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We study numerically the evolution of ultrashort pulses in passive, uniform, photonic crystal fibers
designed such that their nonlinear Kerr coefficient «y varies considerably with wavelength. Such fibers
exhibit a zero-nonlinearity wavelength in addition to the zero-dispersion wavelength. We show that
soliton evolution is affected considerably by the relative locations of the zero-nonlinearity and zero-
dispersion wavelengths with respect to the input wavelength. Among the new features observed
numerically are: the enhancement or suppression of the Raman-induced red-shift of fundamental
solitons, amplification or suppression of a dispersive wave shed by the soliton, and the splitting of a
fundamental soliton into two co-propagating solitons through a dispersive wave that forms a soliton
in the normal-dispersion region because of a negative value of 7 in this region.

PACS numbers: 42.81.Dp, 42.65.Ky, 42.65.-k

I. INTRODUCTION

It is well known that short optical pulse can propagate
as solitons inside a nonlinear dispersive medium such as
an optical fiber [1]. Fission of higher-order solitons into
multiple fundamental (first-order, N = 1) solitons has
been found useful for supercontinuum generation in op-
tical fibers [2-4]. However, fundamental solitons them-
selves are resistant to fission or any kind of splitting [1, 5].
Generally, splitting of a fundamental soliton is only pos-
sible if the fiber is tapered [6-8] or is doped and pumped
to provide amplification [9-12]. Both of these methods
rely on increasing the soliton order to beyond N = 1.5
so that a second-order soliton is formed that splits into
two fundamental solitons.

In this article we study numerically the evolution of
ultrashort pulses in passive, uniform, photonic crystal
fibers (PCFs) designed such that their nonlinear Kerr
coefficient v varies considerably with wavelength. This
kind of strong frequency-dependence of the nonlinearity
as well as negative nonlinearity [y(w) < 0] have been
demonstrated in fibers doped with silver nanoparticles
[13, 14]. Indeed, in such fibers y(w) vanishes at a spe-
cific wavelength, called the zero-nonlinearity wavelength
(ZNW), and changes its sign beyond that. A negative
value of v gives rise to nonlinear phenomena not com-
monly observed in conventional fibers. As an example,
optical solitons can form even when a pulse experiences
normal group-velocity dispersion (GVD). Here we study
the evolution of fundamental solitons in PCFs exhibit-
ing a ZNW in addition to the zero-dispersion wavelength
(ZDW) and show that soliton dynamics are affected con-
siderably by the relative locations of the ZNW and ZDW
with respect to the input wavelength. In conventional
PCFs with positive v at all wavelengths, the ZDW sep-
arates a solitonic region from a non-solitonic one. As a
result, any dispersive wave (DW) emitted by a soliton
continues to disperse after crossing the ZDW boundary.
The situation is different when the PCF has a ZNW close
to the ZDW. In that case, the DW can form a soliton

after crossing the ZDW boundary. The net effect is that
energy of a single fundamental soliton appears to split
into two parts propagating as solitons in different spec-
tral regions. This process is different from soliton fission
and bears resemblance to cellular mitosis in biology.

The paper is organized as follows. In Section 2 we in-
troduce the propagation equation used for studying the
soliton evolution and provide details of the numerical pro-
cedure used for this purpose. Section 3 shows how the
frequency dependence of v can enhance the spectral red-
shift of solitons and suppress transfer of energy from it
to a DW. Section 4 focuses on the dramatic changes in
the soliton dynamics when the PCF has its ZDW and
ZLW relatively close to the input wavelength. Splitting
of a fundamental soliton into two solitons through a DW
is studied in Section 5. The main conclusions are sum-
marized in Section 6.

II. NUMERICAL MODEL

The propagation of short optical pulses is modeled well
by the generalized nonlinear Schrodinger equation used
commonly for simulating supercontinuum generation [1].
We convert this equation to the spectral domain and
write it in the form
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where A(z,w) is the Fourier transform of the pulse en-
velope and F denotes the Fourier-transform operation.
Also, hg is the Raman response function of silica with
fr = 0.18 [1]. The frequency dependence of the nonlinear
parameter is taken into account using

(W) =7 + 1w —wo), (2)
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FIG. 1. ~; versus the ZNW for our PCFs (solid black line).
The black vertical dashed line indicates the ZDW and the
red vertical dashed line shows the pump wavelength. The red
dot marks the point at which ZNW and ZDW coincide. The
light gray areas indicate the solitonic region (SR) and the
non-solitonic region (NSR) is shown in dark gray. The letters
N and A refer to normal and anomalous GVD, respectively.

where 71 = dvy/dw is evaluated at the pump frequency
wp. We assume v, to be negative and vary it from 0
to —0.8 fs-m~1/W. We assume that the Raman contri-
bution is not affected by the mechanism used to mod-
ify the Kerr nonlinearity. The other parameters of the
PCF are identical to those used in Ref. [15]. In par-
ticular 79 = 0.11 W~!/m. The nonlinear parameter
v is inherently frequency-dependent in all optical fibers
due to its dependence on the effective mode area Aqg
(v = wona/[cAct(w)]), and the dependence is character-
ized by the so-called shock time scale Tghock = 1/wp such
that y(w) = v(wo) + (w — wp)/wo [1]. This frequency-
dependence leads to the well-known effects of soliton fis-
sion and self-steepening. The dependence of vy on the ef-
fective mode area can be used to tailor the the frequency-
dependence of v to a certain extent through careful en-
gineering of the fiber refractive index profile. In prac-
tice this can mean novel photonic crystal fibers [3] or
tapered fibers [16]. However, the effective area is not
the only frequency-dependent quantity in the expres-
sion for . The nonlinear refractive index mo, though
weakly frequency-dependent for silica, can be strongly
frequency-dependent for other materials. Hollow-core
photonic crystal fibers offer a platform to utilize dif-
ferent gases for the fiber core material [17] and even
a pressure gradient along the fiber [18], hence signifi-
cantly changing the nonlinear properties of the fiber com-
pared to silica. The most drastic changes, such as neg-
ative values of =, can be induced by doping the fiber
with metal nanoparticles, which is how the fibers studied
here could be manufactured in practice [13, 14]. Such
strong frequency-dependence is mathematically similar
to the ordinary silica fiber nonlinearity that is respon-
sible for self-steepening and optical shock effects, but it
will demonstrated here that altering the magnitude of
the frequency-dependence (the value of 7 in Eq. 2) will
cause significant changes in the propagation dynamics of
ultrashort pulses.

When ~; < 0, the Kerr nonlinearity vanishes at a spe-
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FIG. 2. Spectral evolutions of the 10 fs fundamental soliton
inside a 50-cm-long PCF for 1 = 0 (a) and v1 = —0.225
fs- m™'/W (b). The black dashed lines show the ZDW. The
bars above the plots indicate the solitonic (lighter gray) and
nonsolitonic (darker gray) regions.

cific frequency w = wy — yo/v1; ZNW is the wavelength
corresponding to this frequency. The relation between
~v1 and ZNW is shown in Fig. 1, where the vertical black
line shows the location of the PCF’s ZDW and the dashed
red line shows the pump wavelength of 835 nm. Solitons
can exists at wavelengths for which v(w) and 83 (w) have
opposite signs. The wavelengths for which this condi-
tion is met are referred to as the solitonic region (SR);
other wavelengths then belong to the non-solitonic region
(NSR). Depending on the value of ~1, the SR mights be
disjoint and parts of the SR may have normal dispersion,
as seen in Fig. 1.

To study pulse propagation in fibers with frequency-
dependent nonlinearity, we solve Eq. (1) numerically us-
ing the fourth-order Runge—Kutta method. The 50 cm
long PCF has its ZDW is at 780 nm. The input pulse at a
wavelength of 835 nm with A(0,t) = /Py sech(t/Tp) has
a full width at half maximum of 10 fs. The peak power
of the input pulse, Py = 3.48 kW, is chosen such that the
soliton order is N = Ty+/70FPo/|B2| = 1 at the input end
of the fiber. Contrary to a prevalent misconception, the
GNLSE does not assume a slowly-varying pulse envelope
and is accurate down to the single-cycle regime far from
material resonance frequencies [3, 19].

III. INTRAPULSE RAMAN SCATTERING

It is well known that the spectrum of short solitons
shifts to the red side because of intrapulse Raman scat-
tering [1], a phenomenon referred to as the soliton self-
frequency shift (SSFS). For positive values of the non-
linearity slope 1, this shift becomes smaller, resulting
in the suppression of SSFS [20]. Since 7, is negative in
our simulations, the nonlinear effects become enhanced
as the soliton’s spectrum is red-shifted. This leads to a
variety of interesting effects, depending on the value of
7-

As an example, Fig. 2 compares the spectral evolutions
of a 10 fs soliton inside two PCFs with v; = 0 and —0.225
fsm~!/W. The v; = 0 case shown in part (a) displays
typical soliton dynamics. One sees the formation of a DW
near 680 nm within the first few centimeters, followed by
a continuous shift of the soliton spectrum toward the



red side, with some pump energy left at the input wave-
length. This scenario is modified considerably in part
(b) where 71 < 0. The soliton’s red shift is enhanced
considerably. But, most remarkably, the DW is almost
completely suppressed. The most likely explanation for
the DW suppression is that the soliton moves out of the
phase-matching spectral region so quickly that little en-
ergy can be transferred to the DW. The SSFS enhance-
ment and DW suppression certainly appear to be con-
nected. In fact, the specific value y; = —0.225 fs-m /W
was chosen because it leads to both the largest red shift
and the least intense DW. Furthermore, for v; = —0.225
fs-m™! /W the DW frequencies are very close to the ZNW
meaning that these frequencies experience smaller non-
linear effects which might hinder power transfer to them.

IV. AMPLIFICATION OF DISPERSIVE WAVES

The pulse evolution becomes drastically different when
v1 has values between —0.325 and —0.375 fs-m~1/W.
Figure 3 shows the temporal and spectral evolutions for
three different fibers having v; = —0.325 (top row),
—0.35 (middle row) and —0.375 fs-m~! /W (bottom row).
The spectrograms at the output of the fiber in each case
are shown is the last column. For 7; = —0.325 fs-m~!/W
(top row), a DW is formed within the first few centime-
ters, once the phase-matching condition is fulfilled, and
it is located in the N-SR region. This DW is trapped by
the soliton and both decelerate together, as also evident
in the spectrogram. The constant blue shift of the DW is
the result of its deceleration in the normal-GVD regime
so that its speed matches with that of the soliton. No-
tice that the DW also gains energy from the soliton as it
propagates down the fiber.

The preceding scenario changes considerably for v, =
—0.35 fss-m /W (middle row in Fig. 3). During the first
half of the PCF length, we observe the red-shift of the
soliton and the blue-shift of the DW, similar to the top
row. However, in the second half of the PCF the red shift
of the soliton turns into a blue shift. The DW is still
trapped and it red shifts its spectrum, but the two move
closer in time. Moreover, the intensity of the DW be-
comes considerably larger, and it becomes even more in-
tense than the soliton after 30 cm of propagation. These
features are a manifestation of several different effects
acting together. First, it is known that self-steepening
can amplify a DW [21]. Second, energy can be trans-
ferred from the soliton to the DW through temporal re-
flections [22], which are especially evident around 25 cm
of propagation in the middle row of Fig. 3). Third, the
more the soliton red shifts, the larger the value of v it
experiences. This means that the soliton must decrease
its width, or peak power, or both to maintain N = 1,
which can force the soliton to shed off some of its energy
in the form of a DW. This only happens for strongly
frequency-dependent nonlinearity for which the change
in v at the soliton’s central frequency is too rapid for the

soliton to adjust to adiabatically.

The last row of Fig. 3) shows what happens when ~;
is made even more negative by choosing v; = —0.375
fsm~!/W. Both the amplification of the DW and the
blue shift of the soliton after 20 cm become stronger to
the extent that their spectra appear to merge together
at the PCF output. For this value of 7;, a considerable
part of soliton’s energy is transferred to the DW such
that its spectrum becomes narrower and is blue-shifted
as the DW becomes more intense. Indeed, the DW now
consists of two different frequency bands separated by
the ZNW, as seen in spectrogram. This further indicates
that energy transfer from the soliton to frequencies where
the nonlinear parameter -y is close to zero is not efficient
even when the phase matching condition is fulfilled. The
vast majority of the DW energy is still on the blue side of
the ZNW. The temporal evolution on the left shows that
the soliton has returned to its original position and is
considerably wider because of its energy loss. Although
the DW has more energy, this energy is spread out over
a much wider temporal window compared to the soliton.
These features are also evident in the spectrogram where
we also see a second DW emitted by the soliton on the
red side.

V. FORMATION OF TWO SOLITONS

We have seen in Fig. 3) how a fundamental soliton
emits a DW and subsequently amplifies for negative val-
ues of v, near y; = —0.35 fssm~'/W. The question we
ask is whether this amplified DW can form a second soli-
ton if 7; is made even more negative. The DW needs
to be in the solitonic region of the spectrum where both
~v and B2 have opposite signs. The size of the solitonic
spectral region can be increased by making the v; even
smaller (larger in magnitude). In this case, the input
soliton can transfer a large portion of its energy to new
frequencies in the solitonic region on the blue side of both
the ZDW and the ZNW. Figure 4 compares the tempo-
ral and spectral evolutions of the 10 fs input pulse for
1 = —0.6 (top row), and —0.7 (bottom row) fs-m=1/W.
The spectrograms at the output of the fiber are shown in
the right column. For both values of ~1, the input spec-
trum lies on both sides of the ZNW and the ZDW, and
the splitting of the initial pulse leads to two solitons and
multiple dispersive waves. For 41 = —0.6 fs-m~!/W (top
row) one of the solitons is in the anomalous-GVD regime,
and the other one is in the normal-GVD region. However,
it is noteworthy, and even counterintuitive, that when the
ZDW and ZNW coincide (bottom row of Fig. 4), both
solitons at the fiber output are on the same side of the
ZNW where the GVD is anomalous.

The reason for the differences in the spectra of the two
forming solitons in the two cases shown in Fig. 4 has to do
with the temporal dynamics of the solitons. In the tem-
poral trace for y; = —0.7 fs-m~! /W, the two solitons pass
through one another during their first collision, whereas
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FIG. 3. Temporal (left) and spectral (middle) evolutions of a 10-fs soliton inside a 50-cm-long PCF for 7; = —0.325 (upper
row), —0.35 (middle row) and —0.375 (lower row) fs-m™'/W. The normalization is with respect to the input peak power that
corresponds to 0 dB. Spectrograms at the PCF output are shown in right column for each case. Solid and dashed black lines
mark the ZNW and the ZDW, respectively. Note the smaller wavelength range in the last spectrogram. The side bars in the
spectrograms indicate the solitonic (lighter gray) and nonsolitonic (darker gray) regions.
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FIG. 4. Temporal (first column), and spectral (second column) evolutions of the fundamental soliton inside a 50-cm-long PCF
for v1 = —0.6 (upper row), and —0.7 (lower row) fs-m~' /W (the last chosen such that the ZNW coincides with the ZDW). The
input peak power corresponds to 0 dB. The spectrograms at the PCF output are shown in third column for each case. Solid
and dashed lines represent the ZNW and the ZDW, respectively. Note that the dispersive waves around 600 nm and 1100 nm

have been delayed by 7 ps and hence are not visible in the spectrogram.

for y1 = fs-m ™! /W the solitons interact and collide mul-
tiple times before one of the solitons gains most of the
power and breaks free. The outcomes of such solitonic in-
teractions can be very different depending on the relative
phases of the solitons [23], and this phase sensitivity can
explain some of the differences seen in the two cases in
Fig. 4. In-phase collisions lead to narrow high-intensity
pulses and the associated spectral broadening. A DW
is emitted during each collision and more intense DWs
lead to higher spectral recoil which can push the solitons
in the opposite direction in the spectrum [24, 25]. An
intense DW on the red side then means that the soliton
gets pushed towards the blue.

Decreasing v, below —0.7 fs/W/m brings the ZNW
to the red side of the ZDW and brings it closer to the
pump. The top row in Fig. 5, shows the temporal and

spectral evolutions for a PCF with 3 = —0.8 fs/W/m.
The non-solitonic region between the ZNW and the ZDW
is now 7 nm wide. The bottom row shows the same
case without including the the Raman contribution. This
helps in isolating the role of the Raman effects.

Similar to Fig. 4, the soliton splits into two temporally
separated pulses of different group velocities. The inset in
Fig. 5 shows how the solitons separate from one another
right at the input. The spectra of the individual pulses
remain almost unchanged after the initial transient evo-
lution, and changes in the spectrum with distance are a
manifestation of the increasing temporal separation be-
tween the solitons and the corresponding DWs. When
the Raman effect is off (lower row of Fig. 5) the DWs
between the solitons disappear, but other than that and
a slight change in the solitons’ group velocities, the cases
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FIG. 5. Temporal (left) and spectral (middle) evolutions of a 10-fs soliton inside a 50-cm-long PCF for y1 = —0.8 fs-m™'/W.
The input peak power corresponds to 0 dB. The spectrogram at the PCF output is shown in the third column. The Raman
contribution is turned off for the case shown in the bottom row. The ZNW and the ZDW are separated by ~ 7 nm in this case

and the dashed line now represents this 7 nm window.

with and without Raman look quite similar. In a conven-
tional fiber, SSF'S bends the solitons’ trajectories, which
straighten if the Raman effect is turned off. Here, the
trajectories are straight lines whether or not Raman is
included, which indicates that the frequency-dependence
of the nonlinearity has suppressed the SSFS almost com-
pletely.

VI. CONCLUSIONS

We have studied numerically the evolution of ultra-
short optical pulses in passive, uniform, PCFs designed
such that their nonlinear Kerr coefficient -y varies con-
siderably with wavelength. In particular, we focused on
the case in which ~ decreases linearly with increasing fre-
quency such that the Kerr nonlinearity changed its na-
ture from self-focusing to self-defocusing beyond a certain
frequency. Such fibers exhibit a zero-nonlinearity wave-
length in addition to the zero-dispersion wavelength. We
found that soliton evolution is affected considerably by
the relative locations of the zero-nonlinearity and zero-
dispersion wavelengths with respect to the input wave-
length.

Our numerical results include both the Kerr and Ra-
man nonlinearities together with self-steepening because
of the femtosecond nature of the input pulse. We also
include a realistic dispersion profile for the PCF. As a
result, the spectrum of a fundamental soliton shifts to the
red side through SSFS, as the soliton also sheds some en-
ergy in the form of a DW. One interesting feature we
observe is the enhancement of the Raman-induced red-
shift of fundamental solitons. This is understood by not-
ing that the Kerr nonlinearity is enhanced in our PCF
at longer wavelengths. However, our numerical results
show that the SSFS enhancement nearly suppresses the
DW when the dispersion slope is negative but not too
large in magnitude. With a further increase in its mag-

nitude, the SSF'S enhancement turns into SSF'S suppres-
sion that is accompanied by an amplification of the DW
shed by the soliton. Moreover, the DW is trapped by
the soliton, and its spectrum moves closer to that of the
soliton, resulting in spectral compression at the PCF out-
put. These features are found to be quite sensitive to the
exact numerical value of the nonlinearity slope ~y;; even
a 10% change in its value can produce dramatic changes
in both the time and spectral domains.

When the magnitude of dispersion slope is increased
further (keeping it negative), a further change occurs in
the soliton dynamics. The amplified DW now becomes
so strong that it forms a fundamental soliton and cre-
ates its own DW, even though it lies in the normal-GVD
region. The region behind it becomes clear by noting
that the nonlinear v has become negative in this spectral
region, allowing for a soliton to form. This is interest-
ing from a fundamental perspective because the energy
of a fundamental soliton appears to split into two wider
solitons. Of course, the splitting is not direct because it
occurs through a DW that forms a soliton in the normal-
dispersion region because of a negative value of ; in this
region. The important takeaway is that soliton dynam-
ics becomes quite complex when the Kerr nonlinearity
becomes strongly dispersive and leads to the presence of
a ZNW in addition to the ZDW. Since the relative po-
sitions of these two wavelengths can be tailored through
suitable design changes, such PCF's are suitable for a va-
riety of practical applications.
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