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We present the general analytical theory for Dyakonov surface waves at the interface of a biaxial
anisotropic dielectric with an isotropic medium. We demonstrate that these surface waves can be
divided into two distinct classes, with qualitatively different spatial behavior. We obtain explicit
expressions for the Dyakonov waves dispersion and the parameter ranges for their existence.

PACS numbers: 42.25.Bs,42.25.Lc,43.35.Pt.

Electromagnetic surface waves, strongly localized near
the interface of two different media, pay an important
role in many areas of science and technology – from op-
tical microscopy [1] and biosensing [2] to nano-optical
tweezing [3] to photonic integrated circuits. [4] Elec-
tomagnetic surface waves are responsible for such phe-
nomena as superlensing,[5, 6] enhanced Raman scattering
[7, 8] and extraordinary light transmission through sub-
wavelength holes. [9] While there exists a number of dif-
ferent kinds of surface electormagnetic waves, such as e.g.
surface plasmons at the interface of a metal and a dielec-
tric, [10] or Tamm-Shockeley states [11–13] at the bound-
ary of a photonic crystal, [14–16] a new class of surface
electromagnetic modes has recently gained considerable
attention. [17–23] These Dyakonov surface waves exist
at the interface of an isotropic and anisotropic dielectric
media. They can be supported by transparent optical
materials, and thus do not suffer from the metallic ab-
sorption that plagues surface plasmons. [24] Compared
to the Tamm-Shockley state, Dyakonov wave does not
require any periodic patterning of the material forming
the system, with the resulting light scattering due to the
inevitable disorder as a result of an imperfect fabrication
of such lattice.

The presence of Dyakonov waves at the isotropic-
anisotropic interface has been firmly established in the
experiment, [23] and a number of adequate theoret-
ical methods exists for their quantitative description.
[18, 19, 21] However, due to the inevitable complexity
of the boundary conditions at the interface of a fully-
anisotropic dielectric the resulting theoretical description
generally leads to a system of nonlinear equations that
must be solved numerically. While this may be consid-
ered a straightforward task, Dyakonov waves are usually
extended over many wavelengths, [21] and are therefore
close to the propagation wave threshold – which makes
the numerical solution more challenging. What is even
more important, with the theoretical “toolbox” limited
to numerical methods, the root-finding algorithm may
even miss an entire class of possible solutions.

In this work, we present a complete analytical solution
for the Dyakonov surface waves at the interface of an
isotropic and a biaxial dielectric medium. We show that,
depending on the magnitudes of the dielectric permittiv-
ity components in the system, the interface can simul-

taneously support two different classes of surface waves,
with qualitatively different spatial behavior.
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FIG. 1. The schematics of the coordinate system at the planar
interface of a transparent isotropic medium (orange, bottom)
and biaxial anisotropic dielectric (green area, top).

I. THE MODEL

We consider the interface of an isotropic dielectric with
the permittivity ε0, with a biaxial anisotropic medium,
with the permittivity tensor

ε =

 εx 0 0
0 εy 0
0 0 εz

 . (1)

We furthermore assume that one of the symmetry direc-
tions of the anisotropic crystal (which will be referred to
as the axis z in our coordinate system – see Fig. 1) is
normal to the surface, as this is generally the case for a
high-quality interface. While a non-orthogonal orienta-
tion of ẑ with respect to the plane of surface is possible,
this would lead to a relatively high density of surface de-
fects – thus making the theory for surface waves at a ideal
planar interface irrelevant for most practical application.
For convenience, the coordinate system origin z = 0 is
chosen at the plane of the interface – see Fig. 1.
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In this work, we focus on guided surface waves with
the in-plane momenttum q ≡ (qx, qy),

E (r, t) = Eq (z) · exp (iqxx+ iqyy − iωt) , (2)

B (r, t) = Bq (z) · exp (iqxx+ iqyy − iωt) , (3)

where

Eq (|z| → ∞)→ 0, Bq (|z| → ∞)→ 0 (4)

II. ELECTROMAGNETIC WAVES IN A
BIAXIAL MEDIUM

For an evanescent wave that decays away from the z =
0 interface, we have

Eq (z) = e · exp (−κz) , (5)

Bq (z) = b · exp (−κz) . (6)

Note that for a complex κ, the expressions (5), (6) also
describe the propagating waves in the medium.

Substituting (2),(3) with (5), (6) into Maxwell’s equa-
tions, we obtain

bx =
c

ω
(qyez − iκey) , (7)

by =
c

ω
(iκex − qxez) , (8)

bz =
c

ω
(qxey − qyex) , (9)

and

M

 ex
ey
ez

 = 0, (10)

where

M≡

 ∆x (κ) qxqy iκqx
qxqy ∆y (κ) iκqy
iκqx iκqy ∆z (κ)

 , (11)

and

∆x (κ) = εx

(ω
c

)2
− q2y + κ2, (12)

∆y (κ) = εy

(ω
c

)2
− q2x + κ2, (13)

∆z (κ) = εz

(ω
c

)2
− q2x − q2y. (14)

From (10) we find the electrical field components in terms
of the amplitude a,

ex = iκqx
(
q2y −∆y (κ)

)
· a, (15)

ey = iκqy
(
q2x −∆x (κ)

)
· a, (16)

ez =
(
∆x (κ) ·∆y (κ)− q2xq2y

)
· a, (17)

which together with (7)-(9) define the entire electromag-
netic field (e, b) in (5), (6).

Also, from Eqn. (10) we obtain

det [M] = 0, (18)

which yields

εz · κ4 +

[
(εx + εy) ·

(ω
c

)2
− (εx + εz) · q2x

− (εy + εz) · q2y
]
· κ2 +

(
εz

(ω
c

)2
− q2x − q2y

)
×
(
εxεy

(ω
c

)2
− εxq2x − εyq2y

)
= 0. (19)

Eqn. (19) is a quadratic equation for κ2, with the
straightforward solution

κ2± =
1

2

{
εx + εz
εz

q2x +
εy + εz
εz

q2y − (εx + εy) ·
(ω
c

)2
±
√
D
}
, (20)

where the Discriminant

D =

[
(εx − εy)

(ω
c

)2
+
εz − εx
εz

q2x +
εy − εz
εz

q2y

]2
+ 4 · (εx − εz) · (εy − εz)

ε2z
q2x q

2
y. (21)

When the Discriminant is positive, there are three dis-
tinct possibilities for the nature of the waves supported
by the anisotropic dielectric. If the right-hand side of
Eqn. (20) is positive for κ2+ and κ2−, both waves with the
“in-plane” momentum q ≡ (qx, qy) are evanescent. In the
opposite case, when the right-hand side of Eqn. (20) is
negative in both cases, the corresponding two waves are
propagating. Finally, when it’s positive for one choice
of the sign in (20) and negative for the other, we find
that for the given in-plane momentum q the dielectric
interface supports one propagating and one evanescent
wave.

As follows from Eqn. (21), the Discriminant is
positive-definite (for any q) in each of the following cases:

• any uniaxial dielectric
(εx = εy or εx = εz or εy = εz),

• εz < min [εx, εy],

• εz > max [εx, εy].

The boundaries that separate different portions of the
(qx, qy) phase space that respectively support only the
propagating waves, or only the evanescent fields, or a
mixture of evanescent and propagating waves, are given
by

q2x + q2y = εz

(ω
c

)2
, (22)

and

q2x
εy

+
q2y
εx

=
(ω
c

)2
. (23)
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FIG. 2. The “phase space” for the waves with “in-plane” momentum q (see Eqns. (5), (6)) supported by an anisotropic
dielectric. Panels (a), (b) and (c) correspond to a uniaxial dielectric, with εx = εy > εz (a), εx = εz < εy (b), and εx = εz > εy
(c) respectively. Panels (d) and (e) represent the case of a biaxial dielectric, correspondingly with εz < εx < εy (d), and
εx < εy < εz (e). The red line (the inner boundary in (a),(b),(d) and the outer boundary in (c),(e)) corresponds to Eqn. (22),
and the green line (the outer boundary in (a),(b),(d) and the inner boundary in (c),(e)) represents Eqn. (23). The dielectric
permittivity tensor components satisfy (a) εx = εy = 3.5εz, (b) εx = εz = 3.5εy, (c) εx = εz = εy/4, (d) εx = 2εz and εy = 3.5εz,
(e) εx = εz/4 and εy = εz/2.

This behavior is illustrated in Fig. 2.
However, if

min [εx, εy] < εz < max [εx, εy] , (24)

the Discriminant in Eqn. (21) can, and does, become
negative for certain ranges of the values of qx and qy. In
this case, κ± is complex, with nonzero values for both its
real and imaginary parts. These “ghost waves”, recently
described in Ref. [25], combine the oscillatory behavior of
the propagating waves with the exponential decay char-
acteristic of the evanescent fields, and represent the third
class of the waves that can be supported by a transparent
dielectric medium.

When the inequality (24) is satisfied, the boundaries of
the portion of the (qx, qy) phase space of the ghost modes
are defined by the four equations√

|εx − εz|
εz

qx ±

√
|εy − εz|

εz
qy ±

√
|εy − εx|

ω

c
= 0, (25)

Fig. 3 shows the phase space of a biaxial anisotropic
dielectric that supports ghosts waves. Note its nontrivial
structure near the point corresponding to the intersection
of the boundaries described by Eqns. (22) and (23) in the
magnified view of its panel (b).

When the permittivity εz in the normal-to-the-
interface direction approaches the value of one of the

in-plane permittivities εx or εy, the ghost regions in the
phase space collapse to increasingly narrow strips parallel
to either the qx (when εz → εx) or qy (for εz → εy) axis.
This “collapse” is however relatively slow, and substan-
tial ghost regions are still present even when the permit-
tivity is within 1% of the critical value, as seen in Fig.
4.

Most importantly, ghost regions have substantial pres-
ence in actual biaxial anisotropic crystals. This is illus-
trated in Fig. 5, where we show the phase space for
the sodium nitrite NaNO2, with the dielectric permittiv-
ity tensor components [26] εx = 1.806, εy = 2.726 and
εz = 1.991.

While Eqns. (7) - (17) adequately describe the gen-
eral case of a dielectric crystal with arbitrary degree of
anisotropy, the isotropic limit εx → εy → εz → ε0 is
singular, as here both κ+ and κ− are identical,

κ+ (εx, εy, εz → ε0) = κ− (εx, εy, εz → ε0) = κ0, (26)

with

κ0 = q2x + q2y − ε0
(ω
c

)2
, (27)

and direct substitution of (26),(27) into (15), (16), (17)
and (7), (8), (9) yields

ex, ey, ez, bx, by, bz → 0 · a0, (28)
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FIG. 3. The “phase space” for the waves with “in-plane” momentum q (see Eqns. (5), (6)), supported by a biaxial anisotropic
dielectric with εx < εz < εy. Note the presence of the ghost waves in the regions bounded by four orange (straight) lines defined
by Eqn. (25). As in Fig. 2, the red (gray) line corresponds to Eqn. (22), and the green (light gray) line represents Eqn. (23).
Panels (a) and (b) show the “full” and the “magnified” view of the phase space. Panel (c) displays real-space field profiles for
a propagating wave (oscillatory violet curve, calculated for qx =

√
εz ω/c, qy = 0.5

√
εz ω/c), an evanescent wave (monotonic

cyan curve, calculated for qx = 1.01
√
εz ω/c, qy = 0) and a ghost wave (decaying oscillatory orange curve, calculated for

qx =
√
εz ω/c, qy = 0.525

√
εz ω/c). Here εx/εz = 0.5 and εy/εz = 2.

with a0 →∞. This uncertainty can be removed if we ex-
plicitly introduce s and p polarizations, correspondingly

with e
(s)
z = 0 and b

(p)
z = 0:

e(s)x = qy · as, (29)

e(s)y = −qx · as, (30)

e(s)z = 0, (31)

b(s)x =
icκ0
ω

qx · as, (32)

b(s)y =
icκ0
ω

qy · as, (33)

b(s)z = −cq
2

ω
· as, (34)

and

e(p)x = qx · ap, (35)

e(p)y = qy · ap, (36)

e(p)z =
iq2

κ0
· ap, (37)

b(p)x =
iωε0
cκ0

qy · ap, (38)

b(p)y = − iωε0
cκ0

qx · ap, (39)

b(p)z = 0. (40)

Here

q ≡
√
q2x + q2y, (41)

while as and ap are the scaled amplitudes of the s and
p–polarized waves respectively.

III. DYAKONOV WAVE

Assuming that the interface at z = 0 separates trans-
parent isotropic medium with the permittivity ε0 at z < 0
from biaxial anisotropic dielectric with the permittivity
tensor (1), for the guided surface wave with the in-plane
momentum q = (qx, qy) we obtain

Eq (z) =

{
(ases + apes) e

κ0z, z < 0
a+e+e

−κ−z + a−e+e
−κ−z, z > 0

(42)

and

Bq (z) =

{
(asbs + apbs) e

κ0z, z < 0
b+e+e

−κ−z + b−e+e
−κ−z, z > 0

(43)

where (note the sign change κ0 → −κ0 from (29) - (40)
to (44) - (47) as the evanescent field for z < 0 behaves as
exp (+κ0z))

es = (qy, −qx, 0) , (44)

bs = − c
ω

(
iκ0qx, iκ0qy, q

2
x + q2y

)
, (45)

ep =

(
qx, qy,−

i

κ0

(
q2x + q2y

))
, (46)

bp =
iωε0
cκ0

(−qy, qx, 0) , (47)

and

e± =
(
iκ± qx

(
q2y −∆y (κ±)

)
, iκ± qy

(
q2x −∆x (κ±)

)
,

∆x (κ±) ·∆y (κ±)− q2xq2y
)
, (48)

b± =
ω

c

(
qy
(
εy∆x (κ±)− εxq2x

)
,

− qx
(
εx∆y (κ±)− εyq2y

)
, iqxqyκ± (εy − εx)

)
. (49)
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With non-magnetic (µ = 1) dielectric materials at both
sides of the interface, at z = 0 we have the continuity of
all three components of the magnetic field Bq, and the
continuity of Ex, Ey and Dz ≡ εzEz. However, as follows
from (9), the continuity of both tangential components
of the electric field immediately implies the continuity of
Bz. Furthermore, since

εzEz ∝ [curlB]z ∝ qxBy − qyBx, (50)

the continuity of Dz = εzEz is a direct consequence of
the continuity of the tangential magnetic field. There-
fore, out of six boundary conditions here only four are
actually independent, consistent with the four indepen-
dent amplitudes as, ap, a+ and a−.

FIG. 4. The phase space for a biaxial anisotropic material
for εz → εx (panel (a)) and εz → εy (panel (b)). In both
cases εy/εx = 4, while the z-component of the permittivity εz
is such that εz/εx = 1.01 (a) and εz/εy = 0.99525 (b). The
phase space color code is that same as in Figs. 2 and 3. Note
the presence of relatively large ghost regions even though εz
in both cases is within 1% from its limiting values.

Imposing the continuity of Ex, Ey, εzEz and ∂zBz ∝
(qxBy + qyBx), we obtain:

N

 as
ap
a+
a−

 = 0, (51)

where the matrix N is defined as

N =


iqy
qx

i κ+
(
q2y −∆+

y

)
κ−
(
q2y −∆−

y

)
− iqxqy i κ+

(
q2x −∆+

x

)
κ−
(
q2x −∆−

x

)
0 iq2ε0

κ0εz
∆+
x ∆+

y − q2xq2y ∆−
x ∆−

y − q2xq2y
iq2κ0

qxqy
0 (εy − εx)

ω2κ2
+

c2 (εy − εx)
ω2κ2

−
c2

 ,

(52)

with

∆±
x,y ≡ ∆x,y (κ±) . (53)

Introducing the new variable ζ± coresponding to the z-
components of the amplitudes of the electric field in the
anisotropic material (e+)z and (e−)z,

ζ± =
(
∆±
x ∆±

y − q2xq2y
)
· a±, (54)

from (51) and (52) we obtain

P (ω;q)

(
ζ+
ζ−

)
= 0, (55)

where the matrix P is defined by

P (ω;q) =

(
α+ α−
β+ β−

)
, (56)

and

α± =
εz
ε0

+
κ±
κ0

×
(
ω
c

)2 (
εxq

2
y + εyq

2
x

)
− q2

(
q2 − κ2±

)
∆±
x ∆±

y − q2xq2y
, (57)

β± = κ± ·
κ0 + κ±

∆±
x ∆±

y − q2xq2y
. (58)

The dispersion of the surface wave is then given by

det [P (ω;q)] = 0, (59)

which yields

κ0 (κ+ + κ−) ·

{
εxεy
ε0

((ω
c

)2
− q2x
εy
−
q2y
εx

)
− κ+κ−

}

+ κ+κ−

{
(εx + εy)

(ω
c

)2
− ε0 + εx

ε0
q2x −

ε0 + εy
ε0

q2y

}
+

{
εxεy
ε0

κ20

((ω
c

)2
− q2x
εy
−
q2y
εx

)
− κ2+κ2−

}
= 0. (60)

Eqn. (42) uniquely defines the dispersion relation of the
Dyakonov surface wave ω (q), and is the primary result
of this section.

For a guided surface wave, all its components, in both
the isotropic and anisotropic sides of the interface, must
decay away from the boundary. For z < 0, this implies
that

q >
√
ε0

ω

c
. (61)

At the same time, in the anisotropic medium the waves
with the in-plane momentum q can belong to either the
evanescent or ghost sub-classes – see Section II. From
Eqns. (22) and (23) we therefore obtain

q >
√
εz

ω

c
, (62)

and

q2x
εy

+
q2y
εx

>
(ω
c

)2
. (63)

Eqns. (61), (62) and (63) substantially reduce the range
of the momentum and frequency that needs to be ex-
plored in the numerical solution of Eqn. (60). Further-
more, as shown in Ref. [21] (see also Appendix A), the
Dyakonov surface wave only exists when

min (εx, εy) ≤ εz < ε0 < max (εx, εy) . (64)
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While the numerical solution of Eqn. (42) is generally
straightforward, for small - to - moderate anisotropy, the
surface waves are known [21, 22] to be relatively weakly
guided,

κ0 � ω/c, (65)

which turns numerical root-finding into a challenging nu-
merical problem [21]. In the next section we will therefore
develop the method for the analytical solution of Eqn.
(60).

IV. ANALYTICAL SOLUTION FOR THE
SURFACE WAVE DISPERSION

Despite its relative complexity, Eqn. (60) is not tran-
scendental, but only contains algebraic functions. As a
result, it can be reduced to a polynomial equation. Fur-
thermore, as we show in the present section, the resulting
polynomial equation is of the 4th order, and therefore al-
lows a complete analytical solution.

FIG. 5. The phase space for sodium nitrite, with εx = 1.806,
εy = 2.726 and εz = 1.991.

Choosing the y-direction at the one corresponding to
the largest permittivity in the plane of the interface,

εy > εx, (66)

we introduce the new variable

u =
εxεy
ε0

(
q2x
εy

+
q2y
εx
−
(ω
c

)2)
. (67)

Note that, as follows from (63), u > 0. Then

κ2+κ
2
− =

ε0
εz

(
q2 − εz

(ω
c

)2)
u, (68)

and

κ+ + κ− =

[
q2 +

ε0
εz
u−

(
εx + εy −

εxεy
εz

)(ω
c

)2
+ 2

√
ε0
εz

(
εz

(ω
c

)2
− q2

)
· u

]1/2
. (69)

We can then express Eqn. (60) as

κ0 (κ+ + κ−) · (u+ κ+κ−) = Â κ+κ− + B̂, (70)

where

Â =

(
εx + εy −

εxεy
εz

)(ω
c

)2
− q2 − ε0

εz
· u, (71)

and

B̂ = −κ20u− κ2+κ2−. (72)

We then square both sides of Eqn. (79), which yields

Ĝ κ+κ− = F̂ , (73)

where

Ĝ = ε0

{(
εxεy
ε0
− εx − εy + ε0

)(ω
c

)2
+

[(
εx
ε0

+
εy − ε0
εz

− εxεy
ε20

)
q2x

+

(
εy
ε0

+
εx − ε0
εz

− εxεy
ε20

)
q2y

]}
(74)

= 2ε0

{(
1− ε0

εz

)
· u+ κ20

(
εx + εy − ε0

εz
− εxεy

ε20

)
+

(
1

ε0
− 1

εz

)(
ε20 − ε0 (εx + εy) + εxεy

) (ω
c

)2}
, (75)

and

F̂ = −ε0
(

1− ε0
εz

){(
ε2

(ω
c

)2
− u
)2

− ε0

(
1− ε0

εz

)(ω
c

)2
u

}
+ κ20

{
ε0

(
ε22
εz

+

(
1− ε0

εz

)
(ε1 + 2ε2)

)(ω
c

)2
−
(
ε1 +

ε0
εz

(ε0 + 2ε2)− ε30
ε2z

)
u

}
− κ40 ·

{
ε0
εz

(ε1 + 2ε2)

}
, (76)

with

ε1 = ε0 − εx − εy +
εxεy
εz

, (77)

and

ε2 = εx + εy − ε0 −
εxεy
ε0

=
(ε0 − εx) (εy − ε0)

ε0
. (78)
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FIG. 6. The in-plane wavenumber of the Dyakonov surface
wave (in units of ω/c) vs. the propagation direction angle θ
in biaxial materials, for the interfaces of (a) potassium titanyl
phosphate (KTP) with aluminium oxynitride (AlON), and (b)
arsenic trisulfide with aluminum arsenide. The corresponding
refractive indices are [29] as follows. KTP : nx = 1.7614, ny =
1.8636, nz = 1.7704; ALON : n0 = 1.79; arsenic trisulfide :
nx = 2.4, ny = 3.02, nz = 2.81; aluminum arsenide : n0 =
2.87.

Note that, in addition to the solutions of the original
equation (60), the new Eqn. (73) contains spurious roots

corresponding to Âκ+κ− + B̂ < 0. We therefore need to
constrain the solutions of (73) with the inequality

Â κ+κ− + B̂ > 0. (79)

Together, Eqns. (73) and (79) are equivalent to the orig-
inal equation (60).

Since u > 0 and q >
√
εzω/c (see Eqns. (22),(23) and

(67)), from Eqn. (68) we find

κ+κ− = κz ·
√
ε0
εz
· u , (80)

where

κz ≡
√
q2 − εz. (81)

Substituting (80) into (73), we obtain

κz · Ĝ ·
√
ε0
εz
· u = F̂ . (82)

Introducing the new dimensionless variable

χ ≡ c

ω
κz, (83)

we can express Eqn. (82) in the form

a4 · χ4 + a3 · χ3 + a2 · χ2 + a1 · χ+ a0 = 0, (84)

where

a4 =
ε0
εz

(ε1 + 2 ε2) , (85)

a3 =

√
εxεy
ε0

û · 2ε0
(
εx + εy − ε0

εz
− εxεy

ε20

)
, (86)

a2 = −ε0ε
2
2

εz
+ ε0 (ε1 + 2ε2) ·

(
1− ε0

εz

)
+ û · εxεy

ε0

(
ε1 + 2 · ε0ε2

εz
+
ε20
εz

(
1− ε0

εz

))
, (87)

a1 = 2

(
1− ε0

εz

)√
ε3xε

3
y

εz
û ·
(

1− εz
ε0

+ û

)
, (88)

a0 =

(
1− ε0

εz

)
· εxεy
ε0
· û · (ε1εz + εxεyû) , (89)

and

û ≡ ε0
εxεy

( c
ω

)2
· u =

( c
ω

)2(q2x
εy

+
q2y
εx

)
− 1. (90)

The expression (84) is a quartic equation for χ, and al-
lows an immediate analytical solution via the Ferrari for-
mula, [27] so that

χ = F (û; ε0, εx, εy, εz) . (91)

Then, introducing the polar angle θ that defines the di-
rection of the in-plane momentum q,

qx = q · cos θ, (92)

qy = q · sin θ, (93)

from (67) and (91) we obtain

ω

c
=

q√
εz + F2 (û)

, (94)

sin θ = ±

√
εxεy
|εy − εx|

·
(

û+ 1

εz + F2 (û)
− 1

εy

)
, (95)

which parametrically defines the function ω (q, θ).
In general, a quartic equation like (84) has four distinct

roots. However, in our case χ should satisfy a number of
additional constraints. Aside from being a positive real
quantity, it must also exceed the value of

√
ε0 − εz,

χ >
√
ε0 − εz, (96)

since decay of the surface wave away from the interface
implies

κ0 =
ω

c

√
χ2 + εz − ε0 > 0. (97)

As we prove in Appendix B, Eqn. (84) only has no
more than a single real positive solution that satisfies
(96), so there is no ambiguity in choosing the correct
root. We therefore obtain

F = − a3
4a4

+ s1S +
s2
2

√
−4 · S2 − 2p̂− s1 · q̂

S
, (98)
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FIG. 7. The in-plane wavenumber of the Dyakonov surface
wave (in units of ω/c) vs. the propagation direction an-
gle θ in uniaxial materials, for the interfaces of (a) calcite
with CdF2, and (b) lithium niobate and KTaO3. The cor-
responding refractive indices are [29] as follows. Calcite :
nx = nz = 1.486, ny = 1.658; CdF2 : n0 = 1.562; lithium
niobate : nx = nz = 2.156, ny = 2.232; KTaO3: n0 = 2.2.

where

p̂ =
a2
a4
− 3

8
· a

2
3

a24
, (99)

q̂ =
a33 − 4a2a3a4 + 8a1a

2
4

8a34
, (100)

S =
1

2
·

√
−2

3
p̂+

1

3a4

(
Q+

∆0

Q

)
, (101)

Q =
3

√
∆1 +

√
∆2

1 − 4 ·∆3
0

2
, (102)

∆0 = a22 − 3a1a2 + 12a0a4, (103)

∆1 = 2a32 − 9a1a2a3 + 27a0a
2
3 + 27a21a4

− 72a0a2a4, (104)

s1,2 = ±1. (105)

While the choice of s1 and s2 in Eqn. (105) that leads
to a positive real root that satisfies Eqn. (96), is unique,
such a solution only exists in a limited range of angles
θ. Furthremore, the resulting solution must be tested
against the inequality (79) to remove the spurious roots.
As a result, for the angular range of θ that supports the
Dyakonov surface wave, we obtain (see Appendix C) :

θ1 < |θ| < θ2, or π − θ2 < |θ| < π − θ1, (106)

where, assuming εy > εx,

θ1 = arcsin

[(
εxεy
εy − εx

×
(

ε1 + 2ε2
(ε1 + 2ε2) + ε22

− 1

εy

))1/2
]
, (107)

and

θ2 = arcsin

[((
1−

√
1 +

4εz (ε0 − εx) (εy − ε0)

ε20 (ε0 − εz)

)

× ε0
2εz

ε0 − εz
εy − εx

+
εy − ε0
εy − εx

)1/2
]
. (108)

Here, θ1 and θ2 correspond to κ− = 0 and κ0 = 0 respec-
tively. At the same time, θ1 corresponds to the boundary
of the inequality (63), while θ2 represents the “edge” of
the inequality (79) – see Appendix C. Within the an-
gle range (106) for any direction θ and the frequency
ω, there is one and only one surface wave, described by
the parametric equations (94), (95) with the function
F (û, ε0, εx, εy, εz) from Eqn. (98), while for any angle
outside this range, there is no surface wave.

In Fig. 6 we plot the surface wave dispersion for the
interface of potassium titanyl phosphate (KTP) and alu-
minium oxynitride (AlON) (panel (a)), and arsenic trisul-
fide with aluminum arsenide (panel (b)). The results of
the present work can also be applied to uniaxial materi-
als, as illustrated in Fig. 7 for calcite and CdF2 (panel
(a)), and lithium niobate (LiNbO3) and KTaO3 (panel
(b)).

Following Ref. [21], it is also instructive to project
the surface wave dispersion onto the wavevector space
(qx, qy) that we studied in Section II. In Fig. 8 we show
this projection for the surface wave at the interface of
isotropic aluminum arsenide and biaxial arsenic trisul-
fide. As expected, the magenta curve that represents
the Dyakonov surface wave, terminates at the boundaries
corresponding to κ0 = 0 (blue line) and κ− = 0 (green
line). Note that, depending on the wavevector of the sur-
face wave, it could be observed both in the “evanescent”
and “ghost” portions of the phase space (see panel (c)).

V. TWO CLASSES OF DYAKONOV SURFACE
WAVES

Near the boundary of an isotropic medium with a uni-
axial dielectric, the Dyakonov surface wave is formed by
evanescent waves on both sides of the interface. However,
for a biaxial dielectric that supports both the evanescent
and the ghost waves (see Section II), the localized sur-
face wave can be formed from either the evanescent or
from ghost waves, depending on its in-plane momentum.
As a result, for the interface of a isotropic medium with
a biaxial medium, we can have two different types of
the Dyakonov surface wave. A “conventional” Dyakonov
surface wave, as originally described by M. Dyakonov in
1988, [18] monotonically decays on both sides of the in-
terface, while the ghost surface wave, together with the
exponential decay also shows oscillatory behavior in the
anisotropic medium – see Fig. 9.

Note that, depending on the magnitude of the permit-
tivity of the isotropic medium ε0 (εz < ε0 < εy), at a
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FIG. 8. The Dyakonov surface wave in (qx, qy) coordinates for the aluminum arsenide - arsenic trisulfide interface. The surface
wave is shown by the magenta line (dark gray line at higher values of qy). The red (gray) line corresponds to Eqn. (22), the
green (light-gray) line represents Eqn. (23), the blue line (dark gray line at lower values of qy) corresponds to Eqn. (61), and
the orange (straight) lines show the ghost region boundaries from Eqn. (25). The phase space color code is the same as in Figs.
1 - 4. Panels (b) and (c) show the magnified portions of the phase space that supports the Dyakonov surface wave. Note that,
as clearly seen in panel (c), the surface wave is supported by both the evanescent and the ghost regions of the phase space.

single frequency the isotropic - biaxial interface can ei-
ther support both the “conventional” and the “ghosts”
mode patterns, or only the “conventional” modes. The
corresponding critical value εc of the permittivity ε0 is
given by the equation (see Appendix D)

(εc − εz)2
(

5εz − 3 (εx + εy) +
εxεy
εz

)
+ (εc − εz)

(
ε2x + 4εxεy + ε2y − 8εz (εx + εy) + 10ε2z

)
+ 3εz (εy − εz) (εz − εx)

+
2

εz

(
(εc − εz)2 + εz (2 (εx + εy)− 5εz)

)
×
√
εz (εy − εz) (εz − εx) (εc − εz) = 0, (109)

which for εx < εz < εy always has a single solution in the
interval εz < εc < εy.

In scaled variables εc/εz, εz/εx, εy/εz, the solution of
Eqn. (109) can be expressed as

εc
εz

= G
(
εz
εx
,
εy
εz

)
. (110)

We plot this function in Fig. 10.
For εc < ε0 < εy, the Dyakonov surface waves that

are supported by the interface of isotropic and biaxial
dielectric media, belong to the “conventional” class for
all allowed propagation angles. However, if εz < ε0 < εc,
for the propagation angle θ in the range θ1 < |θ| < θ3 and
π − θ3 < |θ| < π − θ1 we find “conventional” Dyakonov
waves, while for θ3 < |θ| < θ2 and π − θ2 < |θ| < π − θ3
the surface modes belong to the “ghost” class – see Fig.
8(c). Here, the angle θ3 only depends on the dielectric
permittivies of the media forming the interface, and is

defined as the solution of the system of equations (60)
and (25), where the latter taken with the positive signs.

VI. DISCUSSION

The key feature of the Dyakonov surface waves that
makes them an ideal platform for experiments on nonlin-
ear optics and strong coupling, is their inherent “lossless“
nature. While the residual linear absorption in the dielec-
tric as well as light scattering due to surface roughness
can never be completely avoided, the corresponding con-
tributions to the effective mode loss can be dramatically
reduced, as demonstrated in Mie resonance experiments
with the measured Q-factors on the order of 1010. [30]

As a result, with an evanescent coupling (from e.g. a
high-index prism) to the isotropic-biaxial interface, one
can observe an enormous increase of the field intensity at
this boundary, only limited by the effective loss due to
system imperfections (surface and builk disorder, etc.)
and ultimately by the non-locality of the dielectric re-
sponse [31] (corresponding to the variations of the dielec-
tric permittivity on the order of (a0/λ)2 ∼ 10−6, where
a0 is on the order of the atomic size and λ is the wave-
length).

For the applications to nonlinear optics however, the
effective “selection rules” such as the phase-matching
conditions [32] are defined by the spatial variation of
the corresponding optical modes. The qualitative dif-
ference between the “ghost” and the ‘conventional” sur-
face waves, respectively with- and without oscillations
away from the interface, that can be simultanenouls
supported by the same isotropic-biaxial interface at the
same frequency, will therefore have dramatic effect on the
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FIG. 9. Dyakonov surface waves at the arsenic trisulfide (nx =
2.4, ny = 3.02, nz = 2.81) – aluminum arsenide (n0 = 2.87)
interface: “conventional” (a,b) vs. “ghost” (c,d), in linear
(panels (a),(c)) and logarithmic (panels (b),(d)) scale. Red
(light gray) and blue (dark gray) curves correspond to the
projections of the in-plane electric field Eτ = (Ex, Ey) onto
the parallel (blue, dark gray) and perpendicular (red, light
gray) to the in-plane momentum q directions. The in-plane
propagation angle θ is equal to 24◦ (panels (a),(b)) and 26◦

(panels (c),(d)). The biaxial arsenic trisulfide is on the right
of the interface z = 0, and the isotropic aluminum arsenide
fills the half-space z < 0. Note the contrast of the simple
exponential decay of the conventional Dyakonov waves in the
biaxial medium (see panel (b)) with the oscillatory behavior
of the ghost surface waves (panel (d)).

nonlinear-optical phenomena in this system. [25]

VII. CONCLUSIONS

In summary, we have developed a complete analyti-
cal theory of Dyakonov surface waves at the interface of
an isotropic medium with a biaxial anisotropic dielec-
tric. As opposed to earlier work on this subject, our
approach does not require any numerical root-finding,
and offers substantial advantage in the description of the
surface waves near the propagation threshold. We have
also presented a detailed description of the ghost waves
that combine the properties of propagating and evanes-
cent solutions, and of the corresponding surface modes
supported by these ghost waves.
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FIG. 10. The critical value εc of the isotropic medium, in units
of εz, vs. εz/εx εy/εz.The dielectric permittivity components
of the biaxial medium satisfy εx < εz < εy.

Appendix A

Some of the necessary conditions for the existence of
the Dyakonov wave in (64) can be immediately obtained
from the general structure of Eqn. (60) and its con-
stituents. Eqn. (63) immediately implies that both the
first and the last terms in the curly brackets in Eqn. (60)
are negative-definite, therefore

ε0 + εx
ε0

q2x +
ε0 + εy
ε0

q2y < (εx + εy)
(ω
c

)2
. (A1)

Since

εx
ε0
q2x +

εy
ε0
q2y =

εxεy
ε0

(
q2x
εy

+
q2y
εx
−
(ω
c

)2)
+
εxεy
ε0

(ω
c

)2
>
εxεy
ε0

(ω
c

)2
, (A2)

from (61) and (A1) we obtain

εx + εy > ε0 +
εxεy
ε0

, (A3)

which implies that

min (εx, εy) < ε0 < max (εx, εy) . (A4)

Similarly, from (62), (A1) and (A2)

εx + εy > εz +
εxεy
ε0

, (A5)

or

εz < max (εx, εy)−min (εx, εy) ·
(

1− max (εx, εy)

ε0

)
< max (εx, εy) . (A6)
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Appendix B

First, we consider the number of real positive solutions
of Eqn. (84). Since

ε1 + 2ε2 =
(ε0 − εx) (εy − ε0)

ε0

+ εxεy

(
1

εz
− 1

ε0

)
> 0, (B1)

with our choice of εx < εy (see (66)) the requirement (64)
reduces to

εx ≤ εz < ε0 < εy, (B2)

and therefore

a4 > 0. (B3)

Similarly, since û > 0,

a1 < 0, (B4)

and

a3 =

√
εxεy
ε0

û · 2ε0
(
εx + εy − ε0

εz
− εxεy

ε20

)
=

2

εz

√
εxεy
ε0

û ·
(

(ε0 − εx) (εy − ε0) +
εxεy
ε0

(ε0 − εz)
)

> 0. (B5)

Therefore, regardless of the sign of a2, the number of sign
changes of the polynomial a4χ

4 +a3χ
3 +a2χ

2 +a1χ+a0
is equal to one if a0 < 0 and to two if a0 > 0. According
to the Descartes’ rule of signs, [28] Eqn. (84) has no
more than one positive real root in the former case and
no more than two positive real roots in the latter. So,
in general Eqn. (84) has no more than two positive real
roots.

However, the solution of Eqn. (84) must also satisfy
the inequality (96). Introducing the new variable

ξ ≡ χ−
√
ε0 − εz, (B6)

to satisfy (96) we need ξ > 0. From (84) we obtain

a4 ξ
4 + b3 ξ

3 + b2 ξ
2 + b1 ξ + b0 = 0, (B7)

where

b3 = a3 + 4a4
√
ε0 − ε1, (B8)

b2 = a2 + 3a3
√
ε0 − εz + 6a4 (ε0 − εz) , (B9)

b1 = a1 + 2a2
√
ε0 − εz + 3a3 (ε0 − εz)

+ 4a4 (ε0 − εz)3/2 , (B10)

b0 = a0 + a1
√
ε0 − εz + a2 (ε0 − εz)

+ a3 (ε0 − εz)3/2 + a4 (ε0 − εz)2 . (B11)

From (B3) and (B5)

b3 > 0. (B12)

For b0 we obtain

b0 = −ε0 − εz
ε0εz

(
εxεyû+ ε0

√
εxεy
εz

(ε0 − εz) û

− (ε0 − εx) · (εy − ε0)
)2

< 0. (B13)

If either b1 > 0, b2 > 0, or b1 < 0, b2 < 0, or b1 < 0,
b2 > 0, then the number of sign changes of the polynomial
a4χ

4+a3χ
3+a2χ

2+a1χ+a0 is equal to one, and therefore
Eqn. (B7) has no more than one real positive root. It
is if and only if b1 > 0, b2 < 0 that Eqn. (B7) can in
principle have two positive real roots.

For b1 > 0, b2 < 0, from Eqns. (B9), (B10) we obtain

a2 + 3a3
√
ε0 − εz + 6a4 (ε0 − εz) < 0, (B14)

a1 + 2a2
√
ε0 − εz + 3a3 (ε0 − εz)

+4a4 (ε0 − εz)3/2 > 0. (B15)

Then

a2 < −3a3
√
ε0 − εz − 6a4 (ε0 − εz) , (B16)

and

3a3 (ε0 − εz) + 4a4 (ε0 − εz)3/2 >
−a1 − 2a2

√
ε0 − εz >

−a1 + 2 (ε0 − εz) ·
(
3a3 + 6a4

√
ε0 − εz

)
, (B17)

which yields

−3a3 − 8a4
√
ε0 − εz > −

a1
ε0 − εz

. (B18)

With a1 < 0, a3 > 0 and a4 > 0, and ε0 > εz (see
(64)), the left-hand side of (B18) is negative, while the
right-hand size is positive. The system of the inequalities
(B14),(B15) is therefore inconsistent, and the case b1 >
0, b2 < 0 cannot be realized. Therefore, Eqn. (B7)
cannot have more than one positive real root, and Eqn.
(84) cannot have more than one real solution with χ >√
ε0 − εz.

Appendix C

We define θ1 as the propagation angle that corresponds
to the limiting case of the inequality (63). In terms of our
parameter û defined by Eqns. (67) and (90), the bound
(63) corresponds to

û (θ1) = u (θ1) = 0, (C1)

which together with (68) implies that

κ− (θ1) = 0. (C2)

Since

a0 (û = 0) = a1 (û = 0) = a3 (û = 0) = 0, (C3)
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we obtain

F (û = 0) =

√
−a2 (û = 0)

a4 (û = 0)

=

√
ε0 − εz +

ε22
ε1 + 2ε2

. (C4)

Substituting (C1) into (95), we obtain

sin2 θ1 =
εxεy
εy − εx

(
εa + 2ε2

ε0 (ε1 + 2ε2) + ε22
− 1

εy

)
, (C5)

leading to our definition of θ1 in Eqn. (107).
Since we defined the x- and y- directions with εy > εx,

the inequality (63) then implies

θ1 < |θ| < π/2, (C6)

or

π/2 < |θ| < π − θ1. (C7)

The angle θ2 is defined as the propagation direction
of the surface wave corresponding to the limiting case of
(79) when the latter turns into the exact equality

Â (θ2) κ+ (θ2)κ− (θ2) + B̂ (θ2) = 0. (C8)

Substituting (C8) into (70), we find that either

κ0 (θ2) = 0, (C9)

or

−εxεy
ε0

û (θ2)
(ω
c

)2
= κ+ (θ2)κ− (θ2) . (C10)

Since for θ in the range defined by Eqns. (C6),(C7) we
find û > 0, and Eqn. (C10) therefore cannot be satisfied
– so that (C9) is the only option. Then, substituting
(C9) into Eqn. (60), we obtain(

ε2 −
εxεy
ε0

û (θ2)

) (ω
c

)2
= κ+ (θ2)κ− (θ2) . (C11)

From (68) we obtain

κ+ (θ2)κ− (θ2) =
(ω
c

)2√εxεy
εz

(ε0 − εz) û (θ2). (C12)

Substituting (C12) into (C11), we find

û (θ2) =
ε0ε2
εxεy

+
ε20 (ε0 − εz)

2εxεyεz

×

(
1−

√
1 +

4 · εz (ε0 − εx) (εy − ε0)

ε20 (ε0 − εz)

)
(C13)

From (90) and (C9)

û (θ2) =
ε0
εy

cos2 θ2 +
ε0
εx

sin2 θ2 − 1. (C14)

Substituting (C13) into (C14) and using (78), we find

sin2 θ2 =
εy − ε0
εy − εx

+
ε0
2εz

ε0 − εz
εy − εx

×

(
1−

√
1 +

4 · εz (ε0 − εx) (εy − ε0)

ε20 (ε0 − εz)

)
. (C15)

To satisfy Eqn. (79), we therefore need

0 < |θ| < θ2, (C16)

or

π − θ2 < |θ| < π. (C17)

Together, (C6), (C7) and (C16), (C17) are equivalent to
(106).

Appendix D

The critical angle θ1 corresponds to the point where
the iso-frequency curve of the Dyakonov surface wave in
the (qx, qy) space terminates at the line (23). We can
show that the ghost boundary in the first quadrant,√

εz − εx
εz

qx +

√
εy − εz
εz

qy =
√
εy − εx

ω

c
, (D1)

can never cross this point. An assumption that such

intersection point (q
(1)
x , q

(1)
y ), that satisfies both (23) and

(D1), may exist, leads to the equation(
q(1)x − εy

ω

c

√
(εy − εz) (εz − εx)

εz (εy − εx)

)2

+
(ω
c

)2
·
ε2y
εz
· (εz − εx)

2

(εy − εx)
2 = 0, (D2)

which cannot be satisfied for any εx < εz < εy. As a re-
sult, in the first quadrant (qx > 0, qy > 0) the ghost
boundary is either always above or always below the
curve of Eqn. (23). The ellipse of Eqn. (23) intersects the
positive half of the qy–axis at the point of

√
εx ω/c, while

for the ghost boundary (D1) the corresponding crossing

point is at
√
εz (εy − εx) / (εz − εx) ω/c >

√
εx ω/c. In

the first quadrant of the q space the ghost boundary is
therefore always above the elliptical curve of Eqn. (23).
As a result, this boundary, and thus the θ1 “edge” of
the iso-frequency curve of the Dyakonov surface wave, is
always in the “conventional” regime, with the field char-
acterized by the exponential decay on both sides of the
interface.

As a result, for the system to support the “ghost” sur-
face waves, the ghost boundary (D1) must cross the iso-
frequency curve of the Dyakonov waves, Eqn. (60). The
onset of the ghost regime then corresponds to the case
when the ghost boundary intersects the iso-frequency
curve precisely at its end at the angle θ2.
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As follows from Eqn. (C9), the critical angle θ2 cor-
responds to the point where the iso-frequency line of the
Dyakonov surface wave in the (qx, qy) space terminates
at the circle

q2x + q2y = ε0
ω2

c2
. (D3)

For the intersection point (q
(2)
x , q

(2)
y ) of (D3) with the

ghost boundary (D1) in the first quadrant we obtain

q(2)x =
ω

c

√
εz (εz − εx) +

√
(εy − εz) (ε0 − εz)

εy − εx
, (D4)

q(2)y =
ω

c

√
εz (εy − εz) +

√
(εz − εx) (ε0 − εz)

εy − εx
. (D5)

Substituting (D4),(D5) into (60) and using (68), we ob-

tain

(ε0 − εz)2
(

5εz − 3 (εx + εy) +
εxεy
εz

)
+ (ε0 − εz)

(
ε2x + 4εxεy + ε2y − 8εz (εx + εy) + 10ε2z

)
+ 3εz (εy − εz) (εz − εx)

+
2

εz

(
(εc − εz)2 + εz (2 (εx + εy)− 5εz)

)
×
√
εz (εy − εz) (εz − εx) (ε0 − εz) = 0, (D6)

which defines the permittivity of the dielectric media cor-
responding to the onset of ghost surface waves in the
system phase space.
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