is coupled in through a cavity mirror,
and the intensity envelope is coupled out at each reflection.
Not shown is the background standing wave in the Fabry-
Perot cavity, which is made up of forward-propagating and
backward-propagating field components.

on the timescale of the Kerr nonlinearity, which is effec-
tively instantaneous. The new term connects stationary
patterns in the Fabry-Perot resonator to stationary pat-
terns in the ring resonator with a shifted detuning pa-
rameter, and it imparts a dispersion-dependence to the
region of parameter space over which solitons can exist.
We explore in particular the generation of single solitons
through laser frequency sweeps, which is commonplace
for ring resonators, and find that the additional nonlinear
term may present new challenges that can be alleviated
by using high pump power or a pulsed pump laser.

In Sec. II we derive a set of two coupled equations
for the forward- and backward-propagating electric field
components in a Kerr-nonlinear FP resonator. In Sec.
IIT we derive the generalization of the LLE to the FP
geometry from these coupled equations. We show how
to reverse the procedure and obtain the two counter-
propagating fields from the solution of the FP-LLE.

Sec. IV is devoted to the homogeneous stationary solu-
tions of the FP-LLE and to their linear stability analysis;
in both cases we compare with the ring cavity case. In
addition, we demonstrate a general connection that links
the stationary patterns of the FP-LLE with those of the
ring LLE.

In Sec. V we focus on the soliton solutions of the LLE.
We review a well-known analytical expression obtained
in the ring case and extend it to the FP case.

In Sec. VI we explore Turing patterns under the FP-



LLE, and in particular their multi-stability.

In Sec. VII we discuss nonstationary phenomena in the
FP-LLE, including spatiotemporal chaos and oscillating
breather solitons.

In Sec. VIII we discuss implications for experiments of
the differences between the dynamics under the FP-LLE
and dynamics under the ring LLE, which have been well
explored experimentally.

Finally, in Sec. IX we conclude with some general re-
marks.

II. DERIVATION OF COUPLED EQUATIONS
FOR THE FORWARD- AND
BACKWARD-PROPAGATING ENVELOPES

In this section we present the derivation of a set of
coupled equations for the slowly-varying envelopes of the
forward- and backward-propagating field components in
a Fabry-Perot cavity exhibiting second-order dispersion
and the Kerr nonlinearity. In the following section we
unify these two coupled equations into a single spatiotem-
poral equation, the LLE for the Fabry-Perot cavity.

The derivation of the coupled equations we seek is in-
volved, and generalizes calculations that have been per-
formed and described in detail elsewhere. Therefore, in
this section we describe the motivation for the steps in-
volved and the results that these steps provide, and we
sometimes refer to published literature for the full details
of these calculations.

The main problem in deriving the coupled equations
we seek is to correctly formulate the cubic terms that
describe the Kerr nonlinearity in this two-field configu-
ration. To do this, we exploit arguments given in Ref. [39]
that connect the physics in a medium with general Kerr
nonlinearity to the physics of a two-level atomic medium.
First, we present coupled equations describing the case
of the two-level medium, and then we explain the con-
ditions under which they also apply to the case of the
general Kerr nonlinearity.

We start from a set of equations (Eqs. (14.61-64) of
Ref. [39]) that provide a convenient generalization of the
Maxwell-Bloch equations, which describe the interaction
of the field envelope with a two-level medium, to the
FP case and include the high-Q limit. These equations
represent the analogue of the MBE for the ring cavity,
starting from which Ref. [31] shows the derivation of the
temporal /longitudinal LLE. Obtaining these equations
from the MBE is not trivial, and is described in detail in
Ref. [39]. Generally, the process goes as follows:

1. Start from the Maxwell equations and the Bloch
equations for two-level atoms. By inserting into
them the expressions of the electric field and of the
atomic polarization in terms of their slowly vary-
ing envelopes, one obtains a set of three partial
differential equations that involve both the enve-
lope of the forward-propagating field and that of
the backward-propagating field.

2. Transform the envelopes so that they obey the
boundary conditions given by Eq. (7) below.

3. Take the high-@ limit, also called mean field limit
or uniform field limit in the literature.

4. Distinguish between the widely-separated scales of
the optical wavelength and the cavity length.

The last step immediately allows for derivation of two
separate equations for the two counter-propagating field
envelopes. The resulting equations read:
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where Fr(z,t), Fg(z,t), and F denote the normalized en-
velopes of the forward and backward propagating fields
and of the input field, respectively, and P(z,¢,t) and
D(z,¢,t) indicate the normalized atomic polarization
and population difference of the two-level atoms, respec-
tively. The speed of light in the medium is ¢ = ¢/n,
with ¢ the speed of light in vacuum and n the back-
ground refractive index. The transverse and longitudi-
nal atomic relaxation rates are v, and vy, respectively,
and the atomic detuning parameter is A = (wq —wo) /7.1,
where w, is the frequency of the driving field and w, is
the Bohr transition frequency of the two-level atoms; C'
is the bistability parameter [17, 39]. Time is indicated by
t, while there are two distinct spatial variables: the slow
spatial variable z, which varies on the scale of the cavity
length, and the fast spatial variable ¢ = w,z/¢, which
varies from —m to +7 and is related to the wavelength
scale. The cavity damping rate is defined as x = ¢T'/2L,
where L is the cavity length. The cavity detuning is
given by a = (w. — w,)/k (in many of the references rel-
evant to this derivation this quantity is represented by



6, which here we reserve for another purpose), with w,
being the cavity frequency closest to w,. As usual c.c.
means complex conjugate.

The electric field E(z,t), assumed linearly polarized
for simplicity, is expressed as

1hy717), = i (2
Bleyt) = 5 =g (B (e, e
+1:“B(z,t)e_iw°(t+%) +cc), (5)

where d is the modulus of the atomic dipole moment and
h is Planck’s constant. The two exponentials that appear
in Eq. (5) can be rewritten as e~ (“o!=%) and e~ Hwot+9),
The electric field injected into the cavity is given by

1hy/T _
Er = E%Ge—l%f +ee), (6)

where T is the transmissivity coefficient of the cavity mir-
rors. The forward- and backward-propagating fields obey
the boundary conditions

FF(Out):FB(Out)v FF(Lut):FB(Lvt) (7)

To derive two coupled self-contained equations for the
counterpropagating fields, we follow the same steps de-
scribed in the Appendix of Ref. [31], starting from
Egs. (1-4) instead of the MBE for the ring cavity. As
the derivation is described in detail there, we simply note
here the assumptions that are introduced:

e The dispersive limit |A| > 1, i.e. the central fre-
quency w, is far off-resonance from the atomic line,

and A < 0.

e The bandwidth of the fields is small in comparison
with the detuning of the central frequency.

e We assume that [Fr/A| < 1 and |Fp/A| < 1,
which allows truncation of the power expansion of
the atomic polarization in terms of the counter-
propagating fields after the first terms.

e The radiative limit v = 2v,.

If we define normalized fields as
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we arrive at the two coupled equations
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Here the second derivative terms describe anomalous dis-
persion as explained in Ref. [31]. The first nonlinear
term describes self-phase modulation and the second de-
scribes cross-phase modulation, while the components of
the term (1 4 ic,) describe loss and detuning, respec-
tively. The group velocity v, is given by

N 20k \ " 2Ck -
vg_c<1+A2—M> ~C(1—A27L>~C. (13)

We now seek the same equations in the general case of a
Kerr medium with chromatic dispersion of second order.
By following the analysis in Sec. 28.2.1 of Ref. [39] we
find that if the electric field and the input field are given
by

E(z,t)_l\/é(l_R) en 1
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where x(®) is the third-order nonlinear susceptibility and
R is the reflectivity of the cavity mirrors, then the cou-
pled equations in this case coincide with Egs. (11) and
(12) provided that x is defined as x = vy(1 — R)/2L, «,
is replaced with «, and a is defined as

a=Fk'Lv}/T, (16)
where
82k(w)
k// = W - , (17)

with k(w) being the dispersion law; k" > 0 in the case of
normal dispersion and k” < 0 in the case of anomalous
dispersion. Egs. (11) and (12) include the correct form
for the Kerr nonlinear terms in the case of two counter-
propagating fields. The above treatment allows for mir-
ror losses in the Fabry-Perot cavity such that T'<1—- R
is possible (but not required).



A final comment in this section is the following. In the
case of unidirectional propagation (i.e. for Fp(z,t) = 0)
Eq. (11) is equivalent to the temporal/longitudinal ver-
sion of the LLE; as a matter of fact, by simply trans-
forming Eq. (11) from the variables (z,t) to the vari-
ables (t,t =t — z/vy) one obtains the LLE formulated in
Ref. [29]. The same trick is not possible in the case of
Eqgs. (11) and (12) because they involve two distinct re-
tarded times, one for forward propagation and the other
for backward propagation. This implies that one must
solve numerically the two equations calculating the for-
ward propagation in the cavity and then the backward
propagation and so on, so that an exceedingly high num-
ber of roundtrips are necessary to reach the long time
scale, on the order of the inverse of k, which governs
the relaxation of the system to a steady state. Such a
calculation is not practical in the high-@Q limit.

IIT. THE LLE FOR FABRY-PEROT
RESONATORS

A. Derivation of a single envelope equation from
the modal expansion

To unite Egs. (11) and (12) into a single spatiotempo-
ral equation describing dynamics in the cavity, we next
introduce a modal expansion for the fields Fr and Fp in
terms of the modal amplitudes fu (similar to that found
in (A.20) of Ref. [31]):

Fr(s,t)= > fult)e' ™, (18)
H=—00

Fp(zt)= 3 Ful)e 5%, (19)
pH=—00

where «, is defined as:
oy, =mpvg/ L. (20)

Using the expansions in Egs. (18) and (19) one can ex-
tend the functions Fr(z,t) and Fp(z,t) to the interval
—L < z < L. This amounts to defining Fr(z,t) and
Fg(z,t) for —L < 2 <0 as

Fr(z,t) = Fp(—2,t), Fp(z,t) = Fr(-2,1), (21)
and by using Eqgs. (7), (8), and (21), one sees that
Fr(z,t) and Fp(z,t) obey periodic boundary conditions
over the interval —L < z < L. Thus, the modal ampli-
tudes f,, can be obtained as:

_ 1 +L _iow
fult) = oL » dze s Fp(z,t), (22)
1 +L ey
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Next, we insert Eqgs. (18) and (19) into Eq. (11) with
o, replaced by a and, by using Egs. (22) and (23), we
obtain the following set of ordinary differential equations:

df, - Nz .z
% = —iopfy—k |(L+ia)f, — Fo, o0 —iauf,
— Z Fur B (Fumg i + 2F ) | 5 (24)
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where
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The same set of equations can also be obtained by in-
serting Eqs. (18) and (19) into Eq. (12). If we now

define
Fult) = fu(t)eront, (26)
so that Eqgs. (18) and (19) read
Fr(z,)= > fult)e %), (27)
J=—00
Fo(zt)= > fu®e ™75, (28)
J=—00

the set of differential equations becomes
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Equation (26) decomposes f,,(t) into the product of two
functions that vary on two distinct time scales. The
exponential varies on the scale of the roundtrip time
Trr = 2L/vg, while f,(t) varies on the scale of the cav-
ity decay time x~! = 2L /v,T. For a high-Q cavity T is
much smaller than 1, so that the two scales are widely
separated. If one averages the terms of Eq. (29) over a
time interval much longer than the cavity roundtrip time
but much shorter than the cavity decay time, all terms of
Eq. (29) remain unchanged except the last, which van-
ishes in the average for i/ # pu. Therefore in the last term
we set u’ = p, obtaining

df

e —k | (1+ia)fy — Fduo0—iaufu

—i Y S v = 2ifu Y ffur| s (30)
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in agreement with the coupled-mode equations presented
in the Supplement of Ref. [34].

Basically, to obtain Eq. (30) we neglect the terms
that do not conserve energy. The two nonlinear terms
in Eq. (30) arise from the two nonlinear terms in Eq.
(11), respectively. Therefore, the second nonlinear term
represents the difference between the FP cavity and the
ring cavity. The first nonlinear term describes processes
of self-phase-modulation, cross phase-modulation, and
four-wave mixing among modes. The second nonlinear
term corrects the coefficients of self-phase-modulation
and cross-phase-modulation.

Finally, we define

+00 oy
D fult)e’ o, (31)

p=—00

and we obtain from this equation the following partial
differential equation for ¥ (z,t):

2
D (o)~ F ia Yy il
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1
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B. The normalized LLE for Fabry-Perot
resonators; Connection to experimental parameters

We now pass to normalized temporal and spatial vari-
ables 7 = kt and § = z - /L, so that when z varies
from —L to L, 0 varies from —x to 7w, and we obtain
from Eq. (32) the LLE for the Fabry-Perot cavity as we
discuss it throughout the remainder of the paper:

o _ B O*Y

5 = ~(Hip+iluy—is =

+2i0 ([Y*)+F. (33)
Here, < g > denotes the spatial average over the do-
main: < g >= 5= ["_df g(#). We have defined

2712 _
p="a (34)
If we drop the additional nonlinear integral term, Eq.
(33) reduces to the temporal/longitudinal LLE in the
notations of, e.g., Refs. [24] and [25]. Hence the com-
plete Eq. (33) constitutes the LLE for a Fabry-Perot cav-
ity, with the additional nonlinear integral term 2t (|)|?)
representing phase modulation by twice the average in-
tracavity intensity. We stress that we use the spatial
variable # to make the comparison with the ring cav-
ity case straightforward. We also note that the coeffi-
cients ‘1’ and ‘2’ of the two self-phase modulation terms
in Eq. (33) may be rescaled arbitrarily (keeping their
ratio fixed) through re-normalization of ¢ and F. For
example, the sum of the phase-modulation coefficients

6

can be made unity through the rescaling ¢ = '/ V3,
F = F’//3, after which the equation in the new param-
eters ¢’ and F’ describing flat solutions (i.e. those for
which 9y’ /00 = 0 so that < |[¢|?> >= |¢|?) is the same
as that for the ring cavity. The normalization we have
chosen here is particularly convenient for analysis and
description of the behavior of the system near threshold
(see Sec. IV).

The FP-LLE is formulated in terms of normalized pa-
rameters: « represents the detuning of the pump laser
from the nearest cavity resonance, F? represents the in-
put power, and [ represents the dispersion. The relation-
ship of these quantities to the experimental parameters
is:

 We — Wo 2(wo — we)
o = - - - AOJO ) (35)
2D 2 02
8= 2 Ol (36)

CAw,  Aw, Ou?

_ Sgkoewt Aeff Mo P
Awd  Aip Neat hw,

F? (37)
In the above, w,, represents the set of resonance frequen-
cies of the cavity including the effects of dispersion, with
= 0 indexing the pumped mode (see e.g. Ref. [11]).
The full-width-at-half-maximum cavity linewidth is twice
the damping rate, Aw, = 2k = (1 — R)¢/ngyL, and
Aweyy = cT'/2nyL is the coupling rate, with ng, = ¢/v,
the group index. The quantities Ain, and Acsy repre-
sent the mode’s effective area mw?, (for a Gaussian mode
of radius w) at the input mlrror and the same aver-
aged over the cavity of length L, I [dzw(z)?, respec-
tively. Further, g, = nohiw?D;/(2mngAcfy) is the non-

Ow,,

linear gain parameter, where D; = m is the cav-

=0
ity free-spectral range in angular frequengy (here and in
Eq. (36) p is treated as a continuous variable). The non-
linear index no is related to the third-order susceptibility
via x(®) = (4/3)n2e,cng, where n, is the refractive index
of the nonlinear medium. The power P = nP;,. denotes
the mode-matched power, with mode-matching factor n
and power P;,. incident on the input mirror, and ney: is
the refractive index of the medium external to the cavity.
Fig. 2 schematically depicts the relationship between
the FP-LLE quantity v, the forward- and backward-
propagating fields Fr and Fp, and the total electric
field E. The forward and backward fields can be ob-
tained from (6, 7) in the following way: One solves
Eq. (33) with periodic boundary condition in the in-
terval —m < 6 < +m. Then one passes to the original
variables z, ¢ to obtain 9 (z,t). Next one calculates the
coefficients f,(t) using Eq. (31) as

1t ew
—/ dze 79 “yh(z,t). (38)
-L

fu(t) = 27
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FIG. 2. The relationship between the FP-LLE quantity ¢ and
the electric field. (a) Soliton-shaped stationary solution of the
FP-LLE, Eq. (33), shown in a frame moving in the direction
of the forward field (the mirrors move in this frame) so that
the field 9 is stationary. (b) Forward-propagating field Fr in
the laboratory frame for t = 0 (see Eq. (27)). (c) Backward-
propagating field Fp(z,t) = Fr(—z,t) in the laboratory frame
for t = 0 (see Eq. (28)). The fields Fr (z,t) and Fg(z,t) obey
periodic boundary conditions in the interval —L < z < L.
(d, e) Fields Fr and Fp after propagation for half a round-
trip time. The soliton in the forward-propagating field has
entered the unphysical region —L < z < 0, and the soliton in
the backward-propagating field appears in the physical region
0 <z < L. (f) The quantity |Fr|> 4+ |F5|* corresponding
to panels (d) and (e), proportional to the intensity averaged
over fast temporal and spatial oscillations associated with the
optical frequency. (g) The physical intensity |E|?, calculated
from Eq. (14) and shown here at a particular time t;. Cavity
parameters have been chosen to facilitate depiction of the
standing wave and the soliton on the same scale.

Finally one obtains Fr(z,t) and Fg(z,t) by utilizing Egs.
(27) and (28). Fig. 2 depicts the behavior of a soliton
in the FP cavity as described by Eq. (33). The soliton
bounces back and forth in the physical region 0 < z < L
of the domain, with a period equal to the cavity roundtrip
time.

We conclude this section with two remarks. The first
starts from the final comment in the previous section,
that the problem with Egs. (11) and (12) lies in the pres-
ence of two retarded times. This problem has been solved
by introducing the field ¢(z,t) defined by Eq. (31),
which has made the formulation of the LLE for FP cav-
ity straightforward. We note that (z,t) is precisely the

field in terms of which the temporal/longitudinal LLE for
a ring cavity was formulated in Ref. [30] (where 9(z,1)
is indicated by X(z,t)).

The second remark is that the extension of Eqgs. (18)
and (19) in the interval —L < z < L has allowed us to
use periodic boundary conditions and therefore travel-
ing waves, which make calculations straightforward. Of
course, one can also use the FP boundary conditions in
the original interval 0 < z < L with standing waves, but
one arrives at the same results after calculations that are
several times longer.

IV. FLAT STATIONARY SOLUTIONS AND
THEIR STABILITY; A GENERAL CONNECTION
BETWEEN STATIONARY PATTERNS IN
FABRY-PEROT AND RING RESONATORS

A. Flat stationary solutions

By using Egs. (20) and (31) and the definitions of the
normalized variables 7 and 6 we can write

GO = 3 fulr)e, (39)

p=—00

and the quantities | f,(7)|? constitute the spectrum of the
field.

Let us first consider the flat (i.e. homogeneous) sta-
tionary solutions of the FP-LLE, Eq. (33); these are the
solutions that have no spatial dependence, and are ob-
tained by setting all derivatives to zero. This leads to
the stationary equation

F=[1+i(a—=3p)|vs, (40)
where 1, denotes a flat stationary solution and p = |1)4|?,
so that, assuming that F is real and positive for definite-
ness,

F? = [1+4 (a—3p)*] p. (41)

By solving this equation for p one obtains the function
p(a, F?). Considering this function for fixed values of
«, we obtain the stationary curve of p as a function of
F2. This curve is single-valued for o < v/3 and S-shaped
for @ > /3 (as for the ring cavity); in the latter case
it displays one stationary solution if p < p_(«) or p >
p+ (), and three stationary solutions for p in the interval
(p—(a),p4()). Here, pi are defined as the points at
which the derivative 9F?/dp vanishes:

20k vVar-3

. (42)

P+
These results are summarized in Figure 3: Fig. 3a shows
the stationary curve p for several values of «, and Fig. 3b
exhibits, in particular, the plots of F?(a) = F?(p4(a))
and F?(a) = F?(p_(«)) obtained from Egs. (41) and
(42) (see Ref. [25] for the ring cavity).



FIG. 3. Analytical curves depicting behavior of the FP-LLE.
(a) Stationary curves p of normalized transmitted intensity as
a function of normalized input intensity F? for the indicated
values of the cavity detuning parameter «. (b) Important
curves in the a — F? plane, as discussed in the text. Shown
in dashed red is the line obtained from Eq. (41) by setting
p = pinst(a), where pinst(a) = 1 for @« < 4 and for a > 4 is
given by the solution of the equation u—(p) = 0 with respect
to p, where p— is defined by Eq. (54). The dotted red curve
is the continuation of the curve obtained from Eq. (41) by
setting p = 1 for o > 4. Multiple real values of p exist in the
region bounded by the solid blue curves, which trace out the
local extrema values of the curves F?(p) as a function of a.
(¢) Analogous curves in the ring cavity. For direct comparison
we also plot the FP-cavity curves in thick light grey.

In the ring cavity case the factor 3 in Egs. (40) and
(41) is replaced with 1, and in Eq. (42) the denominator
is 3 instead of 9.

B. Linear stability analysis of the flat stationary
solutions

In correspondence with a flat stationary solution, the
modal coefficients f,, are

fus = ’(/156%0, (43)

To perform the linear stability analysis, we start from
the modal equations Eq. (30) linearized around a flat

stationary solution ¥g. If we set

fu(T):qu"'(sfu(T)a (44)

the linearized equations for f,(7) read

Dl - {1+ i0)o S — i

—i [40fup + 0f5 0% +20,0(8f5035 + 0 fop)] . (45)

Adf* . N . "
- R {(1 +ia)dfr, —ia0fr,

—i [A8f7 p + 0 fu2 + 20,0(5 507 + 5 fov)] } . (46)

A peculiar feature is represented by the terms with the
factor d,,0 which appear only in the equations for ¢ fo and
0 f§; these terms arise from the last term of Eq. (30) and
imply that the case p = 0 must be considered separately
from the case u # 0. This feature is not present in the
ring cavity.

If one considers Eqs. (45) and (46) for p = 0, their
detailed analysis leads to the usual conclusion: the flat
stationary solutions with BB—T < 0 are unstable. Conse-
quently, if three stationary solutions exist to the FP-LLE
at a point (o, F2) and they are ordered according to mag-
nitude, the middle solution is always unstable.

Next, let us focus on Eqgs. (45) and (46) for pu # 0. If

we set

5fu(T) =8 f,, OfF,(T)=€5f", (47

we obtain a system of linear homogenous equations for
f;, and 0 f, that leads to an eigenvalue equation for \:

N4+ 2)\+¢, =0, (48)
with
co=1+0a”+15p> = 8ap +2(4p — a)a, +al.  (49)
The solutions of Eq. (49) are
Ay = —1+V1—c,, (50)
so that the instability condition Re Ay > 0 reads
r>1, (51)
where T is the gain
I'=vV1-c,. (52)

Hence the flat stationary solution is unstable for ¢, < 0,
i.e. for

ar =a—4pt+/p> -1, (53)

or, using Eqgs. (25) and (34), the pump-referenced optical
mode numbers that bound the region of gain I' > 1 are

ap— < ay < ay+,

e = {% [(a—4p)i p2—1”1/27 (54)



where p and a, are treated as continuous variables. From
Eq. (54) we see that, if a« < 4, the boundary value of p
at which I' = 1 (indicating the onset of instability) is
p = 1, as in the ring cavity case (see e.g. Refs. [25],
[39]). Under these conditions the threshold value of p,
determined from p =1, is

e = [%(a - 4)] " (55)

From Eqs. (25), (34), (49), and (52) we can also obtain
the mode number (i.e. the value of u) for which the gain
is maximum, given by

s = |5t~ 49) " (56)

Figure 4a shows the curves pi4, p—, and fimqe as func-
tions of p for the fixed value of 8 = —0.02 and various val-
ues of a. From this figure, it is apparent that when oo > 4
(and B < 0, |8] < 1), instability exists above the value
of p at which p_(p) vanishes; this value depends on «
according to Eq. (54). Therefore, we denote by pinst()
the curve defined by p = 1 below a« =4 and u_(p) =0
above it, leading to pinst(@) = (4o — Va2 — 15)/15 for
o> 4.

The value of p;nst(c) is shown in Fig. 4b, together
with the functions py («) given by Eq. (42), which define
the limits of the upper and the lower branch of stationary
solutions. We also plot curves illustrating the stationary
solutions p(a, F'?) for three values of F?. A stationary
solution s (|1s]? = p) is unstable if it lies above the line
pinst (). Further, the solution is unstable if 9p/0F? < 0,
i.e. if it is the middle of three values of p(a, F?), regard-
less of its location relative to pnsi(c). Therefore, the
curve pinst(a) does not correspond to a stability bound-
ary when it intersects the middle branch of the station-
ary curve, because this curve is already unstable. This
is the case for intersections of the stationary curves with
pinst(@) when o > a7, where a7 & 3.17 is the value at
which p () = 1, given by (2a1 + /a? —3)/9 = 1 and
occurring at the intersection of the dashed red pj,st()
curve with the lower blue curve in Fig. 3b.

From an experimental standpoint, we are concerned
with identifying the values « at which the flat solution
becomes unstable and an extended pattern will be formed
as « is varied. From Figs. 3b and 4b we can see that,
if we increase the value of o from some negative initial
value (this corresponds to decreasing the laser frequency
from blue detuning), for F'2 > 1 the flat solution becomes
unstable when p = 1, while for F? < 1 it is always sta-
ble. On the other hand, if we decrease the value of «
from some large positive initial value (this corresponds
to increasing the laser frequency from red detuning), the
system will follow the lower branch, which is always sta-
ble, until this branch vanishes, whereupon a jump to the
unique and unstable (if 2 > 1) flat solution results in
the formation of an extended pattern. In the o — F?

4 P
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FIG. 4. Exploration of the flat solutions and their stability.
(a) Curves fimaz where the gain I' is greatest, for § = —0.02
and various values of «, with shading indicating the region
between p— and p4 where I' > 1. Of note is that the region
where I' > 1 does not extend to p = 1 for @ = 6. Regardless
of the value of 3, the curve pmqes for o = 4 passes through
the point (p = 1,0 = 0). (b) Plots of the Kerr-tilted inten-
sity resonance profiles p(a, F?) for three values of F? (thin
black): F? = 0.5 (smallest peak), 1 (middle peak), and 4
(largest peak). The thick orange dashed line shows pinst (),
and the thick blue solid lines indicate the values py(«) and
p—(a) that bound the region where multiple flat solutions ex-
ist. Resonance curves for F? > 1 are qualitatively similar to
the curve for F? = 4.

plane shown in Fig. 3b, the disappearance of the lower
branch (see Fig. 4b) corresponds to the upper blue line;
in Fig. 4b this disappearance corresponds to the inter-
section of the lower branch of the black curves with the
lower blue line.

In the case of the ring cavity the factor 4 must be
replaced with 2 in Egs. (53)-(56).

C. General connection between stationary patterns
of the LLE in the ring and FP geometries

Let us now focus on the stationary patterns, in which
1 depends on 6 but not on 7. Equation (33) reduces to

. B O? .
F=[1+ila—2{v*)] v+ S0 ilp*y,  (57)
which shows that a stationary pattern for the FP cavity
for the parameter « coincides with a stationary pattern

for the ring cavity when « is replaced with o/, given by
o =a—2(y*). (58)

Note that o’ depends on the shape of the pattern. One
caveat is that this connection does not formally extend
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FIG. 5. Soliton solutions to the FP-LLE. Analytical approx-
imations are shown by thin black curves (dotted, for spec-
tra); numerically calculated solutions are shown in thick color.
Here 8§ = —0.02 and the resonator FSR is 16.5 GHz. (a,
b) F? = 3, a = 4.37, time domain curves in (a) with inset
showing the deviation between analytic approximation and
numerical solution in the level of the c.w. background near
the pulse, optical spectrum in (b). (¢, d) F? =12, a = 8.68.

to the stability of stationary patterns, so to establish sta-
bility the analysis must be performed in each case sepa-
rately.

V. ANALYTICAL APPROXIMATION OF
SOLITONS

There are two fundamental types of stationary pat-
terns: Turing patterns and solitons. Turing patterns are
periodically modulated solutions with a number of max-
ima and minima throughout the domain, while solitons
are single-peaked. When the stationary curve is single-
valued, Turing patterns arise when the instability thresh-
old is crossed. Analytic approximations for these pat-
terns are possible near threshold [26, 27] or in the small
damping limit [40]. We focus our immediate attention on
analytic approximations for solitons, and discuss Turing
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patterns below. Because of the correspondence between
stationary patterns of the ring LLE and stationary pat-
terns of the FP-LLE, discussed in the previous section
and summarized by Eq. (58), we begin by recalling the
approximation to solitons for the ring LLE. Stationary
solutions to the ring LLE satisfy Eq. (33) without the
derivative with respect to time and without the integral
term. The expression [6]

2a
—p

approximates the stationary soliton solution to the ring
LLE, including a constant background corresponding to
the stable flat stationary solution in the lower branch of
the stationary curve. Here,

Vso1(0) = Vs + V2ae™e sech ( 9) (59)

$o = cos L (V/8a/F), (60)

and v, denotes the unique flat stationary solution when
a < /3 and the flat stationary solution in the lower
branch of the stationary curve when a > V3. The rele-
vant stationary equation is for the ring LLE, and is iden-
tical to Eq. (40) with 3 replaced with 1:

F=[+i(a—p)lis, (61)

where p = | Two important characteristics of the
function in Eq. (59) are worth noting, because they re-
main generally true for soliton solutions of the ring LLE
and the FP-LLE: The amplitude of the soliton increases
with increased detuning «, and the temporal width of
the soliton decreases as « is increased or [ is decreased.
We note that an approximation without the background,
which is an exact solution to the ring LLE with a partic-
ular form of a spatially-varying pumping term F2(#), is
presented in Ref. [23].

Let us now turn to the case of the FP cavity. On the
basis of the general connection between stationary pat-
terns in the ring and in the FP case and using Eq. (59),
we can write that the approximate analytic expression of
the soliton is:

2.

Psor(0) = 1., + V2’ e'? sech < 2_%9), (62)

where by integrating Eq. (62) and using Eq. (58) we
obtain an equation for o’:

2 2a
o =a—2p — Z\/—2a/Btanh <7T %)
T \/ =

8v/ ;ﬁpl —C;/ﬂ> . (63)

— = cos(¢/ — ¢.) tan”! tanh <7r
Here quantities have been primed to indicate that
they are defined according to the ring LLE at the point




(', F?) in the parameter space plane, thus:

F2=p (1+ (' =p")?), (64)
;L F

¢s - 1 4 i(O/ _ p,)7 (65)

¢’ = arg(y}) = tan" ' (p' — o), (66)

¢, = cos* %. (67)

In Fig. 5 we present plots of the analytical approxima-
tion to the soliton solution of the FP-LLE as described
by Egs. (62-67). For comparison, we also present nu-
merically calculated steady-state soliton solutions of the
FP-LLE. These simulations, and the numerical investiga-
tions of the FP-LLE presented in the following sections,
are performed using a fourth-order Runge-Kutta interac-
tion picture method [41] with an adaptive step size [42].

In addition to single solitons, the FP-LLE supports
ensembles of multiple co-propagating solitons as station-
ary solutions, with an analytical approximation to these
ensembles possible as

WYens. (9) = 7/};

+V2a/e' ; sech < 2_—62;(6‘ - 9]‘)). (68)

Such an ensemble may or may not be stable, depending
on the separation between the locations of the solitons
{6,} and the temporal width of the solitons determined
by o’ and 8. Each soliton in the ensemble contributes to
the average intensity <|1/)|2>, and so a different equation
for o/ must be derived by integrating Eq. (68) over the
domain.

VI. TURING PATTERNS

In this section we discuss the formation and behavior
of Turing patterns, with results summarized in Figure 6.
Turing patterns have great relevance for experiment be-
cause they can be generated with a blue-detuned pump
laser, avoiding thermal instability [38]. Moreover, they
are the first non-c.w. phenomenon generated in a de-
creasing scan of the pump-laser frequency across a cavity
resonance, a technique that has been used to explore Kerr
nonlinear optics and generate solitons in ring resonators.

As in the ring cavity, Turing patterns in the FP cavity
are generated spontaneously through the amplification of
vacuum fluctuations and other noise. This amplification
is caused by modulation instability of the flat solution
when its amplitude is above the instability threshold,
which as discussed above occurs when p > 1 if a < 4,
and when p is above the value determined by p_ () =0
otherwise. In the field quantity v of the FP-LLE, a Tur-
ing pattern consists of a periodically modulated wave-
form with multiple minima and maxima in |¢|? over the
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FIG. 6. Simulations of Turing patterns in the FP-LLE.

(a) Three Turing patterns, with 18, 17, and 16 rolls, all sta-
ble against perturbations at the point (a = 2.5, F2 = 6). The
Turing pattern with 17 rolls (middle, blue) arises most fre-
quently from vacuum fluctuations. (b) Plots of |Fr|* 4 |F|?
in the physical domain 0 < z < L at two different times for
the 17-roll Turing pattern plotted in (a), demonstrating how
a stationary solution of the FP-LLE relates to a time-varying
intensity pattern. (c) Optical spectrum of the 17-roll Turing
pattern from (a) and (b), assuming a cavity with 16.5 GHz
FSR. (d) Summary of multi-stabilility of Turing patterns as
revealed by simulations for F? = 6. Data points indicate
Turing patterns that can be excited from appropriate initial
conditions. Data points enclosed by a circle indicate Turing
patterns stable against perturbations, and blue (gray) data
points indicate Turing patterns that arise from vacuum fluc-
tuations.

domain of length 2L. Corresponding to the n-fold de-
creased period (relative to the round-trip time) of an
n-roll Turing patterns modulated waveform in the time-
domain, the optical spectrum of a Turing pattern con-
sists of modes spaced by n resonator FSR. Fig. 6a shows
plots of |1)|? for several Turing patterns that are stable at
the point (o = 2.5, F2 = 6), and Fig. 6b shows plots of
the representative physical quantity |Fr|? + |Fg|?, which



is proportional to the intensity in the resonator averaged
over fast temporal and spatial oscillations associated with
the optical frequency, for one of these. A difference be-
tween Turing patterns in ring resonators and Turing pat-
terns in Fabry-Perot resonators is that the intensity pro-
file is constant, up to rotation at the group velocity, in
the ring resonator. In the Fabry-Perot resonator, how-
ever, the intensity profile evolves with time in a more
complex way due to the summation of the intensities of
counter-propagating waves; this phenomenon is demon-
strated by the two intensity profiles depicted in Fig. 6b.
Fig. 6¢ shows an optical spectrum corresponding to this
Turing pattern, assuming a cavity FSR of 16.5 GHz.

The multiplicity (or number of rolls) n of a Turing
pattern excited from broadband noise is determined by
the spectrum of the modulation instability gain and the
presence of noise to seed the formation of the pattern,

1/2
and is close to the number 4. = [%(a — 4p) / de-
scribed above. This process is not deterministic, but from
broadband noise the distribution of roll numbers is very
narrow—running 1000 trials of Turing pattern genera-
tion from white noise at the point a ~ 2.75 and F? =6
yielded 997 Turing patterns with 17 rolls, one Turing
pattern with 16 rolls, and two Turing patterns with 18
rolls.

Despite the narrow distribution of Turing pattern mul-
tiplicity n generated from broadband noise, multiple Tur-
ing patterns with different n values can exist stably at the
same point in the a — F? plane. As p increases due to
increased pump-laser power or wavelength, the range of
stable n values increases in accordance with the increase
in the difference py — u— (see Eq. (54)). In Fig. 6d
we plot, for F? = 6 and for various values of «, the
multiplicity n of Turing patterns we have generated in
simulations.

VII. NONSTATIONARY SOLUTIONS OF THE
FP-LLE

The stationary solutions of the FP-LLE are the flat so-
lutions, solitons and soliton ensembles, and Turing pat-
terns. Besides these, the FP-LLE exhibits the same non-
stationary solutions as the LLE for the ring cavity: spa-
tiotemporal chaos and breather solitons. These solutions
can be investigated numerically, and some results of these
investigations are shown in Figure 7. Spatiotemporal
chaos consists of many fluctuating and colliding pulses
that fill the cavity. Generally, chaos lies in a region of
the o — F? plane that is reached by increasing a or F?
from a point where Turing patterns exist [25], provided
F? is above some critical threshold, and the fluctuations
of the chaos become more severe as the pump power F? is
increased. The transition from Turing patterns to chaos
is not well defined, but begins with a kind of period-
doubling of the Turing pattern in the time-domain in
which the amplitudes of the Turing pattern rolls begin
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FIG. 7. Numerical investigations of nonstationary solutions
to the FP-LLE. (a) Maximum and minumum amplitudes of
an oscillating breather soliton at the point (o = 5.6, F? = 8)
for B = —0.02. (b) A snapshot of the time-varying, ape-
riodic intensity profile of spatiotemporal chaos at the point
(a = 53, F? = 8) for 8 = —0.02. (c) Time-averaged op-
tical spectrum of spatiotemporal chaos under the conditions
given in (b) for a cavity with 16.5 GHz FSR. (d) Top: A
histogram of local maxima values of spatiotemporal chaos for
the FP LLE at the point (a = 5.3, F? = 8), 8 = —0.02 (blue,
behind), and at the corresponding point (o = 1.1, F? = 8)
for the ring LLE (orange, in front), recorded over simulations
with the same duration. Bottom: Fractional difference be-
tween the two histograms.

to oscillate, with adjacent rolls oscillating out of phase.
Following this, pulses begin to exhibit lateral motion and
collisions, and the number of maxima and minima in the
cavity then varies [43]. Breather solitons are pulses whose
amplitudes oscillate periodically, and they are found near
the lower bound in « of the region where solitons can ex-
ist (discussed extensively below). The properties of these
phenomena are similar to their ring LLE counterparts.
An interesting question is whether the dynamics of spa-
tiotemporal chaos under the FP-LLE differ significantly
from the dynamics under the ring LLE as a result of the



fluctuations in the value of o/ = a — 2(|¢)|?) attendant
to the fluctuations in the average intensity (|¢)[?). As a
preliminary investigation, we perform simulations of spa-
tiotemporal chaos under the FP-LLE at the point (o =
5.3, F? = 8), and then perform simulations under the

ring LLE at the point (o/ = a — 2(|¢|?) = 1.1, F? = 8),
where g denotes time-averaging. The histogram of the
height of local maxima in |¢|? shown in Fig. 7d suggests
little difference in the behavior of chaos between the two
equations, but more extensive investigations could yield
more interesting results.

VIII. PRACTICAL IMPLICATIONS OF THE

NONLINEAR INTEGRAL TERM

In this section we discuss implications of the differ-
ences between the FP-LLE and the ring LLE—mamely,
the additional nonlinear integral term representing mod-
ulation by twice the average intensity—for the types of
experiments that have been conducted in Kerr ring res-
onators. Many of the promising potential applications
of c.w.-pumped Kerr ring and FP resonators rely on the
generation of single solitons, so we focus here on two
issues: the effect of the nonlinear integral term on the
existence range of single solitons, and its effect on the
experimental generation of single solitons via scans of
the pump-laser frequency. These results are summarized
in Fig. 8.

A. Existence range of single solitons

An important consequence of the additional nonlin-
car term 2iv (|¢|?) in the FP-LLE is that the range of
parameters over which single solitons exist acquires a de-
pendence on the dispersion parameter 3, through the ef-
fect of dispersion on pulse energy. This is in contrast to
the situation for the ring LLE, where the existence range
is independent of 5. For the FP-LLE the existence range
also depends on the number of co-propagating pulses
and can be greatly extended in the case of many co-
propagating solitons. We will not focus on this case here.

As is well-known for the ring LLE, solitons can exist
only with a red-detuned pump laser o > 0 so that the
phase rotation coming from the detuning term « in the
LLE can be balanced by the phase shift from the nonlin-
ear terms. The minimum value of detuning « at which
solitons exist as a function of F? is determined by the ex-
istence of a stable flat solution to the LLE that can form
the c.w. background for the soliton. The maximum value
of detuning for which solitons can exist is determined
by o/ = a —2(|¢[*) according to al, ., (F?) = 72F?/8,
which approximately gives the maximum detuning for
solitons in the ring LLE [6].

For the FP-LLE, a stable flat solution exists to the
right of the line F?(«) in the o — F? plane that bounds
from above the region of multiple flat solutions, shown by
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FIG. 8. Effects of nonlinear integral term in the FP-LLE,
Eq. (33). (a) Approximate existence bounds of single soli-
tons in the zero-dispersion limit (green, furthest left) and for
B = —0.001 (blue, second from left), 5 = —0.02 (purple,
third), and 8 = —0.3 (red, furthest right), calculated using
the analytical approximation to the single soliton. (b) Com-
parisons between the approximate existence bounds and the
bounds as determined numerically. Solid points indicate the
maximum and minimum values of F? at which solitons have
been simulated for a given value of a. Values for the disper-
sion parameters are as shown in (a): 8 = —0.001 (blue, top),
B = —0.02 (purple, middle), and S = —0.3 (red, bottom). (c)
Simulated spatiotemporal chaos (blue, extended pattern) and
single soliton solution (purple, localized near 6 = 0), either
of which can exist at the point (o = 8, F? = 8). The ampli-
tude of the soliton is larger than the characteristic amplitude
of the features in the chaos because the effective detuning o’
is larger for the soliton. (d) Analytical and numerical soli-
ton existence limits (purple) for 5 = —0.02 from panel (a)
and the upper bound in « for the existence of spatiotemporal
chaos/Turing patterns (black with error bars), estimated as
described in the text.

the upper blue line in Fig. 3b. Explicitly (see Eqs. (41)
and (42) and the accompanying discussion), this curve in



the a — F? plane is given by
F2(a) = F? (p—(a),a), (69)
F2(p,) = p (14 (a—3p)*), (70)

p_(a) = (2a —Var - 3) /9, (71)

so that the minimum detuning for solitons au,in(F?)
in the limit 8 — 0~ (leading to zero soliton energy)
is determined by inverting Eqs. (69)-(71) to solve for
a as a function of F2. In the same limit of zero soli-
ton energy, the maximum value of detuning for the FP-
LLE at fixed F? is approximately oz (F?) = ol on +
20 in (Vnae (F?), F?), where p) ;. (o/, F?) is the small-
est solution to F? = p' [1+ (o/ —p/)?] (here, as be-
fore, primed values are solutions of the appropriate equa-
tions for the ring LLE). These boundaries are plotted in
Fig. 8a.

For finite dispersion and soliton energy, numerical sim-
ulations show that the curves bounding the region of
soliton existence are shifted as the energy of the soliton
changes with dispersion. An intuitive way to understand
the shift of the left boundary cu,;, is to note that the
introduction of a soliton with finite energy onto a stable
flat solution near and just right of the boundary c,in
leads to a decrease in the effective detuning a.yr under
which the flat solution evolves (due to the nonlinear in-
tegral term), and if this decrease is large enough it can
lead to instability.

A preliminary approximation to the dispersion-
dependent boundary curves can be obtained using the
analytical approximation to the soliton solution given by
Egs. (62-67). For fixed 8 and F?, we calculate the values
of v at which the background p’ of the soliton (given by
Eq. (64)) is the same as the background along the zero-
dispersion boundary curves; that is, for the dispersion-
shifted left boundary we use the requirement p’ = p_,
and for the dispersion-shifted right boundary we use the
requirement p’ = p! . (al . (F?), F?). We compare the
resulting curves with a numerical determination of the
boundary curves for three finite values of dispersion; the
results are plotted in Figs. 8a and b. The analytical ap-
proximation is accurate for low F2? and small dispersion,
but becomes less accurate as these quantities increase.
This is because breather solitons are found near «,,;, for
larger values of F'?. Breather solitons are accompanied
by traveling waves that propagate away from the soliton
and diminish in amplitude as they do so, and their range
increases with the dispersion. For larger values of dis-
persion these waves fill the cavity, and in this case the
flat background whose stability forms the basis for ap-
proximating the dispersion-dependent boundary curves
is actually not present.

The lines ain (F?) and aynq.(F?) intersect at F? =
F? ~ 1.87. Below this value of the pump power solitons
do not exist for the FP-LLE, and this can be seen as
follows: The value of pl, ., describing the amplitude of
the soliton background along the line of maximum de-
tuning /. for the ring LLE is in general also a flat
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solution p of the FP-LLE at the corresponding point
Umaz = Upaw + 200 (a0 F2); this is due to the
general correspondence between stationary patterns dis-
cussed in Sec. IVc. However, when F? < F12 ~ 1.87,
the flat solution p/,;, to the ring LLE is not the small-
est flat solution to the FP-LLE; instead, it is the mid-
dle of three, and is therefore unstable. Therefore, when
F? < F? the line aya.(F?) as defined above does not
represent the right boundary of soliton existence for the
FP-LLE. In fact, below this point, for all values of «
where a stable flat solution to the FP-LLE p,,;, exists,
@ = 2pmin(o, F?) > ol .., preventing the existence of
solitons.

B. Generation of single solitons through laser
frequency scans

A second important consequence of the additional non-
linear term is an increase in the range of a values, for a
given value of F'2, at which the state of 1) can be either an
extended pattern (spatiotemporal chaos or Turing pat-
tern) or a soliton/soliton ensemble. This is because the
extended patterns fill the domain and, because of their
higher average intensity, experience a greater nonlinear
shift than lower duty-cycle single solitons or soliton en-
sembles due to the nonlinear integral term. In Fig. 8c
we plot simulations of spatiotemporal chaos and a sin-
gle soliton, both of which can be obtained at the point
(a = 8,F? = 8), along with a stable flat solution, de-
pending on the initial conditions.

A practical consideration is the impact of the nonlinear
integral term on the generation of single solitons via the
well-established method of scanning the laser across the
pumped resonance with decreasing frequency (increasing
a)[6]. Because this method relies on the excitation of an
extended pattern (chaos or Turing pattern) to provide
initial conditions out of which solitons condense as « is
increased, it is important that the maximum detuning
(the value of a where o/ = o/, = 72F?/8) for single
solitons is larger than the o value at which an extended
pattern will transition to a soliton ensemble. Otherwise,
the generation of single solitons using this method will
be difficult or impossible. To investigate this, we numer-
ically perform slow scans across the resonance to identify
where the transition from extended patterns to indepen-
dent solitons occurs. These scans are conducted slowly
to approximate adiabaticity: da/dr = 2.5 x 1074, We
perform 10 scans across the resonance at each integer
value of F? from 3 to 12 with 8 = —0.02, and we iden-
tify the transition from extended pattern to independent
solitons by inspection of several quantities as « is varied:
the set of local maxima and minima of || (see [43]),
the distance between local maxima, and the number of
local maxima above [)|> = 1. In Fig. 8d we plot the
line representing the upper boundary in « of extended
patterns obtained in the scans across the resonance. Er-
ror bars represent the standard deviation of the values a



at which the transition is observed, with this spread in
the values arising due to the chaotic fluctuations in the
total intracavity power and therefore also in the size of
the nonlinear integral term. These results indicate that
the region over which single solitons exist and extended
patterns do not is narrow for small pump powers F?,
and widens as F? is increased. Without performing ex-
periments, it is impossible to precisely quantify the lim-
itations imposed by this observation, but we expect this
finding to be useful in refining schemes for single-soliton
generation. These challenges associated with the neces-
sary transition from high duty-cycle extended patterns to
low duty-cycle solitons are alleviated by pulsed pumping,
as demonstrated in Ref. [34].

For completeness, we note that after the transition to
solitons, we observe in a small number of scans the on-
set of harmonic modelocking, by which we mean a slow
(i.e. over hundreds or thousands of photon lifetimes) con-
vergence of the soliton ensemble to uniform spacing. Be-
cause harmonic modelocking eliminates soliton collisions,
which are the mechanism by which single solitons can
be obtained from a multi-soliton ensemble, it is unclear
whether single solitons can be generated under these con-
ditions. Harmonic modelocking is clearly observed for all
the scans for F? = 3, four of the scans for F'? = 7, and
one scan for F2 = 9. While we have not investigated
the phenomenon in depth, we speculate that harmonic
modelocking occurs when a soliton ensemble exhibits a
suitable initial distribution and an appropriate density of
solitons, which is related to the pulse width and therefore
to a and f3.

IX. CONCLUSIONS

In this article we have presented the analogue of the
spatiotemporal Lugiato-Lefever equation applicable to
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a Fabry-Perot cavity with the Kerr nonlinearity. This
equation is derived from the appropriate Maxwell-Bloch
equations and allows determination of the forward- and
backward-propagating field components in the cavity.
We have presented this equation using notation that is
standard in the field of microresonator-based frequency
combs and that makes clear the important difference be-
tween the two geometries, which is the existence of an
additional nonlinear integral term representing modula-
tion by twice the average intensity. This term leads to
subtle but important differences in the dynamics and the
stationary states exhibited in the two geometries. We
expect that our preliminary investigation of these differ-
ences will facilitate future experiments using the Fabry-
Perot geometry.

Importantly, the states that are stationary for the ring
LLE (solitons and Turing patterns) are also stationary
for the FP-LLE, up to a shift in the cavity detuning pa-
rameter . As discussed in Sec. VIII, this shift has im-
plications for experimental generation of cavity solitons.
Besides this, we have described our observations in simu-
lation of multi-stability of Turing patterns under the FP-
LLE, and also investigated the nonstationary solutions,
spatiotemporal chaos and breather solitons. These states
appear similar to their counterparts under the ring LLE,
but further investigation of their properties may reveal
interesting differences due to the fact that these states
evolve with a fluctuating effective detuning parameter
o

The Fabry-Perot geometry represents an exciting new
direction for frequency comb generation in passive Kerr
resonators, as indicated also by the work of Obrzud et
al. [34]. This geometry presents a different set of cav-
ity properties (e.g. wavelength-dependent mirror-coating
reflectivity and group-delay dispersion) that can be ma-
nipulated to control the properties of the frequency comb,
and thus has the potential to expand the range of appli-
cations available to this emerging technology.
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