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We analyze a single-atom cavity QED model to isolate the dynamic mechanism of stochastic
switching between regions of state space associated with mean-field attractors of absorptive bista-
bility. We present evidence from simulations that such switching is correlated with variations in
the timings of atomic spontaneous emission events, and interpret this finding in terms of the dy-
namics of the coupled intracavity field and atomic dipole. Somewhat suprisingly, both upward and
downward (in intracavity photon number) switching transitions may be induced by rapid succession
of several atomic emissions. Based on our results we propose an implementation of bidirectional
‘toggle’ control for a single-atom optical latch.

I. INTRODUCTION

Cavity nonlinear optics provides a rich physical
paradigm for theoretical analyses and proof-of-concept
experiments in ultra-low energy all-optical switching [1–
3]. Attojoule-scale switching energies can be achieved
realistically in the specialized setting of cavity quan-
tum electrodynamics (cavity QED), but in this regime
of small intracavity photon numbers, quantum noise ex-
erts a strong influence on device operation [4, 5]. One of
the elementary physical phenomena enabling such logic
devices is absorptive optical bistability, which has been
studied extensively in the semi-classical (mean field) limit
of cavity QED [6] as well as the single-atom strong-
coupling quantum regime [7, 8]. Quantum noise-induced
switching between metastable states has been observed
in single-atom cavity QED experiments [5] with quanti-
tative details well accounted for by first-principles the-
ory. In the related context of dispersive optical bistabil-
ity a coherent feedback strategy for suppressing quantum
noise-induced switching–which represents a fundamental
error process for ultra-low energy photonic logic–has been
analyzed theoretically [9]. However for single-atom ab-
sorptive bistability no comparable control schemes have
yet been proposed. Our aim in this paper is to develop
an intuitive understanding of the quantum dynamics of
stochastic switching in order to facilitate future work in
quantum control. As a first step in the latter direction
we suggest a way to achieve bidirectional ‘toggle’ control
of switching in single-atom absorptive bistability, which
has no direct counterpart in the classical limit.

II. THEORETICAL MODELS

The quantum model we use is built upon the driven
Jaynes-Cummings Hamiltonian [10], which models the
interaction between a single mode of an optical cavity
having a resonant frequency ωc and a two-level atom
with ground state |g〉, excited state |e〉 and transition
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frequency ωa. For an atom-field coupling constant g and
an external coherent driving field with frequency ωl and
amplitude E (by properly choosing the time origin we
can assume E is real) coupled to the cavity mode, the
Hamiltonian in the rotating wave approximation written
in a frame rotating at the driving frequency ωl is given
by (~ = 1):

H = ∆ca
†a+∆aσ+σ−+ig(a†σ−−aσ+)+iE(a†−a) (1)

where ∆a = ωa − ωl and ∆c = ωc − ωl. In equation
(1), a is the annihilation operator for the chosen cavity
mode (which we will refer to as “cavity field” below) and
σ− = |g〉〈e| = (σx − iσy)/2 is the atomic lowering op-
erator. In addition to the coherent dynamics governed
by (1) there are two dissipative channels for the system:
the atom may spontaneously emit into modes other than
the chosen cavity mode at a rate 2γ⊥, and photons may
leak out of the cavity mirror at a rate 2κ. Assuming
only these two incoherent processes the overall dynamics
can be described by the following stochastic Schrödinger
equation [10]:

i
d

dt
|ψ〉 = Heff |ψ〉 (2)

with the collapse operators:

C1 =
√

2κa C2 =
√

2γ⊥σ− (3)

and the effective non-Hermitian Hamiltonian:

Heff = H − i

2

∑
k

C†kCk

= ∆ca
†a+ ∆aσ+σ− + ig(a†σ− − aσ+) + iE(a† − a)

− iκa†a− iγ⊥σ+σ−
(4)

The continuous evolution of the stochastic Schrödinger
equation (2) is interrupted by quantum jumps in which
the state vector |ψ〉 collapses to

|ψ〉 7→ Ck|ψ〉
‖Ck|ψ〉‖

, (5)

the probability of the collapse in an interval dt being
given by ‖Ck|ψ〉‖2dt. This makes the time evolution of
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|ψ(t)〉 a multidimensional stochastic process. Such a time
series of |ψ(t)〉 is known as a quantum trajectory of the
system evolution. The time series of |ψ(t)〉 may be used
to find the trajectory for the expectation of any operator
O acting on the system Hilbert space using the following
formula:

〈O〉 =
〈ψ(t)|O|ψ(t)〉
〈ψ(t)|ψ(t)〉

(6)

Apart from the stochastic process perspective there is
also a statistical ensemble description of the system dy-
namics, which is described by the following unconditional
master equation [10]:

ρ̇ = −i[H, ρ] + κ(2aρa† − a†aρ− ρa†a)

+ γ⊥(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)
(7)

whose density-matrix solution corresponds to the
(stochastic) ensemble average of all possible quantum
trajectories. The master equation (7) can also be used
to find the dynamical equations for the expectation of
any operator O acting on the system Hilbert space using

the formula ˙〈O〉 = Tr[Oρ̇]. The simplest set of opera-
tors that can approximately describe the system state is
{a, σ−, σz}. Applying the above trace formula we obtain:

˙〈a〉 = −(κ+ i∆c)〈a〉+ g〈σ−〉+ E
˙〈σ−〉 = −(γ⊥ + i∆a)〈σ−〉+ g〈aσz〉
˙〈σz〉 = −2γ⊥(1 + 〈σz〉)− 2g(〈a†σ−〉+ 〈aσ+〉)

(8)

The above operator expectation equations (8) also apply
to the case of N non-interacting atoms each coupled to
the same cavity mode with the same coupling constant g.
In this case the atomic operators are the sums of those
of individual atoms [8]:

σ− =

N∑
j=1

σj
−, σz =

N∑
j=1

σj
z (9)

Note that the moment evolution equations (8) are not
closed as they contain expectations of operator products.
A common practice in the quantum optics community
to close the equations is to simply factorize the opera-
tor products, e.g. 〈a†σ−〉 ≈ 〈a†〉〈σ−〉, which corresponds
to taking the thermodynamic limit of many weakly ex-
cited atoms hence the correlations between the atomic
operators and the field operator average to zero [6, 7]
(see also [11, 12] for alternative derivations). The closed
equations after factorization are the well-known Maxwell-
Bloch Equations (MBEs):

˙〈a〉 = −(κ+ i∆c)〈a〉+ g〈σ−〉+ E
˙〈σ−〉 = −(γ⊥ + i∆a)〈σ−〉+ g〈a〉〈σz〉
˙〈σz〉 = −2γ⊥(1 + 〈σz〉)− 2g(〈a†〉〈σ−〉+ 〈a〉〈σ+〉)

(10)

Under the resonance condition ∆c = ∆a = 0 (we will
always assume this resonance condition in the following)

〈a〉 and 〈σ−〉 are real thus the above MBEs can be re-
written using the following physical observables: cavity
field amplitude quadrature x = (a + a†)/2, and Pauli
matrices σx = (σ+ + σ−) and σz

˙〈x〉 = −κ〈x〉+
g

2
〈σx〉+ E

˙〈σx〉 = −γ⊥〈σx〉+ g〈x〉〈σz〉
˙〈σz〉 = −2γ⊥(1 + 〈σz〉)− 2g〈x〉〈σx〉

(11)

To visualize the atom-field interaction it is useful to
rewrite the driving terms of the atomic operator expec-
tation equations in the form of the classical equation of
motion for a magnetic moment in a static magnetic field:

d

dt

 〈σx〉0
〈σz〉

 =
d

dt
~S = 2g~S× ~B = 2g

 〈σx〉0
〈σz〉

×
 0
−〈x〉

0


(12)

where ~S =
(
〈σx〉 0 〈σz〉

)T
, ~B =

(
0 −〈x〉 0

)T
. It

shows that the atomic pseudospin undergoes precession
in xz-plane driven by the cavity field acting as a pseudo-
magnetic field. This spin precession representation of
the atomic dynamics provides a useful intuitive picture
for deciphering the mechanism of stochastic switching in
single-atom absorptive bistability.

III. STOCHASTIC SWITCHING INDUCED BY
ATOMIC SPONTANEOUS EMISSION

Stochastic switching refers to the following phe-
nomenon: for an absorptive bistable parameter set iden-
tified by the Maxwell-Bloch equations the quantum tra-
jectory simulation would show that the system has two
preferred states with low and high field amplitude respec-
tively resembling absorptive bistability; however unlike in
the limiting case described by the Maxwell-Bloch equa-
tions the system does not stay in one of the two states
forever; instead it frequently jumps between them as is
illustrated in Fig. 1 below. This observation has been
confirmed by our recent experiment [5].

Since the automatic switching is a stochastic pro-
cess, to search for the underlying physical mechanism we
should obviously focus on the stochastic processes con-
tained in our theoretical model, which are the atomic
spontaneous emission and photon leakage out of the cav-
ity mirror. It is intuitive that intrinsic field fluctuation
due to photon leakage could induce transitions between
the two metastable states as is suggested by the disper-
sive bistability in a Kerr-nonlinear cavity [9]. However
it is not clear whether the atomic spontaneous emission
also contributes to the automatic switching and if yes
how it operates.

The numerical evidence for the active role of the atomic
spontaneous emission in inducing the switching is based
on the quantum trajectory simulation defined above [10].
In particular we used the quantum optics toolbox [13]
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FIG. 1. A typical quantum trajectory simulation result for
the evolution of the field amplitude quadrature expectation
〈x〉 for an absorptive bistable parameter set identified by the
Maxwell-Bloch equations

to generate quantum trajectories. We then used 3-state
Hidden Markov Model (HMM) to classify all the data
points of the trajectory into 3 groups: (1) low-intensity
state points (2) in-transit points and (3) high-intensity
state points based on the corresponding observable ex-
pectation triplet (〈x〉, 〈σx〉, 〈σz〉) and defined the occur-
rence of switching as the moment at which the sys-
tem goes from low/high-intensity state to in-transit state
followed by the system going from in-transit state to
high/low-intensity state and staying in the destination
state for a reasonably long time. With this we collected
the statistics of spontaneous emission, photon leakage
and the observable expectation triplet conditioned upon
the occurrence of switching using a counting window with
a suitable width. Moreover we slid the counting window
from the occurrence of switching backward in time just
like rewinding the film to see what happened that pre-
cedes the switching. The conditioned statistics against
the time the counting window is positioned for low-to-
high transitions are plotted in Fig. 2 below. As we can
see from the plot, there is excessive spontaneous emission
preceding the onset of low-to-high transitions.

This excessive spontaneous emission is also observed
in the statistics conditioned upon high-to-low transitions
as is shown in Fig. 3 below.

It seems like excessive spontaneous emission is a pre-
cursor to the automatic switching. More careful exami-
nation of the effect of spontaneous emission on the above-
mentioned atomic pseudospin precession reveals that ex-
cessive spontaneous emission is not just a precursor to the
automatic switching but actually responsible for inducing
the switching by weakening or strengthening, depending
on whether the speed of precession is slow or fast, the
dipole moment hence the dipole radiation that destruc-
tively interferes with the external field coupled into the
cavity.

FIG. 2. The statistics of spontaneous emission, photon leak-
age and 〈x〉, 〈σx〉 conditioned upon low-to-high state transi-
tions, where the origin of the x-axis is defined as the moment
the system goes from low-intensity to in-transit state and the
position of the counting window is defined as the moment we
start counting; the time unit of the x-axis is chosen to be the
mean time the system takes to complete the low-to-high state
transitions (termed “mean jump-up duration” in the plot)
and the counting window width is set to be 1/16 of the time
unit

FIG. 3. The statistics of spontaneous emission, photon leak-
age and 〈x〉, 〈σx〉 conditioned upon high-to-low state transi-
tions, where the origin of the x-axis is defined as the moment
the system goes from high-intensity to in-transit state and the
position of the counting window is defined as the moment we
start counting; the time unit of the x-axis is chosen to be the
mean time the system takes to complete the high-to-low state
transitions (termed “mean jump-down duration” in the plot)
and the counting window width is set to be 1/16 of the time
unit

Whenever a spontaneous emission occurs the atomic
pseudospin is reset to pointing vertically downward in
the Bloch sphere (〈σz〉 = −1) and the dipole moment is
reset to zero (〈σx〉 = 0 and recall that we are considering
the resonant case thus 〈σy〉 ≡ 0). After the emission,
the atomic pseudospin continues precessing and because
of the out of phase relation between the cavity field and
the dipole moment, the cavity field drives the pseudospin
back towards its position before the occurrence of spon-
taneous emission i.e. the dipole moment recovers. Fig. 4
below helps to visualize the consequence of spontaneous
emission on the atomic pseudospin precession.
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FIG. 4. Graphical representation of spontaneous emission
interrupting the atomic pseudospin precession in which the
thick red arrow represents the atomic pseudospin whereas the
thin blue arrow represents the cavity field acting as a pseudo-
magnetic field. (a) 〈σx〉 undergoes rotation mediated by 〈x〉
before spontaneous emission. (b) 〈σx〉 is reset to zero upon
spontaneous emission. (c) 〈σx〉 recovers via the rotation me-
diated by 〈x〉 after spontaneous emission.

Therefore at low-intensity state the cavity field is weak
thus the speed of precession is slow hence the recovery
is slow. But once the dipole moment is recovered it will
remain strong for a long time because it produces strong
dipole radiation that reduces the cavity field and hence
the speed of precession. As a result excessive spontaneous
emission leads to weaker dipole moment and dipole radi-
ation as is illustrated by Fig. 5 below.

FIG. 5. Illustration of excessive spontaneous emission weak-
ening the dipole moment when the speed of the atomic pseu-
dospin precession is slow

In contrast, at high-intensity state the cavity field is
strong thus the speed of precession is fast therefore the
recovery is immediate. But once the dipole moment is
recovered it will quickly precess to the opposite sign and
complete many revolutions if there is no spontaneous
emission to interrupt the cycling. As a consequence the
dipole moment averages to almost zero when there are
few emissions. This is illustrated in Fig. 6 below.

As a verification for the above hypothesis we randomly
chose a trajectory and divided it into time segments of
equal length and for each segment we counted the num-
ber of spontaneous emissions. After that we evaluated
for each segment the time average of 〈x〉 and classified
a segment as low-intensity segment if its 〈x〉 average is
smaller than a chosen limit or high-intensity segment if

FIG. 6. Illustration of excessive spontaneous emission
strengthening the dipole moment when the speed of the
atomic pseudospin precession is fast

its 〈x〉 average is greater than a chosen limit. The fi-
nal step consists of making a histogram for both the set
of low-intensity segments and that of high-intensity seg-
ments based on the number of spontaneous emissions oc-
curred within the segment, and evaluating for each of
the histogram bins the average of 〈σx〉. The resulted
histogram on the bin average of 〈σx〉 versus the num-
ber of spontaneous emissions for both the low-intensity
segments and the high-intensity segments are plotted in
Fig. 7 and Fig. 8 below, which show clearly the dipole mo-
ment weakening/strengthening by excessive spontaneous
emission.

FIG. 7. Bin average of 〈σx〉 vs. the number of spontaneous
emissions histogram for the low-intensity segments

IV. FLIP-FLOP CONTROL VIA
SPONTANEOUS EMISSION ENHANCEMENT

With the above understanding of the switching mech-
anism via spontaneous emission, we proposed an imple-
mentation of flip-flop control in the context of single-
atom cavity quantum electrodynamics via spontaneous
emission enhancement, which provides further corrobo-
ration to the above hypothesized mechanism. The idea
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FIG. 8. Bin average of 〈σx〉 vs. the number of spontaneous
emissions histogram for the high-intensity segments

is straightforward: if excessive spontaneous emission can
lead to state transitions then when a state transition
is desired what we need to do is just to artificially in-
troduce excessive spontaneous emission, and there is a
well-known method to enhance spontaneous emission—
the Purcell effect [14]. Thus suppose we have some means
to alter the cavity detuning (w.r.t. the atomic resonance
frequency)—either by some kind of electro-optic mecha-
nism or by Kerr effect with a control beam—then we can
realize state transition in the first cavity, the absorptive
bistable cavity, by reducing to zero the detuning of the
second cavity, the cavity for spontaneous emission en-
hancement (which we can call the Purcell cavity). The
schematic of such a flip-flip is given in Fig. 9. Fig. 10 and
Fig. 11 below illustrate the flip-flop control via turning
off the detuning of the Purcell cavity, where the detun-
ings are chosen such that the effective decay rates are
almost the same as the spontaneous emission rate 2γ⊥.

FIG. 9. A schematic of a two-cavity optical flip-flop consist-
ing of an absorptive bistable cavity to produce the two logic
states and a Purcell cavity to inducing state switching via the
Purcell effect

FIG. 10. Cavity enhanced spontaneous emission induces low-
to-high transition in the absorptive bistable cavity by turning
off the detuning of the Purcell cavity (the square-well green
curve)

FIG. 11. Cavity enhanced spontaneous emission induces high-
to-low transition in the absorptive bistable cavity by turning
off the detuning of the Purcell cavity (the square-well green
curve)

An added advantage of this flip-flop control is that, for
conventional flip-flops the required input to trigger bit
flip from “0” to “1” is different from that to trigger bit
flip from “1” to “0”; however for our proposal the same
input, which is turning off the detuning of the Purcell
cavity, can be used to trigger both “0” to “1” and “1” to
“0” bit flips.

V. SUMMARY AND CONCLUSION

In this paper we have elucidated the mechanism of
excessive spontaneous emission inducing the automatic
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switching between the two metastable states in the quan-
tum analog of absorptive bistability, which is weakening
or strengthening the dipole moment thus dipole radia-
tion under weak or strong cavity field. The difference
in the consequence of excessive spontaneous emission re-
sults from the difference in the speed of the atomic pseu-
dospin precession driven by the cavity field. Based on this
understanding we proposed a flip-flop control of an ab-
sorptive bistable cavity via cavity enhanced spontaneous
emission using a second cavity with tunable detuning,

which provides a physical basis for designing ultra-low
energy optical information processing logic devices.
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