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Input-output theory is invaluable for treating superconducting and photonic circuits connected
by transmission lines or waveguides. However, this theory cannot in general handle situations in
which retro-reflections from circuit components or configurations of beam-splitters create loops for
the traveling-wave fields that connect the systems. Here, building upon the network-contraction
theory of Gough and James [Commun. Math. Phys. 287, 1109 (2009)], we provide a compact and
powerful method to treat any circuit that contains such loops so long as the effective cavities formed
by the loops are sufficiently weak. Essentially all present-day on-chip superconducting and photonic
circuits will satisfy this weakness condition so long as the reflectors that form the loops are not
especially highly reflecting. As an example we analyze the problem of transmitting entanglement
between two qubits connected by a transmission line with imperfect circulators, a problem for which
the new method is essential. We obtain a full solution for the optimal receiver given that the sender
employs a simple turn on/turn off. This solution shows that near-perfect transmission is possible
even with significant retro-reflections.

PACS numbers: 03.67.-a, 42.50.Ex, 85.25.-j, 85.25.Cp

I. INTRODUCTION

Input-output theory [1–9] is an important tool for de-
scribing the behavior of quantum superconducting [10–
15] and photonic [16–19] circuits. This theory models the
interaction of circuit components (localized quantum sys-
tems) with transmission lines and wave guides that carry
what are effectively traveling-wave fields. It provides a
description in which the fields appear as “inputs” that
drive the localized systems, and in which the fields that
propagate away from the systems (the “outputs”) contain
both the input fields and a contribution from the systems.
If the behavior of the systems is linear then the dynam-
ics of a system or network of systems can be solved and
the result is a single frequency-space “scattering matrix”
that tells how the network transforms the input fields to
the output fields as a function of frequency [3, 5–7, 9].

As useful as it is, input-output theory has an Achilles
heel, in that it cannot in general handle situations in
which the fields can traverse “loops” created inadver-
tently by retro-reflections from circuit components or de-
liberately through the use of beam-splitters. The reason
that input-output theory breaks down in this situation
is that such loops allow individual fields to interact re-
peatedly with the same system, potentially an infinite
number of times, creating a “non-Markovian” dynamics
in which states of the circuit components at one time
are able to directly effect the components at later times
via the fields [20, 21]. Another way to understand this
breakdown is that the effective cavities formed by the
loops can change the mode structure of the fields so that
they no-longer possess the simple continuum of modes on

which input-output theory relies.

The method we present here begins with the obser-
vation that if the wave-packets emitted by the localized
systems change slowly compared to the time that the
input fields spend bouncing around within the network,
then input-output theory should still provide a good de-
scription: on the timescale of the systems each system
will see merely a single total field that is the sum over
all the repeated traversals of the loops. Thus in the ap-
propriate parameter regime, in which the “ring-down”
time of the fields within the network is sufficiently short,
one should be able to obtain an effective input-output
description for the circuit. It turns out that the math-
ematical machinery required to derive this description,
with only a minor addition (the inclusion of inter-system
phase shifts), is a “network contraction” theory already
developed by Gough and James [22]. Here we extend and
re-formulate this network contraction theory, as well as
re-deriving it in the language of input-output theory fa-
miliar to physicists. The result is a simple and powerful
tool for analyzing superconducting and photonic circuits
that can handle internal reflections and other configura-
tions in which the fields traverse loops (that is, traverse
some arbitrarily complex network of interlocking effective
weak cavities and ring cavities).

Gough and James developed a method to construct
an effective, loop-free input-output description from a
“loopy” network. This elegant mathematical theory is
obtained by imposing the condition that the time delay
in going from one system to another is zero. In devel-
oping their theory, Gough and James did not, however,
establish the physical conditions, and thus the param-
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eter regimes under which the dynamics of the resulting
input-output network well-approximates that of the orig-
inal network: the ring-down times depend not only on
the travel-time between systems but also on the reflec-
tivities that form the effective weak cavities. Our first
main contribution is to derive these conditions in detail,
showing at the level of the field commutators the regimes
in which input-output theory can be expected to provide
a valid description of a “loopy” network. In presenting
their network contraction procedure, Gough and James
emphasized its use in building a network one element at
a time, which while appropriate for computer-automated
computations is cumbersome if one wishes to perform
calculations by hand. In extending (and specializing)
the Gough-James method to superconducting and pho-
tonic circuits with weak retro-reflections and other weak
loops, our second main contribution is to show explic-
itly how the entire network structure (the set of connec-
tions) can be captured by a single matrix. The effective
input-output description of the network is then given by
compact formulas in terms of this matrix. As the orig-
inal derivation by Gough and James is not written in a
language familiar to most physicists, we also both derive
and present the method in such a language. We note that
there is some overlap between the work presented here
and concurrent work by Gough et al. presented in [23].

In the second part of this paper we apply the method
described above to the important problem of transfer-
ring a quantum state from one qubit to another via a
uni-directional transmission line [24–30]. We show how
this problem can be solved when we take into account
that all the circuit elements, including the circulators
that couple the qubits to the transmission lines, induce
retro-reflections at their various interfaces. Such reflec-
tions cause unavoidable loss, the effect of which can be
minimized by choosing the appropriate control protocol.

The rest of this paper is laid out as follows. In Sec. II
we discuss the derivation of the input-output formalism
and in particular the approximations that it requires.
These are important later when determining the condi-
tions under which the method presented here is appli-
cable. In Sec. III we explain how a set of unconnected
input-output network elements is easily described using
a single scattering matrix S, a vector of operators L,
and a Hamiltonian H (this formalism was introduced by
Gough and James [31]). We follow this by explaining how
to specify the connections between the elements (that is,
define a network) using a single matrix W. In Sec. IV we
show how to calculate the effective input-output descrip-
tion of a network, which is a single input-output system
described by effective scattering matrix Seff, vector of op-
erators Leff, and Hamiltonian Heff. We give the explicit
expressions for these quantities in terms of S, L, H , and
W. We also describe the effective “dissipative Hamilto-
nian” for the effective input-output system, and we derive
the regime in which the effective description is a good
approximation. In Sec. V we apply the method to the
problem of transferring a quantum state from one qubit

FIG. 1. Two examples of superconducting circuits (networks)
that contain weak loops, along with their corresponding re-
duced (loop-free) input-output (IO) models. The traveling-
wave fields that are internal to the networks, and that are thus
eliminated in obtaining the input-output descriptions, are de-
noted by solid grey arrows. The fields that are the external
inputs and outputs to the networks are denoted by solid black
arrows. The outgoing emissions from the systems are depicted
by dashed arrows. (a) A superconducting qubit capacitively
coupled to a terminated planar waveguide, forming a quasi-
1D input output system. (b) The effective IO model for (a)
derived by eliminating the internal field modes (grey arrows).
(c) Two of the qubit IO models in (b) connected together via
imperfect circulators. (d) The reduced two-qubit IO model
for (c) obtained by eliminating all the internal fields.

to another along a transmission line via imperfect circula-
tors, something that is not possible with standard input-
output theory. We show how the transmission probabil-
ity can be maximized by controlling the receiver given
that the coupling between the sender and the transmis-
sion line is simply turned on for a fixed amount of time.
We also analyze the super- and sub-radiant states of this
two-qubit network. In Sec. VI we summarize our results
and discuss open questions. The appendix gives the de-
tails of the algebraic manipulations required to derive the
effective input-output model.

II. INPUT-OUTPUT THEORY: LOCAL

SYSTEMS WEAKLY INTERACTING WITH

TRAVELING-WAVE FIELDS

Here we discuss the key assumptions and approxima-
tions that lead to the equations of input-output the-
ory [8, 9]. We will need to refer to these assumptions
when we derive the conditions under which a network
with internal reflections can be well-approximated by an
effective input-output description. Since the work here
builds upon input-output theory, some basic familiarity
with this theory will be helpful to the reader. In partic-
ular we recall that input-output theory describes a local-
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ized system interacting with a 1D, unidirectional prop-
agating field. This theory provides two key equations,
one which gives the output field in terms of the input
field and the emissions from the system, and a second
that gives the dynamics of the system as a Heisenberg-
Langevin equation driven by the field. For references
purposes we note that the input-output relation for the
field is given in Eq.(12) (for an interaction with a single
field) and Eq.(20) (for a set of interactions with multiple
1D fields). The Heisenberg-Langevin equation for one
or more systems interacting with the fields is given in
Eq.(35).
Input-output theory is also able to handle a “network”

situation in which the output field from one system is
connected to the input field of another system. This
was first shown by Gardiner [4], who referred to such
a configuration as “cascading” two quantum systems to-
gether. Here we will be considering a lossless network of
guided 1D fields that connect local quantum systems in
this manner.
We will work with a general 1D scalar field, F (z),

which when written in terms of the right (+) and left
(−) propagating modes, is

F (z) =

∫ ∞

0

dω√
2π

F(ω)
[
b+(ω)e

iωz/vp + b−(ω)e
−iωz/vp

]

+ h.c.,

(1)

where F(ω) is the complex vacuum field strength, vp is
the phase velocity, and b±(ω) are canonical commuting

field operators with units of 1/
√
Hz.

We wish to consider quantum systems that couple to
this field via a linear interaction of the form [8]

HSF = −QiF (zi), (2)

for a system operator Qi located at position zi. Our
model assumes that the system contains only a sin-
gle dominant resonance frequency ω0, which for sim-
plicity, corresponds to the energy gap between the rel-
evant system states |g〉 and |e〉. Furthermore, Qi is as-
sumed to only contains off-diagonal matrix elements cou-
pling |g〉 and |e〉. Note that the resonant interaction

strength, 〈e|Qi|g〉F(ω0)/~ has units of
√
Hz. The fre-

quency κ0 ≡ |〈e|Qi|g〉F(ω0)|2/~2 is ultimately the rate
at which |e〉 decays into |g〉 by emitting an excitation into
the field. After transforming to the interaction picture
and dropping any counter rotating terms, the interaction
Hamiltonian is

HSF = −i~
√
κ0σ

+
i e

iφ
[
eik0zib+(zi, t) + e−ik0zib−(zi, t)

]

+ h.c.,

(3)

where σ+
i = |e〉〈g| and φ is the phase angle that sets the

coupling quadrature, i.e. φ = arg 〈e|Qi|g〉F(ω0)/i~. The
field operators b±(zi, t) are defined as,

b±(zi, t) ≡
∫ ∞

0

dω√
2π

F(ω)

F(ω0)
b±(ω)e

−i(ω−ω0)(t∓zi/vp). (4)

In this definition we have factored out the carrier trav-
eling waves e±ik0z−iω0t (with wave number k0 = ω0/vp).
However, in moving to the interaction picture, σ+

i gen-
erated the phase eiω0t, canceling the time dependence of
the carriers.

Standard input output theory, considers only a single
system localized at a given position and thus any spatial
phases can be safely ignored. However when considering
two systems coupling to the same field at differing posi-
tions, propagation phases become relevant. The nonzero
commutation relations between the field operators at un-
equal positions and times are

[b±(zi, t), b
†
±(zj , t

′)] =

∫ ∞

0

dω

2π

|F(ω)|2
|F(ω0)|2

× exp [−i(ω − ω0)(t− t′ ∓ (zi − zj)/vp)] . (5)

(The counter propagating fields commute with

[b±(zi, t), b
†
∓(zj , t

′)] = 0, as they integrate over wavevec-
tors with opposite signs.)

Here we will make the crucial approximation that this
commutation relation will ultimately be approximated
by a delta function in time. Whether or not this ap-
proximation is made with respect to the absolute time,
or a retarded time ultimately resides in the relevant time
and distance scales. We have already assumed that the
relevant time scale is given by 1/κ0 thus we define the
unitless time and frequency variables

∆τ ≡ (t− t′)κ0 ν ≡ (ω − ω0)/κ0, (6)

which are both ∼ O(1). After making this change of
variables and using the relation that vp = ω0/k0,

[b±(zi, t), b
†
±(zj , t

′)] =

∫ ∞

−
ω0

κ0

dν

2π

κ0

|F(ω0)|2

×
∣∣∣F
(
ω0(1 + ν κ0

ω0

)
)∣∣∣

2

e−iν(∆τ∓(zi−zj)k0κ0/ω0). (7)

The assumption of weak coupling implies that κ0 ≪ ω0.
The spatial dependence of this commutator comes down
to the comparison of the separation |zi−zj | to the coher-
ence length ℓ0 ≡ vp/κ0. Here we focus on the case where
|zi − zj| ≪ ℓ0, or equivalently, |zi − zj |k0 ≪ ω0/κ0. Note
that this is a significantly weaker criteria than is usu-
ally imposed for either a lumped element circuit model
or free space superradiance [32], which both assume that
the distance between systems is small when compared to
the wavelength, not merely this larger coherence length.

Current experiments with superconducting qubits [24,
33] operate at ω0 ∼ 2π× 6 GHz with maximum coupling
rates varying between κ0 ≃ 2π× 100 MHz [24] and κ0 ≃
2π × 400 KHz [33]. These experiments generally satisfy
the criteria of weak coupling as 10−6 . κ0/ω0 . 10−2. In
terms of the coherence length 2 m . ℓ0 . 500 m, given
a typical phase velocity vp = 0.7c.
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In the limit κ0/ω0 → 0, the approximation

[b±(zi, t), b
†
±(zj , t

′)] ≈ κ0

∫ ∞

−∞

dν

2π
e−iν∆τ = κ0 δ(∆τ)

= δ(t− t′),

(8)

becomes exact. In light of this, we will approximate
the spatially dependent field operators by a single one,
b±(zi, t) ≈ b±(t), resulting in a monochromatic approxi-
mation for the free field;

F (z, t) ≈ F(ω0)e
ik0z−iω0tb+(t) + h.c.

+ F(ω0)e
−ik0z−iω0tb−(t) + h.c.

≡ F+(z, t) + F−(z, t)

(9)

For an ensemble of N systems identically coupled to
the same waveguide, this approximation results in the
total interaction Hamiltonian

HSF = −i~
[
L†
+b+(t) + L†

−b−(t)
]
+ h.c., (10)

where the collective excitation operators are:

L†
± =

√
κ0e

iφ
N∑

i=1

σ+
i e

±ik0zi . (11)

We have now covered the assumptions of input-output
theory to the extent we need for our analysis below. To
obtain the equations of input-output theory from this
point onwards we refer the reader to the standard treat-
ment (see, for example [8, 9]).

III. DEFINING A NETWORK OF

INPUT-OUTPUT SYSTEMS

We now show how one can specify a network of input-
output systems (that is, specify how the inputs and out-
puts of the systems are connected together) using a single
matrix. To do this one first decides on a set of input-
output systems (“network elements”) that are to be con-
nected together to form the network. These may be
systems with their own internal dynamics that are cou-
pled to transmission lines or wave guides, or they may be
beam-splitters that merely connect various wave-guides
or transmission lines together. These latter elements es-
sentially set boundary conditions that the traveling-wave
fields must obey. As we will explain, a given set of net-
work elements can be described by i) a “scattering ma-
trix”, ii) a vector whose elements are the operators by
which the dynamical systems are coupled to the fields,
and iii) the Hamiltonians of the systems. Given this com-
pact description of the network elements, the connections
between the inputs and outputs of the elements, which
completely define the network, are then captured by a
single matrix.

A. The 1D input-output relation

For a system coupled to a single IO channel, e.g. a su-
perconducting qubit terminating a 1D transmission line,
the detection of an outgoing photon could have one of two
possible origins. Either the qubit system made a transi-
tion creating an outgoing photon, or an incoming photon
reflected off the terminating boundary condition. In a
lossless system, a perfectly reflecting boundary can only
result in a scattering phase shift between the incident and
exiting fields. The Heisenberg equation of motion for the
outgoing field operator will be the coherent sum of these
two processes, i.e.

bout(t) = eiθbin(t) + L(t). (12)

Here θ is the scattering phase shift and L(t) is a system
operator describing resonant emission.
As an example consider Fig. 1(a). In order for an in-

teraction Hamiltonian like Eq.(2) to implement a sin-
gle channel model, the macroscopic boundary conditions
that describe perfect reflection at the position z0, require
that F (z) = 0 for all z ≤ z0. Setting F (z0) in Eq.(9) to
zero leads to the boundary condition

b+(t) = −e−i2k0z0b−(t), (13)

or in other words θ = −2k0z0 + π. This boundary has
a physical effect on system’s emission, as the reflected
portion of the left going part interferes with the right
going part. In fact direct substitution into Eq.(10), with
N = 1, results in

H1D = −i~
[
L†
1Db−(t)− L1Db†−(t)

]
(14)

where

L1D = 2
√
κ0e

−iφ−iθ/2 cos[k0zi + θ/2]σ−. (15)

Thus a change in θ has a real effect on the system field
coupling, possibly transforming a system located at an
anti-node to a node where L1D = 0. The importance
of the above example is that we can utilize the lesson of
the reflecting boundary condition at z0 to apply multiple
constraints across a network of guided modes.

B. The Scattering Matrix

Utilizing the lessons of microwave engineering, the lin-
ear passive response of a lossless multiport device is sum-
marized by a single unitary scattering matrix S, which
maps the incoming traveling waves to the outgoing ones.
Here we adopt the convention that the outgoing traveling
wave exiting a port will have the same mode index as the
field entering that port. Thus when Sij = δij all incom-
ing fields are perfectly reflected with no change of phase
(θi = 0). This is in contrast to a convention where δij
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corresponds to perfect transmission in some preferred di-
rection. However, our results are ultimately independent
from any particular choice of mode labels.
A pertinent example for a multiple port scatter is an

imperfect circulator. Fig.1(c) shows two localized qubit
systems connected via two circulators. Consider the cir-
culator on the left, for which the spatial coordinates of
the three ports are denoted by z1, z2, and z3, with z1 and
z3 lying on a vertical axis increasing from bottom to top
and z2 on a horizontal axis increase from left to right. If
we collect the input and output fields of the three ports
into vectors as

bin(t) =




b+(z1, t)
b−(z2, t)
b−(z3, t)



, bout(t) =




b−(z1, t)
b+(z2, t)
b+(z3, t)



, (16)

then the scattering matrix tells us how the input fields
get split up and directed among the output fields:

bout(t) = Scirc bin(t). (17)

Here, and in what follows, we denote vectors and matrices
whose dimension is the number of input/output ports in a
network in bold face. Given how we have chosen to order
the input and output fields within the vectors bin(t) and
bout(t), if we write the scattering matrix Scirc as

Scirc =




r11 c12 t13
t21 r22 c23
c31 t32 r33


 (18)

then the elements rii are the input retroreflections, the
tij are the circulating transmission coefficients, and cjk
are the “cross-talk” coefficients.
A crucial point for the formalism we develop is that

we only consider scattering matrices that describe clas-
sical boundary conditions and are independent from any
quantum degrees of freedom. In other words, we assume
that for any quantum system operator A, [S, A] = 0. The
original theory of Gough and James is more general in
that they used the quantum probability theory of Hud-
son and Parthasarathy [34] to include theoretical models
in which [S, A] 6= 0.

C. The many-input many-output relation

The many-input analogy of the single-field IO relation,
Eq.(12), is made by first defining, for an N port system,
the vector of inputs (outputs),

bin(t) =




bλ1
(z1, t)

bλ2
(z2, t)
...

bλN
(zN , t)


, bout(t) =




bλ̄1
(z1, t)

bλ̄2
(z2, t)
...

bλ̄N
(zN , t)


,

(19)
where the propagation direction λi is positive (negative)
when the coordinate zi is increasing (decreasing) as the

FIG. 2. A two-qubit “crossed waveguide” network. (a) A
schematic depicting two superconducting circuits weakly cou-
pled to a pair of crossed waveguides, with a general unitary
scattering relation. (b) A block diagram of all field operators.

Input field operators binj are scattered to the output fields boutk

via the local elements of S, e.g. SJ , and irrespective of the
waveguides. The internal inputs are connected to the internal
outputs by the connection matrix elements wkl (gray).

input field approaches the port. The corresponding out-
put field then propagates in the opposite direction, thus
λ̄i ≡ −λi. The general network IO relation is then

bout(t) = Sbin(t) + L(t). (20)

Here L is a vector composed of the operators via which
the systems interact with the fields at each of their ports:

L(t) =




L1(t)
L2(t)
...

LN(t)


 . (21)

Each of the operators Li describes the resonant emission
from a quantum system inside the scattering region. Note
that the elements of L are labeled, not by the individual
subsystems, but by the output ports. If our model con-
tains multiple subsystems within the scattering region,
then the Li(t) will in general be collective operators (e.g.
L± in Eq.(11)).
Fig. 2 shows an example multimode network con-

taining two crossed waveguides that form a general 4-
input/4-output junction. The local scattering between
inputs bini and boutj , i, j = 1 . . . 4, is made by a general
4-by-4 unitary matrix SJ. The network also contains two
superconducting qubits that are each coupled to one of
the ports of the 4-port junction. To describe this network
we first consider the two qubits and the 4-port junction
as three separate components, each with their own in-
put/output ports. Since each of the qubits has a single
input/output port, together the three components have
6 inputs and 6 outputs.
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We now define a scattering matrix S that describes
the relationship between the 6 inputs and outputs before
the three components are connected together to form the
network. Since each of the components acts on its own
inputs separately from the others, this scattering matrix
is block-diagonal where each block describes the action
of one of the components. Since each qubit has only one
port, S has two 1-by-1 blocks and a single 4-by-4 block
given by SJ:

S =




eiθa 0
0 eiθb

0

0 SJ


 . (22)

Physically, the fact that the three components are con-
nected with two ports of the junction each terminated
by a qubit makes the 6-by-6 model redundant. The right
going field entering the junction at z1, F+(z1), is sim-
ply the spatial translation of the right-going field that
exited qubit a, F+(za). The monochromatic approxima-
tion of Eq. 9 implies that so long as |z1 − za| ≪ ℓ0,
this translation is simply a change in phase, F+(z1) =
eik0(z1−za)F+(za), and there is only one relevant field op-
erator, b+(t). Thus the connection from a to the junction
input at z1 imposes the constraint

bin1 = eik0(z1−za)bouta . (23)

If SJ contains retroreflecting amplitudes at positions z1
and z3, then there is the distinct possibility of developing
circulating power in the (hopefully weak) cavities formed
in the intervals [za, z1] and [z3, zb]. The legitimacy of the
monochromatic approximation ultimately depends upon
these intermediate cavities being of poor quality with a
rapid decay rate, see Section IVE.
Fig. 2 contains a total of 4 constraints, as both right

and left waveguides have bidirectional connections. For
a general network consisting of N inputs and N outputs,
if M ≤ N of the outputs are injectively routed to M
distinct inputs then the M constraint equations can be
easily written as a single matrix equation relating M el-
ements of bout(t) to M elements of bin(t).
We will find it extremely convenient to utilize matrix

projectors that isolate the M connected “internal” modes
from the remaining N−M free “external” modes. In ad-
dition to distinguishing internal from external, we must
also maintain the distinction between input and output
modes, as they refer to traveling-wave fields in physically
distinct regions. Thus we define the projectors onto the
internal/external inputs as Ii and Xi and the projectors
onto the internal/external outputs as Io and Xo. As they
are orthogonal projectors they satisfy the relations

1 = Ii +Xi, X
2
i = Xi, IiXi = XiIi = 0, (24)

where 1 is the N × N identity matrix. We denote the
internal/external partitioning of the vector of field oper-
ators as superscripts, i.e.

bin = Xibin + Iibin = b
ext
in + b

int
in . (25)

Given this notation, the constraints imposed by a given
network (that is, which of the outputs are routed to which
inputs) can be captured by a single connection matrix,
W [35], via the relation

b
int
in = Wb

int
out. (26)

For the crossed-waveguide network depicted in Fig. 2, the
connection matrix is explicitly

W =




0 0 eiϕ1a 0 0 0

0 0 0 0 eiϕ3b 0

eiϕ1a 0 0 0 0 0

0 0 0 0 0 0

0 eiϕ3b 0 0 0 0

0 0 0 0 0 0




, (27)

where the propagation phases are ϕij = k0|zi− zj|. Note
that W is symmetric here because we are considering
bidirectional (i.e. reciprocal) connections, which may not
hold for more general networks. However, the rank of W
is always equal to the number of internal connections, M .
In fact we will repeatedly use the relations,

W
†
W = Io and WW

† = Ii. (28)

It then follows that W = IiWIo.
It is worth emphasizing that, at its most general, S

is a unitary map that takes all inputs to all outputs.
As a matrix, its columns index input modes while its
rows index the outputs. In contrast, W is a one-for-one
mapping between a subset of output modes to an equal
number of inputs. So as a matrix, W has columns labeled
by outputs, rows labeled by inputs, and is null on every
unconstrained external mode. In a sense, W describes
M direct feedback connections, as it returns outputs to
inputs.

IV. THE EFFECTIVE INPUT-OUTPUT MODEL

FOR A NETWORK WITH WEAK LOOPS

We have shown above how to define a set of network
elements (a set of systems and beam-splitters, each with
a number of inputs and outputs), and how to specify the
way these elements are connected together to form a net-
work. Recall that if our network contains loops there is
no guarantee that it can be described with input-output
theory. We now derive the effective input-output descrip-
tion for such a network, and the conditions under which
this description can be expected to well-approximate the
dynamics of the network.

A. Paths of the network

A great amount of physical intuition can be gained by
noting that every possible path through the network can
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be created by taking alternating products of S and W.
Consider the infinite sum of matrices

S+ SWS+ SWSWS+ . . . . (29)

We have already discussed that matrix elements [S]jk
are the scattering amplitudes that directly map bink to
boutj . The elements of the second term of the above se-
ries, which we can equivalently write as [SIiWIoS]jk, is
the sum over all paths that map input k to output j,
while traversing the network exactly once. If j is an in-
ternal output then the path will continue and traverse
the network a second time. In general [(SW)nS]jk is
the sum over all k 7→ j paths that traverse the network
precisely n times. Assuming this series converges (that
is, longer paths have successively smaller amplitudes) we
then concluded that the elements of the matrix

[
∞∑

n=0

(SW)n

]
S =

1

1− SW
S (30)

are the coherent sum over all scattering paths through
the network. The subset of these paths that take external
inputs to external outputs are thus the nonzero elements
of

Seff ≡ Xo
1

1− SW
SXi, (31)

which is the effective scattering matrix of the reduced
input/output model.
The vector of effective sources Leff is interpretable

along similar lines. Consider the sum

L+ SWL+ SWSWL+ . . . (32)

This is the coherent sum over the raw system emissions
L, the emissions having progressed through one round
trip of the network, SWL, the emissions after two round
trips, and so on. Summing this series and projecting it
onto the external outputs gives,

Leff ≡ Xo
1

1− SW
L. (33)

Thus we expect that

b
ext
out = Seffb

ext
in + Leff. (34)

B. The effective Hamiltonian

We now turn to identifying how the connection con-
straints effect the evolution of the local systems em-
bedded in the network. We will begin by considering
the Heisenberg-Langevin equation for the evolution of
any system operator A, interacting with N independent
fields;

Ȧ =
i

~
[Hsys, A]−

1

2

(
[A,L†]L− L

†[A,L]
)

− [A,L†]Sbin + b
†
inS

†[A,L].

(35)

Here we have included an unspecified system Hamilto-
nian Hsys, to allow for the presence of external controls.
We assume that Hsys, when transformed to the inter-
action picture, causes slow evolution of the system(s),
ensuring that the system-field coupling remains quasi-
resonant. The compact but possibly ambiguous vector
notation introduced above should be interpreted as im-
plicit sums:

[A,L†]L ≡
∑

i

[A,L†
i ]Li,

[A,L†]Sbin ≡
∑

ij

[A,L†
i ]sijb

in
j .

(36)

The presence of the scattering matrix S in the equations
of motion for the system comes from the fact that Li is
coupled to the ith output and

∑
j sijb

in
j is the free output

field for that mode. (Note that this equation fails to hold
when [A,S] 6= 0.)
In the appendix we show that by imposing the connec-

tion constraints, bint
in = Wb

int
out, the equation of motion

for A, Eq.(35), is transformed not only by the replace-
ment (S,L) 7→ (Seff,Leff), but also by the replacement of
the total Hamiltonian, Hsys, with the effective Hamilto-
nian

Heff ≡ Hsys +
~

2i
L
†

(
1

1− SW
− 1

1− (SW)†

)
L. (37)

The proof of this result is essentially an exercise in matrix
algebra. Physically the second term in Heff is equal to
the “imaginary part” of the coherent sum over all paths
where a quanta is emitted via Lj and subsequently ab-

sorbed by L
†
i . Such terms account for the spin exchange

rates for atoms coupled to a 1D wave guide, as well as
the Lamb shift in either free space [36] or cavity like [37]
conditions.

C. The effective input-output description

We can now write down the complete effective input-
output description for a network that contains “weak
loops” for the fields. For ease of reference we now collect
all the equations that define this effective description.
Given that W is the matrix that defines the connections
between the systems (the network topology), and that
b
ext
in and b

ext
out are, respectively, the external inputs and

outputs to this network, we have

b
ext
in = (1−WW

†)bin, (38)

where 1 is the N -dimensional identity matrix, and

b
ext
out = Seffb

ext
in + Leff (39)

with

Leff ≡ Xo
1

1− SW
L, (40)

Seff ≡ Xo
1

1− SW
SXi. (41)
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The effective equation of motion for any system operator
A is

Ȧ =
i

~
[Heff, A]−

1

2

(
[A,L†

eff]Leff − L
†
eff[A,Leff]

)

− [A,L†
eff]Seffb

ext
in +

(
Seffb

ext
in

)†
[A,Leff],

(42)

in which the effective Hamiltonian is given above in
Eq.(37).

D. The non-hermitian dissipative “Hamiltonian”

While the operators Heff and Leff are all that are
needed to specify the master equation in Lindblad form
(for vacuum input fields), some physical insight can
be gained by considering the non-hermitian dissipative

“Hamiltonian”, H̃loss ≡ Heff − i 12L
†
effLeff. An application

of the tricky relation in Eq.(A22) shows that,

H̃loss = Hsys − i
2L

†
L− iL† SW

1−SW
L. (43)

Each term of H̃loss has a clear and distinct meaning. The
first and second show the “unconstrained” open system
dynamics, consisting of the externally applied Hsys and
the dissipation induced by every output port. The third
term shows the cumulative effect of the network. The
coherent effects of Heff and the dissipation induced by

L
†
effLeff combine as real and imaginary parts so that H̃loss

only involves the sum SW + SWSW + . . . and not its
“reversed” adjoint. If W is asymmetric and only con-
nects system a to system b but not vice-versa, then this

unidirectional flow is preserved in H̃loss.

E. Regime of applicability: satisfying

weak-coupling and multipass constraints

Here we identify the conditions under which the effec-
tive input-output description, derived above, is a good
approximation to the real network in which the fields pass
through the loops multiple times. This involves identify-
ing when the network geometry allows repeated interac-
tions, while ensuring that the criteria for the monochro-
matic traveling-wave approximation remains valid. Con-
sider the case depicted in Fig. 3 where a simple empty
cavity is formed when a section of waveguide of length l is
capped by two partially reflecting boundary conditions.
The scattering elements at these boundaries are defined
by the frequency independent unitary matrices Sℓ and
Sr. In the monochromatic approximation, the in-to-out
scattering boundary condition, and the constraint of free
propagation of internal modes are imposed by the block
diagonal matrices,

S =


 Sℓ 0

0 Sr


 (44)

FIG. 3. An empty cavity. A section of waveguide of length
z3 − z2 = l is capped by two partially reflecting boundary
conditions: Sℓ and Sr.

and

W =




0 0 0 0

0 0 eik0l 0

0 eik0l 0 0

0 0 0 0


 (45)

Outside of this approximation, we still have the two
parameter field operators b±(zi, t), which can still be ar-
ranged into input/output vectors bin(t) and bout(t).
The free-propagation of the internal fields still give the

constraints,

F+(z3, t) = F+(z2, t− l/vp)

F−(z2, t) = F−(z3, t− l/vp).
(46)

This implies that

b
int
in (t) = Wb

int
out(t− l/vp). (47)

Combining this with the general condition

bout(t) = Sbin(t) + L(t) (48)

shows that,

bout(t) =

∞∑

n=0

(SW)n SXibin(t− nl/vp)

+
∞∑

n=0

(SW)n L(t− nl/vp).

(49)

Note that this is simply the time-delayed version of
Eq.(A9).
Previously we have argued that so long as the spatial

separation remains small when compared to the charac-
teristic length ℓ0 = vp/κ0 then the field operators are
still well approximated by a single field operator that
delta commutes in time. But here we have an infinite
number of distances so that there always exists a num-
ber reflections ncut such that ncutl ∼ ℓ0. Nevertheless,
the contribution of these significantly delayed paths are
all attenuated by a factor of (SW)ncut . If the largest sin-
gular value of this matrix is small compared to 1, then
we can be confident in the approximation.
In a general network the time delay for the different in-

ternal connections may be different. Rather than being
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merely n multiples of a single traversal time, the cumula-
tive delay will depend upon the specific path taken. For
a given path consisting of n internal connections followed
by a final exit at an external port, the total delay τn is
simply the sum over the individual delays, so that

τn =
∑

i

|zi+1 − zi|/vp (50)

and the weighting factor wn is the product of matrix
elements

wn = [SW]e,in [SW]in,in−1
· · · [SW]i2,i1 . (51)

Ultimately, we require that any path that has a signif-
icant delay must also have an insignificant weight. We
can therefore state a simple sufficient condition for the
validity of the effective description as follows. If τmin is
the minimum relevant system dynamical timescale (e.g.
1/κ0) then

wn ≪ 1 for all τn & τmin. (52)

This condition captures the requirement that any effec-
tive cavities that are formed by loops in the network de-
cay sufficiently fast, as discussed in Section III C.
For example, consider the two qubit system of Fig 1(c),

where two qubits are connected by a transmission line,
via isolating circulators. Taking this as a model for a
long distance communication channel, let the intercon-
necting distance, L = |z4 − z2|, be generally larger than
the distances between the bare qubits and their circula-
tors, ∆za = |z1 − za| and ∆zb = |z5 − zb|. The paths
with the longest delay times are clearly those that tra-
verse the interconnecting line. The shortest path trav-
eling from qubit a to qubit b follows the sequence of
outputs with locations za → z2 → z5 → zb. This
path has a delay time τ1 = (L + ∆za + ∆zb)/vp and
carries a weight with magnitude |w1| = |t54t21|. The
paths following outputs za → z2 → z4 → z1 → za,
and za → z2 → z4 → z2 → z5 → zb have delays of
τ2 = 2(L+∆za)/vp and τ3 = (3L+∆za +∆zb)/vp. The
corresponding weights have magnitudes |w2| = |c12r44t21|
and |w3| = |t54r22r44t21|. An off-the-shelf circulator op-
erating in the 4-8 GHz range (e.g. Low Noise Factory
- LNF-ISC4 8A), specifies the parameters |tij | ∼ 0.98,
and |rij |, |cij | . 0.08. Thus for the delays τ1, τ2, τ3 the
associated weights have magnitudes |w1| ∼ 0.96, and
|w2|, |w3| ∼ 6× 10−3.
Were we to follow the manufacturer’s lead and consider

the weights |w2| and |w3| negligible, we then recover the
standard implementation of cascading two systems in a
unidirectional way. In this case, the time-of-flight delay,
τ1 can be easily absorbed by evaluating qubit b at the
retarded time tr = t− τ1 [4].

V. AN EXAMPLE: THE QUBIT-TO-QUBIT

COMMUNICATION CHANNEL

One of the many uses of a quantum communication
channel is the transfer of entanglement. Specifically, Al-

ice wishes to send to Bob one half of an entangled state.
Previous results [24–30, 33, 38] show how one could trans-
fer a quantum state between localized systems by dy-
namically controlling the rates each system couples to a
one dimensional traveling-wave field. In a lossless setting,
near perfect transfer fidelity can be achieved if the sender
and receiver use appropriately matched waveforms. For
example, if the receiver, Bob, simply gates his coupling
in an on/off way, the sender Alice should modulate her
coupling rate such that the outgoing wave packet forms
a rising exponential, effectively the time reversal of an
excited system decaying at a constant rate [28]. Here we
investigate if and how such a procedure could be imple-
mented across an imperfect network.
For simplicity we assume that all input fields are in

the vacuum state, which is not an unreasonable ideal-
ization, for example, for superconducting qubits with
ω0 ∼ 6 GHz and an ambient temperature no higher than
100 mK. Fig. 1(c) and Fig. 2 depict two different, yet
similar settings where two qubits are interconnected via
guided fields with two external inputs and two external
outputs. The design in Fig. 1(c) models an asymmet-
ric communication channel where two qubits are linked
via a transmission line and are isolated by circulators
that may be imperfect. The design in Fig. 2 models two
qubits connected to transmission lines that cross at a
beam-splitter-like intersection. Nevertheless, depending
upon how the scatter SJ in the latter couples its four
ports, both models may generate the same dynamics for
the qubits. The difference between the two really lies in
the quality of the zero-delay approximation, where a sig-
nificant delay in the interconnecting line may violate the
necessary assumptions.
In either of the above models we assume that local,

possibly time-dependent rotations can be applied to each
qubit, so that

Hsys =
~

2
[ha(t) · σa + hb(t) · σb ] , (53)

where ha is the control vector and σa is the vector of
Pauli matrices for qubit a; and likewise for qubit b. We
also assume that each qubit couples only to its transmis-
sion line and not to any additional output. We imagine
that the decay rates of both qubits, κi, and their cou-
pling phase angles φi, can be independently controlled,
so that

L =

{ √
κi(t) e

iφi(t) σ−
i for i ∈ {a, b}

0 otherwise
. (54)

To apply our effective network theory to the network
connecting the two qubits it is useful to recall first that
there is a single matrix that plays the key role in deter-
mining the effective input-output description, namely

1

1− (SW)
= 1+

SW

1− (SW)
. (55)

It is this matrix that tells how the outputs of the systems
are mapped (routed, if you like) to the external outputs of
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the network. Examining the expression for the effective
Lindblad operators,

Leff = Xo
1

1− SW
L = Xo

[
L+

SW

1− SW
L

]
, (56)

we see that it is the matrix

T ≡ SW

1− (SW)
(57)

that gives the contribution of the network, since it is this
matrix that vanishes when W = 0, in which case Leff

reduces to XoL.
With some abuse of notation, we will denote the matrix

element of T that maps the output from qubit a or b to
the jth output by

tjk ≡ [T]jk =
[

SW

1−SW

]

jk
, with k = a, b. (58)

Using these matrix elements we can now write explicit
expressions for the effective Lindblad operators (the ele-
ments of Leff). The Lindblad jump operator associated
with a photon leaving external port j is

Leff j =tjaLa + tjbLb, (59)

and the effective Hamiltonian is ( ~ = 1 )

Heff = Hsys + L†
a Im(taa)La + L†

b Im(tbb)Lb

+ 1
2iL

†
a (tab − t∗ba)Lb +

1
2iL

†
b (tba − t∗ab)La.

(60)

Given vacuum external inputs to the network, the mas-
ter equation for the two-qubit density matrix ρ, when
written in Lindblad form is

ρ̇ = −i[Heff, ρ] +D[Leff]ρ (61)

in which the super-operator D[Leff]ρ is defined by

D[Leff]ρ ≡ Leff ρL
†
eff − 1

2L
†
effLeff ρ− 1

2ρL
†
effLeff. (62)

The derivation of Heff in Appendix A shows that

L
†
effLeff can be simplified, via Eq.(A18), to read,

L
†
effLeff = L

†

(
1+

SW

1− SW
+

(SW)†

1− (SW)†

)
L

=
∑

i,j∈{a,b}

L†
i

(
δij + tij + t∗ji

)
Lj.

(63)

Additionally, the fact that the matrix elements tij are
merely complex numbers and thus commute with all sys-
tem operators means that

Leff ρL
†
eff =

∑

k∈ ext
outs

∑

j,i∈{a,b}

tkjLj ρ t
∗
kiL

†
i

=
∑

j,i∈{a,b}

[ ∑

k∈ ext
outs

t∗kitkj

]
Lj ρL

†
i

=
∑

j,i∈{a,b}

[
1

1−(SW)†
Xo

1
1−SW

]

ij
Lj ρL

†
i

=
∑

j,i∈{a,b}

(δij + tij + t∗ji)Lj ρL
†
i .

(64)

Combining these two results we find that the two-qubit
master equation can also be written as

ρ̇ = − i

2

[
ha · σa + hb · σb − i

∑

i,j∈{a,b}

L†
i

(
tij − t∗ji

)
Lj, ρ

]

+
∑

i,j∈{a,b}

(
δij + tij + t∗ji

) (
Lj ρL

†
i − 1

2

{
L†
iLj , ρ

})

(65)

where {A,B} ≡ AB +BA is the anti-commutator.
This master equation can exhibit super/sub-radiant

states, where interference between the various decay
channels results in distinct decay rates for different su-
perpositions of the two atom states. There may even be
a specific superposition of the states |↑↓〉 and |↓↑〉 which
is unable to radiate and remains a dark state. If such a
state exists and its amplitudes are suitably controllable
then it could be used to deterministically transfer a single
excitation across the network. Next we show that such a
state exists if and only if

‖t∗ab + tba‖2 = (1 + taa + t∗aa)(1 + tbb + t∗bb). (66)

A. Two-qubit superradience

We identify the emission properties of the two-qubit
system by first analyzing how the populations of different
states are transferred via the so called “feeding terms” of
the master equation. Specifically, consider the expression

∑

i,j∈{a,b}

(
δij + tij + t∗ji

)
Lj ρL

†
i . (67)

The single-qubit terms (i.e. those for which i = j) show
that the network has the effect of increasing the action
of these terms by the factor

ηi ≡ 1 + tii + t∗ii for i = a, b, (68)

which is the 1D equivalent of the Purcell factor.
A straightforward calculation shows that when writ-

ten as outer products of the two-qubit basis states
{|↑↓〉 , |↓↑〉 , |↓↓〉 , |↑↑〉},

∑

i,j∈{a,b}

(
δij + tij + t∗ji

)
Lj ρL

†
i =

Tr ( ρ |↑↑〉〈↑↑| )R+Tr (Rρ) |↓↓〉〈↓↓| (69)

where

R ≡ κa ηa |↑↓〉〈↑↓|+ κb ηb |↓↑〉〈↓↑|
+
√
κaκb(t

∗
ab + tba) e

iφa−iφb |↓↑〉〈↑↓|
+
√
κaκb(tab + t∗ba) e

−iφa+iφb |↑↓〉〈↓↑| . (70)

In terms of R the total master equation is

ρ̇ = −i[Heff, ρ] + Tr ( ρ |↑↑〉〈↑↑| )R+Tr (Rρ) |↓↓〉〈↓↓|
− 1

2 Tr (R)
(
|↑↑〉〈↑↑| ρ+ ρ |↑↑〉〈↑↑|

)
− 1

2 (Rρ+ ρR) .

(71)
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By writing it in this way, we see that the properties of
R not only characterize the decay of the single-excitation
subspace (being the subspace in which one but not both
of the qubits is in its excited state), but also the decay
rate of the doubly-excited state |↑↑〉 and the accumula-
tion rate of the zero excitation state |↓↓〉.
In the single-excitation subspace, span {|↑↓〉 , |↑↓〉}, R

forms a 2× 2 matrix, which is easily diagonalized. Look-
ing forward to a specific application, we find it useful to
introduce a Bloch-sphere representation in this 2-level
subspace. By choosing the representation |0〉 ≡ |↑↓〉
and |1〉 ≡ |↓↑〉, the usual 4 component Pauli matrices
{σ0, σx, σy , σz} span the space of 2×2 complex matrices.
Thus R can be written as

R = 1
2 (R0σ0 + Rxσx + Ryσy + Rzσz) , (72)

with Rα ≡ Tr(Rσα). Here and in the following we
denote all Bloch sphere expansion coefficients with a
San Serif typeface. Also we denote the three-vector
formed by the Cartesian components with an arrow, e.g.
~R ≡ (Rx,Ry,Rz)

T , unless it is a unit vector in which case

we denote it with a caret (e.g. R̂ = ~R/|~R|). Explicitly,
these coefficients are

R0 = κa ηa + κb ηb

Rx = 2
√
κaκb β+ cos(φa − φb + δ+)

Ry = 2
√
κaκb β+ sin(φa − φb + δ+)

Rz = κa ηa − κb ηb,

(73)

and with a bit of foresight it is useful to define the cross-
coupling coefficients

β± ≡ ‖t∗ab ± tba‖ (74)

and associated phase angles

δ± ≡ arg(t∗ab ± tba). (75)

In this notation, the eigenvalues of R define the collective
decay rates

Γb/d =
1

2

(
R0 ± ‖~R‖

)

=
1

2

(
R0 ±

√
4κaκbβ2

+ + (κaηa − κbηb)2
)
.

(76)

The corresponding eigenstates are the superradiant
bright state |B〉 and the subradiant dark state |D〉:

|B〉 = cos(ϑ/2)|0〉+ sin(ϑ/2)eiϕ|1〉 and

|D〉 = sin(ϑ/2)|0〉 − cos(ϑ/2)eiϕ|1〉,
(77)

where ϕ = φa − φb + δ+ and the mixing angle ϑ satisfies

tan ϑ =
2
√
κaκbβ+

κa ηa − κb ηb
. (78)

Other than the trivial solution κa = κb = 0, the only
way for |D〉 to be a truly dark state with Γd = 0 is

when β2
+ = ηaηb, i.e. when Eq.(66) is satisfied. One

possible configuration that meets this criteria is the per-
fect unidirectional communication channel, e.g. when
taa = tbb = tab = 0 and |tba| = 1.
The key insight is that sweeping from a parameter

regime in which 0 < κa ≪ κb to that in which 0 <
κb ≪ κa results in sweeping ϑ from π to 0. This in turn
sweeps the state |D〉 from |0〉 to |1〉. Thus if the remain-
ing coherent terms of the overall master equation can be
engineered so that the total system evolution also fol-
lows |D〉 then a single excitation can be transferred from
the first qubit to the second with a minimum amount of
radiative loss.

B. The single-excitation Bloch vector

Here we show that there exists a control scheme such
that the joint system will evolve from the state |↑↓〉 to the
state |↓↑〉 while simultaneously maximizing the overlap of
the evolving state with the subradiant state |D〉. Note
that both the state of the system and the subradiant state
change with time as the control parameters change with
time. The initial state is thus ρ(0) = |↑↓〉〈↑↓|.
Here we will exclusively consider local qubit rotation

vectors ha(t) and hb(t) that only induce rotations about
the z axis. The idea being that if the total number of
excitations in the system is a conserved quantity, then
the states |↑↓〉 and |↓↑〉 will form a closed subspace. In
order for a given observable to be a constant of motion,
and thereby conserved, it must commute with the total

Hamiltonian. But as σ
(a)
x changes the number of excita-

tions in qubit a irrespective of qubit b, a control Hamil-
tonian that contains single qubit x or y rotations cannot
preserve the total number of excitations.
Given this constraint, we write this excitation-number

conserving Heff in the two-qubit basis, which is,

Heff =
(
κa Im(taa) + κb Im(tbb) +

1
2haz +

1
2hbz

)
|↑↑〉〈↑↑|

−
(
1
2haz +

1
2hbz

)
|↓↓〉〈↓↓|

+
(
κa Im(taa) +

1
2haz − 1

2hbz

)
|↑↓〉〈↑↓|

+
(
κb Im(tbb)− 1

2haz +
1
2hbz

)
|↓↑〉〈↓↑|

+ 1
2i

√
κaκb‖t∗ab − tba‖e−i(φa−φb+δ−) |↑↓〉〈↓↑|

− 1
2i

√
κaκb‖t∗ab − tba‖ei(φa−φb+δ−) |↓↑〉〈↑↓| .

(79)

The first two terms of Heff are merely energy shifts of
the 2- and 0-excitation states and the remaining terms
act only in the single-excitation subspace. For a system
initialized in the pure state |↑↓〉, the total master equa-
tion will never populate the state |↑↑〉. However, as the
total probability is conserved, the probability to be in
|↓↓〉 will be unity less the total probability to be in the
single-excitation subspace. This implies that for this spe-
cific initial condition, the entire system evolution is fully
characterized by the evolution in the single-excitation
subspace.



12

In terms of the Bloch-sphere picture, we can parame-
terize ρ as

ρ(t) = 1
2 [ b0(t)σ0 + bx(t)σx + by(t)σy + bz(t)σz ]

+ [1− b0(t) ] |↓↓〉〈↓↓| ,
(80)

where ~b(t) is the three-component Bloch vector and b0(t)
gives the probability for the system to be in the single
excitation subspace.

The single-excitation part of Heff defines a “spin ex-
change” operator

J ≡ 1
2 (J0σ0 + Jxσx + Jyσy + Jzσz) (81)

where

J0 = κa Im(taa) + κb Im(tbb)

Jx = −√
κaκb β− sin(φa − φb + δ−)

Jy = +
√
κaκb β− cos(φa − φb + δ−)

Jz = κa Im(taa)− κb Im(tbb) + haz − hbz.

(82)

Computing the expectation values Tr(dρdtσα) results in
the coupled equations

d
dtb0 = − 1

2R0b0 − 1
2
~R · ~b (83a)

d
dt
~b = ~J× ~b− 1

2R0
~b− 1

2b0
~R. (83b)

These equations can be decoupled in a particularly rel-
evant special case. A straightforward calculation that
shows,

d
dt‖~b‖ = − 1

2R0‖~b‖ − 1
2b0

~R · b̂, (84)

where the unit vector b̂ = ~b/‖~b‖ is well defined, so long
as the system has not completely decayed into | ↓↓〉, i.e.
when ‖~b‖ 6= 0. Combining Eq.(84) with Eq.(83a) gives

d
dt

(
‖~b‖ − b0

)2
= −

(
R0 − ~R · b̂

)(
‖~b‖ − b0

)2
. (85)

Thus if ‖~b(0)‖ 6= b0(0), they will converge exponentially
in time. More importantly, if they are equal at t = 0
then they will remain equal for all t ≥ 0. In this case,
Eq.(83a) has the explicit solution:

b0(t) = b0(0) exp

[
−1

2

∫ t

0

ds
(
R0(s) + ~R(s) · b̂(s)

)]
.

(86)
For the pure-state initial condition, ρ(0) = |↑↓〉〈↑↓|, we
have ‖~b(0)‖ = b0(0) = 1. A final exercise in vector calcu-

lus shows that for the pure-state initial condition, b̂ has
the equation of motion

d
dt b̂(t) =

~J× b̂(t)− 1
2

(
~R− ~R · b̂(t) b̂(t)

)
. (87)

C. Dark-state controls

Eq.(86) shows that if the Bloch vector points in the op-

posite direction from ~R, i.e. R̂ = −b̂, then the probability
of loosing the single system excitation is minimized. This
leads to the inequality,

b0(t) ≤ exp

[
−1

2

∫ t

0

ds
(
R0(s)− ‖~R(s)‖

)]

= exp

[
−
∫ t

0

dsΓd(s)

]
.

(88)

In other words, we again see that subradiant decay rate
bounds the degree of radiant loss.
We have already shown that if 0 < κa(0) ≪ κb(0) then

R̂(0) ≈ −b̂(0). Thus our control objective is to perform

a π-rotation pulse for the bloch vector ~b(t) while main-

taining the relation R̂(t) = −b̂(t) throughout. As b̂(t)
is the solution to the first-order ODE given in Eq.(87),
the evolution will remain in the dark state so long as

db̂(t)/dt = −R̂(t)/dt. When b̂ = ±R̂ the second term in
Eq.(87) is zero and only the coherent rotation caused by
~J is relevant. Thus evaluating Eq.(87) at b̂ = −R̂ shows
that the derivative requirement leads to the constraint,

d
dt R̂(t) =

~J× R̂. (89)

If R̂(t) satisfies this constraint and 0 < κa(0) ≪ κb(0),

then b̂ will faithfully track the dark state.
Eq.(89) can be satisfied in a number of different ways.

Here we derive a relatively simple solution, where the
sender only needs to switch on and off the decay rate κa

so that it is equal to some nonzero constant value κ0 for
a pre-specified total time T . The receiver then simulta-
neously varies the parameters κb(t) and hbz(t) with pre-
calculated wave forms. We note that the solution for the
ideal case is already known and has an analytic form [29].
All other parameters φa, φb, haz, tij , etc. are assumed to
be known constants. With no further loss of generality,
we choose a phase reference such that φa − φb = −δ+,
thereby setting Ry = 0. Any other choice for this phase
difference corresponds merely to a fixed rotation of the
Bloch ball about the z-axis.
Given the above choice of phase, a simple calculation

shows that

~J× ~R = JyRz x̂+ (JzRx − JxRz) ŷ− JyRx ẑ. (90)

However as Ry = 0, it must be the case that ŷ· d
dt R̂(t) = 0.

Thus in order for to satisfy Eq.(89) it must be true that

JzRx − JxRz = 0. (91)

Other than the trivial solution in which either κa or κb

is zero, we must have

Jz

Rz
=

Jx

Rx
=

β−

2β+
sin(δ+ − δ−), (92)
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which is constant. Solving Eq.(92) for hbz(t) in terms of
κb we obtain

hbz(t) = κb(t)

[
ηb

β−

2β+
sin(δ+ − δ−)− Im(tbb)

]

− κ0

[
ηa

β−

2β+
sin(δ+ − δ−)− Im(taa)

]

+ haz.

(93)

Returning now to the LHS of Eq.(89), an exercise in vec-
tor calculus shows that

d

dt
R̂(t) =

1

‖~R‖

(
d

dt
~R− R̂(t) R̂(t) · d

dt
~R

)

=
1

‖~R‖



(

Rz

‖~R‖

)2
d

dt
Rx − RzRx

‖~R‖2
d

dt
Rz


 x̂

+
1

‖~R‖



(

Rx

‖~R‖

)2
d

dt
Rz −

RzRx

‖~R‖2
d

dt
Rx


 ẑ.

(94)

Taking the ẑ of Eq.(94), multiplying by ‖ ~R‖, and setting

it equal to ~J× ~R · ~ez gives the requirement that

R2
x

‖~R‖2
d

dt
Rz −

RxRz

‖~R‖2
d

dt
Rx = −JyRx. (95)

In order of this equality to hold for Rx 6= 0, it must be
the case that

Rz

Rx

d

dt
Rx − d

dt
Rz =

Jy

Rx
‖~R‖2

= cos(δ+ − δ−)
β−

2β+
‖~R‖2.

(96)

Using the basic definitions of ~R and R0 from Eq.(73), the
LHS of the above equation simplifies to

Rz

Rx

d

dt
Rx − d

dt
Rz = R0

1

2κb

d

dt
κb. (97)

Thus we finally obtain an explicit ODE that shows how
to control κb(t) with time in order to obtain a transfer
with minimal loss:

d

dt
κb(t) = cos(δ+ − δ−)κb

β−

β+

‖~R‖2
R0

. (98)

For a perfect unidirectional channel we have already

seen that ‖~R‖ = R0 because Γd = 0. In this case Eq.(98)
takes the form κ̇b = c1κb + c2κ

2
b , for some constants c1

and c2. This simplified equation has a known analytic
solution, which reproduces the control solution obtained
in reference [29].
Note that in general, the solution of Eq.(98) ensures

that the joint system remains aligned with the subradiant
state |D〉, which does not necessarily guarantee that the
the total evolution results in a π rotation on the Bloch

sphere. However, in order for R̂(0) ≈ −ẑ, we have the
initial condition of κ0 ≪ κb(0). If, at the terminal time

tf , we have κb(tf ) ≪ κ0, then R̂ ≈ ẑ and the π-pulse
was achieved. This terminal condition can certainly be
arranged if we have d

dtκb(t) < 0 for all t ≤ T .

By definition κ0, β±, and ‖~R‖2 are all nonnegative. So
long as ηa and ηb are both positive, R0 is also nonnega-
tive. (This is always the case for weak retro-refections).

Thus if cos(δ+ − δ−) < 0, then d
dt R̂(t) ≤ 0 for all t.

For a perfect unidirectional channel, cos(δ+ − δ−) = −1.
However, if cos(δ+ − δ−) > 0, we can obtain a solution
simply by reversing the roles of sender and receiver. Thus
cos(δ+ − δ−) serves as a measure of the networks nonre-
ciprocity.

D. Numerical simulations

In Fig. 4 we show the results of numerical simulations
of the dark state evolution, namely Eqs.(83) and (98),
for 3 different networks. Each configuration is an im-
perfect instance of the circulator network of Fig. 1(c).
The imperfections are introduced in two ways. First, the
propagation phase introduced by the bidirectional con-
nection, via W, between the two circulators is varied.
Second, the ideal block-diagonal S matrix is replaced by
a similarly block diagonal random unitary, where each
sub-matrix is constrained to be within a certain distance
of the identity.
Fig. 4(a) displays the overlap of the evolving state with

the target state |↓↑〉, i.e. the probability of a successful
transfer as a function of time. Fig. 4(b) shows how κb(t)
is varied with time to achieve the transfer, relative to the
value of κ0 in dB, with an initial value of κb(0)/κ0 = 25
dB. With our particular choice of phase, the evolution

of ~b(t) is constrained to the x-z plane of the Bloch ball.

In Fig. 4(c) we plot the trajectory made by ~b(t) in this
plane for each of the networks.
Network configuration 1 demonstrates that near-

perfect state transfer is possible, even when the network
is significantly far from the ideal unidirectional connec-
tion. The imperfect circulators have retro-reflections in
the range 0.04 . |rii|2 . 0.15, with a total b 7→ a trans-
fer coefficient with magnitude |tab| = 0.02. In spite of
this, the coherent effects collude in such a way as to en-
sure that the criteria of Eq.(66) is nearly satisfied, with
ηaηb −β2

+ = 0.001. At the terminal time, the probability
for the system to be measured in |↓↑〉 is 0.996.
The performance of networks with randomized imper-

fections with magnitudes similar to network 1 varies con-
siderably, with the excellent performance of network 1
being atypical. Network 2, for which the range chosen
for the imperfections is 0.03 . |rii|2 . 0.14 (similar to
those of network 1) gives a typical example of the result-
ing performance. Despite the fact that Eq.(66) is far from
satisfied for network 2, ηaηb − β2

+ = 0.147, the terminal
probability for a successful transfer is 0.827.
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FIG. 4. Dark state evolution. Numerical simulations for 3 different network parameters, see text. (a) |↑↓〉 7→ |↑↓〉 transfer

probability vs. time. (b) Receiver coupling rate κb, relative to a fixed κa = κ0 in dB. (c) Bloch vector trajectories, ~b(t), shown
in the x-z plane of the Bloch ball.

Network 3 shows a particularly adverse case, with
0.42 . |rii|2 . 0.84. Additionally the asymmetry
in the a 7→ b transfer is particularly impeded, with
cos(δ+ − δ−) = −0.151. unsurprisingly, the final success
probability is only 0.576, although poorer performance
can occur for similar parameters.

Fig. 4(b) show all three optimal protocols (solutions of
Eq.(98)) for κb(t), all of which involve a rapid descent
from the regime where κb ≫ κa and most of the transfer
time spent in the asymptotic limit where κb ≪ κa. This
suggests that when considering practical limitations to
the control resources, varying κa in addition to κb will be
helpful and may be necessary. When ∂tκa 6= 0, Eq.(98)
remains pertinent, but as an equation of motion for the
ratio κb/κa in terms of the rescaled time, ∂t 7→ ∂τ where

τ(t) ≡
∫ t

0
κa(s) ds. In this light, making κa time de-

pendent results in the compression/expansion of the κ0t
axis.

VI. SUMMARY AND OUTLOOK

We have elucidated how and when the network con-
traction theory of Gough and James can be applied to
physical networks of input-output systems. This theory
allows one to accurately model networks containing weak
loops that cause the fields to circulate in the network. We
have shown that, in particular, the method provides the
first analytically tractable way to handle retro-reflections
that are a common and important source of imperfection

in superconducting and photonic circuits. We have pre-
sented a formulation of the method that requires only a
single matrix inversion, and is thus efficient for analyt-
ical calculations. We have also re-derived the theory in
the language typically used by physicists, making it eas-
ily accessible. We have provided an explicit example in
which we apply the method to the problem of transmit-
ting entanglement between two qubits connected via two
imperfect circulators. This example showed that despite
the retro-reflections it was possible to obtain a largely
analytic solution to the problem of maximizing the prob-
ability of a successful transfer.

Networks with weak loops can be thought of as quan-
tum feedback networks. The fact that the effective input-
output description of a network with weak loops can be
obtained using a single matrix inversion may well have
use in establishing systematic methods for the design of
quantum feedback networks. Given an effective input-
output network that one wishes to construct, the net-
work topology that would induce this effective dynamics
can thus also be obtained by inverting a matrix. This
does not by itself solve the network design problem, since
there is no guarantee that all effective input-output mod-
els can be obtained by constructing loopy networks under
a given set of constraints. Nevertheless, the question of
what input-output dynamics can be engineered via the
introduction of feedback loops, under experimentally mo-
tivated constraints, is a interesting question for future
work, and one for which the technique presented here
may well be useful.
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Appendix A: Algebraic derivation of the effective

model

Here we present the algebraic derivation showing that
merely by enforcing the constraint,

b
int
in = Wb

int
out, (A1)

which can also be written as Iibin = Wbout, an un-
connected set of network elements described by the set
of quantities (S, L, H) can be described by an effec-
tive input-output model given by the set of quantities
(Seff,Leff,Heff). For simplicity we set Hsys = 0 as it will
play no role. For reference, the equations of the input-
output formalism that describe the unconnected network
elements are

bout = Sbin + L, (A2)

and

Ȧ = −1

2

(
[A,L†]L− L

†[A,L]
)

− [A,L†]Sbin + (Sbin)
† [A,L],

(A3)

and those of the resulting effective input-output descrip-
tion are

b
ext
out = Seffb

ext
in + Leff (A4)

and

Ȧ = + i
~
[Heff, A]− 1

2

(
[A,L†

eff]Leff − L
†
eff[A,Leff]

)

− [A,L†
eff]Seffb

ext
in +

(
Seffb

ext
in

)†
[A,Leff].

(A5)

1. The external input-output relation

Starting from Eq.(A2), we first decompose bin into its
internal and external components,

bout = S (Xibin + Iibin) + L. (A6)
substituting the constraint as written in the second line
of Eq.(A1) shows,

bout = SXibin + SWbout + L. (A7)

Subtracting SWbout from both sides results in,

(1− SW)bout = SXibin + L. (A8)

Wherever 1−SW is invertible, or equivalently, when the
series

∑
n(SW)n converges we have,

bout =
1

1− SW
SXibin +

1

1− SW
L. (A9)

Thus projecting onto the external outputs, shows that

b
ext
out = Seffb

ext
in + Leff (A10)

where

Seff = Xo
1

1− SW
SXi, (A11)

and

Leff = Xo
1

1− SW
L. (A12)

2. The Heisenberg-Langevin equation of motion

Here we show that expressing Eq.(A3) in terms of Seff

and Leff results in an additional term in Heff. The first
line of attack is to write Sbin in terms of the external
inputs and system sources. In other words,

Sbin = SXibin + SIibin

= SXibin + SWbout

= SXibin + SWSbin + SWL.

(A13)

Collecting all terms involving Sbin on the left hand side
and then acting on both sides with (1 − SW)−1 shows
that

Sbin =
1

1− SW
SXibin +

SW

1− SW
L. (A14)

Substituting this into Eq.(A3) and collecting like com-
mutator terms gives us
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Ȧ = −[A,L†]

(
1

2
1+

SW

1− SW

)
L+ L

†

(
1

2
1+

(SW)†

1− (SW)†

)
[A,L]

− [A,L†]
1

1− SW
SXibin +

(
1

1− SW
SXibin

)†

[A,L].

(A15)

Before working through further simplifications, it is use-
ful to identify some expected terms. The effective equa-

tion of motion Eq.(A5) contains the terms AL†
effSeffb

ext
in

and L
†
effASeffb

ext
in . However, multiplying Eq.(A11) by the

adjoint of Eq.(A12) shows that

L
†
effSeff = L

† 1

1− (SW)†
X

2
o

1

1− SW
SXi. (A16)

This expression can be simplified by first noting that
X

2
o = Xo, and second by writing

Xo = 1−W
†
W = 1−W

†
S
†
SW

= 1− (SW)† + 1− SW − [1− (SW)†][1− SW].

(A17)

To obtain the second equality we used the fact that S is
unitary, and the third equality, while true, is useful only
in hindsight. However, this rather opaque rewriting leads

to the relation

1
1−(SW)†Xo

1
1−SW

=
1

1− SW
+

1

1− (SW)†
− 1

=
1

1− SW
+

(SW)†

1− (SW)†
.

(A18)

This is particularly useful as it shows that

AL†
effSeff = AL†

(
1

1− SW
+

(SW)†

1− (SW)†

)
SXi

= AL† 1

1− SW
SXi +AL† 1

1− (SW)†
W

†
Xi

= AL† 1

1− SW
SXi,

(A19)

where the second term is ultimately zero because S is
unitary and W

† is orthogonal to Xi. Furthermore, be-
cause we have assumed that [S, A] = [SW, A] = 0, we
also find that

L
†
effASeff = L

†A
1

1− (SW)†
X

2
o

1

1− SW
SXi = L

†A
1

1− SW
SXi. (A20)

Combining the previous two relations gives

[A,L†
eff]Seffb

ext
in = [A,L†]

1

1− SW
SXibin, (A21)

and thus we conclude that the second line of Eq.(A15) is indeed equal to the second line of Eq.(A5).
To show that the first line of Eq.(A5) also follows from Eq.(A15), consider the parenthetical expression in the first

term. The trick of Eq.(A18) does not immediately apply to this expression. However, it is true that

1
21+ SW

1−SW
= 1

2

(
1+ 2 SW

1−SW

)
= 1

2

(
1

1−(SW)†
X

2
o

1
1−SW

+ 1
1−SW

− 1
1−(SW)†

)
, (A22)

which follows from Eq.(A18). Now consider the full first line in Eq.(A15). Expanding out the commutators and using
the fact that A commutes with any function of SW or its adjoint, results in

− [A,L†]
(

1
21+ SW

1−SW

)
L+ L

†
(

1
21+ (SW)†

1−(SW)†

)
[A,L]

= − 1
2AL

†
(

1
1−(SW)†

X
2
o

1
1−SW

)
L− 1

2AL
†
(

1
1−SW

− 1
1−(SW)†

)
L

− 1
2L

†
(

1
1−(SW)†X

2
o

1
1−SW

)
LA+ 1

2L
†
(

1
1−SW

− 1
1−(SW)†

)
LA+ L

†A
(

1
1−(SW)†X

2
o

1
1−SW

)
L. (A23)

By defining the effective Hamiltonian

Heff ≡ ~

2i
L
†
(

1
1−SW

− 1
1−(SW)†

)
L, (A24)
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and utilizing the definition of Leff shows,

−[A,L†]
(

1
21+ SW

1−SW

)
L+ L

†
(

1
21+ (SW)†

1−(SW)†

)
[A,L]

= − 1
2AL

†
effLeff − 1

2AL
†
effLeff + L

†
effALeff + i

~
[Heff, A],

(A25)

which is equal to the first line of Eq.(A5).
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and J. Vučković, Nature Photonics 10, 163 EP (2016).
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