
This is the accepted manuscript made available via CHORUS. The article has been
published as:

High-Compton-frequency, parity-independent, mesoscopic
Schrödinger-cat-state atom interferometer with

Heisenberg-limited sensitivity
Resham Sarkar, Renpeng Fang, and Selim M. Shahriar

Phys. Rev. A 98, 013636 — Published 31 July 2018
DOI: 10.1103/PhysRevA.98.013636

http://dx.doi.org/10.1103/PhysRevA.98.013636


Ultra-high Compton Frequency, Parity Independent, Mesoscopic Schrödinger Cat
Atom Interferometer with Heisenberg Limited Sensitivity

Resham Sarkar,1 Renpeng Fang,1 and Selim M. Shahriar1, 2

1Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
2Department of EECS, Northwestern University,
2145 Sheridan Road, Evanston, IL 60208, USA∗

(Dated: July 12, 2018)

We present a protocol for an atomic interferometer that reaches the Heisenberg Limit (HL), within
a factor of ∼

√
2, via collective state detection and critical tuning of one-axis twist spin squeezing.

It generates a Schrödinger cat state, as a superposition of two extremal collective states. When
this Schrödinger cat interferometer is used as a gyroscope, the interference occurs at an ultrahigh
Compton frequency, corresponding to a mesoscopic single object with a mass of Nm, where N is
the number of particles in the ensemble, and m is the mass of each particle. For 87Rb atoms,
with N = 106, for example, the intereference would occur at a Compton frequency of ∼ 2 × 1031

Hz. Under this scheme, the signal is found to depend critically on the parity of N . We present
two variants of the protocol. Under Protocol A, the fringes are narrowed by a factor of N for one
parity, while for the other parity the signal is zero. Under Protocol B, the fringes are narrowed by
a factor of N for one parity, and by a factor of

√
N for the other parity. Both protocols can be

modified in a manner that reverses the behavior of the signals for the two parities. Over repeated
measurements under which the probability of being even or odd is equal, the averaged sensitivity
is smaller than the HL by a factor of ∼

√
2 for both versions of the protocol. We describe an

experimental scheme for realizing such an atomic interferometer, and discuss potential limitations
due to experimental constraints imposed by the current state of the art, for both collective state
detection and one-axis-twist squeezing. We show that when the Schrödinger cat interferometer is
configured as an accelerometer, the effective two-photon wave vector is enhanced by a factor of N ,
leading to the same degree of enhancement in sensitivity. We also show that such a mesoscopic
single object can be used to increase the effective base frequency of an atomic clock by a factor of
N , with a sensitivity that is equivalent to the HL, within a factor of ∼

√
2.

PACS numbers: 06.30.Gv, 03.75.Dg, 37.25.+k

I. INTRODUCTION

The phase sensitivity of an atomic interferometer,
when used as a gyroscope, depends on the Compton fre-
quency, ωc = mc2/~ of the individual particles interfer-
ing at non-relativistic velocities, where m is the mass of
the particle, and c is the velocity of light in vacuum [1–
5]. Matter wave interferometry with large molecules have
successfully demonstrated the superposition of quantum
states with large mass [6]. However, these interferome-
ters, based on the Talbot effect, are not suited for rota-
tion sensing, owing to constraints in fabricating gratings
of small enough spacing, and associated effects of van der
Waals interaction. An alternative approach is to make a
large number (N) of particles, each with a mass m, be-
have as a single object with a mass of M ≡ Nm, and
thus a Compton frequency of Mc2/~. For a million 87Rb
atoms, for example, this frequency is ∼ 2 × 1031 Hz. In
this paper, we describe a protocol that enables the re-
alization of an atomic interferometer where two distinct
quantum states of such a mesoscopic single object, each
with this Compton frequency, are spatially separated and
then recombined, leading to fringes that are a factor of
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N narrower than what is achieved with a conventional
atomic interferometer. We show that the net metrologi-
cal sensitivity of this interferometer is equivalent to the
Heisenberg limited (HL) sensitivity, within a factor of√

2, of a conventional atomic interferometer. Aside from
application to metrology, such a mesoscopic Schrödinger
cat (SC) [7] interferometer may serve as a test-bed for
the effect of gravitational interaction on macroscopic de-
coherence and quantum state reduction [8–12]. It also
opens up a new regime for exploring performance of
matter-wave clocks [13] in a regime with a much higher
Compton frequency.
When an atomic interferometer is configured as an ac-

celerometer, its sensitivity does not depend on the Comp-
ton frequency. For a conventional Raman atomic inter-
ferometer (CRAIN), for example, the phase shift is pro-
portional to the effective, two-photon wavevector, keff ,
given by the sum of the wavevectors of the fields used
in producing the Raman excitation. We show that, for
the mesoscopic Schrödinger cat interferometer proposed
here, the corresponding wavevector is given by Nkeff ,
so that the fringes in this case are also narrowed by a
factor of N . As such, the net metrological sensitivity
of the Schrödinger cat interferometer, when used as an
accelerometer, is also equivalent to the HL sensitivity,
within a factor of

√
2, of a conventional atom interfero-

metric accelerometer. We also show that such a meso-
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scopic Schrödinger cat state can be used to increase the
effective base frequency of an atomic clock by a factor of
N , with a sensitivity that is equivalent to the HL, within
a factor of

√
2, of a conventional atomic clock.

Recently, we presented a collective state atomic in-
terferometer (COSAIN) [14], where we showed that the
effect of large Compton frequency (when it is con-
figure as a gyroscope) can be observed indirectly by
detecting one of the collective states. These states,
{|E0〉 , |E1〉 , . . . , |EN 〉}, commonly referred to as the
Dicke collective states, arise as a result of interaction of
an ensemble of identical independent atoms with a semi-
classical field [15–17]. The interferences between all of the
collective states lead to a reduction in signal linewidth
by a factor of

√
N as compared to a conventional Ra-

man atomic interferometer. However, this reduction by
a factor of

√
N in linewidth is countered by a corre-

sponding reduction in the effective signal to noise ratio
(SNR) since the system now behaves as a single parti-
cle. Therefore, the metrological sensitivity of a collective
state atomic interferometer is, under ideal conditions, the
same as that of a conventional Raman atomic interfer-
ometer. A direct transition |E0〉 ↔ |EN 〉, bypassing all
the intermediate collective states, would result in a signal
with a linewidth narrowed by a factor of N , thus yielding
HL phase sensitivity despite the reduced SNR. However,
there is no electric dipole coupling between |E0〉 and |EN 〉
for non-interacting atoms, thus excluding the possibility
to achieve this goal with conventional excitation.

Here, we propose a new protocol that employs squeez-
ing and a rotation, followed by another rotation and
unsqueezing [18–20] in a collective state atomic inter-
ferometer to attain the HL phase sensitivity, within a
factor of

√
2. Explicitly, we apply one-axis-twist (OAT)

spin squeezing [21–24, 26–28] around the ẑ axis (defined
as the spin-up direction) immediately following the first
π/2-pulse in a conventional Raman atomic interferome-
ter, which aligns the mean spin vector along the ŷ axis.
Prior to the application of the squeezing interaction, the
population of the collective states follow a binomial dis-
tribution, corresponding to the coherent spin state [17].
As the strength of squeezing is increased, the distribution
begins to flatten out, eventually generating a Schrödinger
cat state corresponding to an equal superposition of |E0〉
and |EN 〉 [29] when the one-axis-twist squeezing is fol-
lowed by a π/2 rotation around the x̂ axis. The usual
dark-π-dark sequence follows, at the end of which we ap-
ply a corrective rotation by π/2 (rather than −π/2, due
to the state inversion caused by the π-pulse) around the
x̂ axis, and then apply a corrective reverse-one-axis-twist
squeezing interaction about the ẑ axis. Finally, the last
π/2 pulse effectuates interference between the collective
states, and the signal is detected by measuring the pop-
ulation of one of the collective states. Since the process
makes use of a superposition of two mesoscopic quantum
states, we name this a Schrödinger cat atomic interfer-
ometer (SCAIN).

In recent years, much theoretical and experimental

work have been carried out to improve the precision of
atomic sensors using quantum non-demolition measure-
ments or spin-squeezing, both of which generate entangle-
ment among the atoms. For example, a reduction in vari-
ance by a factor of 5.6 dB was observed in reference [23]
using 5× 104 atoms, using cavity assisted one-axis-twist
spin squeezing. In reference [25], the maximum reduc-
tion in variance observed was 8.8 dB, also using 5× 104

atoms, but employing quantum non-demolition measure-
ment. In reference [30], a suppression of variance by
a factor of 10.5 dB was achieved for 4.8 × 105 atoms,
using quantum non-demolition measurement. In refer-
ence [31], a reduction in variance by a factor of 20.1 dB
was observed for 5 × 105 atoms, using a combination of
one-axis-twist spin squeezing followed by a quantum non-
demolition measurement. While these results are impres-
sive and encouraging, it should be noted that the de-
gree of improvement achieved is far below the HL, under
which the variance is reduced by a factor of N compared
to the standard quantum limit (SQL); for N = 5 × 105,
for example, this would correspond to a suppression of
variance by a factor of 57 dB. Thus, it is clear that much
work remains to be done to reach the full potential of im-
proving the sensitivity of atomic sensor via use of quan-
tum entanglement. For the protocol proposed here, un-
der ideal conditions, the corresponding reduction in vari-
ance would be by a factor of 54 dB, for N = 5× 105 [32].
Of course, realization of the protocol proposed here, un-
der ideal conditions, would be difficult using the types
of experimental one-axis-twist squeezing apparatus that
have been implemented in various laboratories, such as
those in references [23] and [31]. However, it may be
possible to devise alternative techniques or cavities with
much higher cooperativity factors to approach the degree
of improvement predicted by the protocol proposed here,
as discussed in Section IV.

The rest of the paper is arranged in the following way.
In Section II, we review briefly the theory of the con-
ventional Raman atomic interferometer and the collec-
tive state atomic interferometer. Section III provides
a detailed description of the protocols employed for a
Schrödinger cat atomic interferometer, as well as the re-
sulting signal fringes and sensitivities. Section IV gives a
brief description of the two key experimental components
for implementing a Schrödinger cat atomic interferome-
ter (namely, collective state detection and one-axis-twist
squeezing), and a discussion about the practical chal-
lenges and limitations. In Appendix A, we discuss how
the physical interpretation for the phase magnification in
the Schrödinger cat atomic interferometer is different for
different modes of operation: enhancement of the Comp-
ton frequency for rotation sensing, and enhancement of
the effective two-photon wave vector for accelerometry.
Finally, in Appendix B, we present a detailed description
of the Schrödinger cat atomic clock (SCAC).
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II. BRIEF REVIEW OF THE CONVENTIONAL
RAMAN ATOMIC INTERFEROMETER AND

THE COLLECTIVE STATE ATOMIC
INTERFEROMETER

In order to illustrate clearly the mechanism for realiz-
ing the Schrödinger cat atomic interferometer, and the
characteristics thereof, as well as to establish the nota-
tions employed in the rest of this paper, it is useful to re-
call briefly the relevant features of a conventional Raman
atomic interferometer and a collective state atomic inter-
ferometer. A conventional Raman atomic interferome-
ter makes use of N non-interacting identical three-level
atoms with metastable hyperfine states |↓, pz = 0〉 and
|↑, pz = ~k〉, (where k = k1+k2, with k1 and k2 being the
wave numbers for the two counter-propagating beams,
and pz being the z-component of the linear momentum),
and an excited state |e〉, in the Λ-configuration, reduced
to an equivalent two-level model [33]. We represent these
atoms by a collective spin Ĵ =

∑N
i ĵi, where ĵi repre-

sents the pseudospin-1/2 operator for each atom. The
ensemble is initially prepared in a coherent spin state:
|−ẑ〉 ≡ |E0〉 =

∏N
i=1 |↓i〉. Here, we have employed the

notation that |ŵ〉 represents a coherent spin state where
the pseudo-spin of each atom is aligned in the direc-
tion of the unit vector ŵ. Under a pulse sequence of
π/2−dark−π−dark−π/2, each atom’s wavepacket first
separates into two components, then gets redirected and
finally recombined to produce an interference which is
sensitive to any phase-difference, φ between the two
paths. As an example, we consider the case of rotation
where an atomic interferometer gyroscope rotating at a
rate ΩG about an axis normal to the area Θ accrues a
phase difference φ = 2ωcΘΩG/c2 between its trajecto-
ries [34]. The effect of the overall phase shift φ due to
rotation is uniformly spread throughout the interferomet-
ric sequence. However, for theoretical convenience, we
introduce it in two equal parts during each of the dark
zones (a justification of this approach can be found in
Ref. [35]). The final state of the atoms is given by

|ψ〉 = e−i
π
2 Ĵxei

φ
2 Ĵze−iπĴxe−i

φ
2 Ĵze−i

π
2 Ĵx |−ẑ〉

=
N∏
i=1
−1

2e
−iφ/2((1 + eiφ) |↓i〉+ i(1− eiφ) |↑i〉). (1)

In a conventional Raman atomic interferometer, φ
is measured by mapping it onto the operator repre-
senting the difference in spin-up and spin-down popu-
lations: Ĵz = (N̂↑ − N̂↓)/2, where N̂↑ = Σi |↑i〉 〈↑i|
and N̂↓ = Σi |↓i〉 〈↓i|. The signal, which is a mea-
sure of the population of |↓〉 is, therefore, SCRAIN =
J + 〈−Ĵz〉 = N cos2(φ/2), where J = N/2. The cor-
responding fringe linewidth is given by % = c2/(2ωcΘ).
The measurement process causes wavefunction collapse
of the individual spins from the superposition state to
|↓〉, resulting in quantum projection noise in the measure
of the signal [36], ∆SCRAIN = ∆(−Ĵz) =

√
N/4 sin(φ),

where ∆Ĵz is the standard deviation of Ĵz. Assum-
ing ideal quantum efficiency, the quantum fluctuation
in rotation-rate (QFR) is given by ∆ΩG

∣∣
CRAIN

=
|∆(−Ĵz)/∂ΩG〈−Ĵz〉| = c2/2ωCΘ

√
N , where ∂ΩG ≡

∂/∂ΩG.

The collective state atomic interferometer differs from
a conventional Raman atomic interferometer in that the
measurement of the signal is done on a Dicke collective
state of the ensemble, instead of a single atomic state [14].
The Dicke states are eigenstates of Ĵz and can be repre-
sented as |En, pz = n~k〉 = Σ(Nn)

k=1Pk |↓N−n ⊗ ↑n〉 /
√(

N
n

)
,

where Pk is the permutation operator [15]. As a re-
sult of the first π/2-pulse, the initial state |E0, pz = 0〉
is coupled to |E1, pz = ~k〉, which in turn is cou-
pled to |E2, pz = 2~k〉, and so on, all the way up to
|EN , pz = N~k〉. This causes the ensemble to split into
N + 1 trajectories. The dark zone that immediately fol-
lows imparts a phase einφ/2 to |En〉. At this point, the
π-pulse generates a flip in the individual spins, causing
|En〉 to become |EN−n〉, and vice versa. The second dark-
zone lends a phase ei(0.5N−n)φ to |En〉. The mathemati-
cal derivation of this mechanism is discussed in detail in
Ref. [14]. The last π/2-pulse causes each of the collective
states to interfere with the rest of the states. The col-
lective state atomic interferometer can, thus, be viewed
as an aggregation of interference patterns due to

(
N+1

2
)

interferometers working simultaneously.

The narrowest constituent signal fringes are derived
from interferences between states with the largest dif-
ference in phase, i.e. |E0〉 and |EN 〉. The width of
this fringe is %/N . The widths of the rest of the sig-
nal components range from % to %/(N − 1). The signal,
which is the measure of population of |E0〉, is the re-
sult of the weighted sum of all the pairwise interferences
with this state. This is detected by projecting the final
state of the ensemble, |ψ〉 on |E0〉. Thus, SCOSAIN =
〈Ĝ〉 = cos2N (φ/2), where Ĝ ≡ |E0〉 〈E0|. The quan-
tum projection noise is the standard deviation of Ĝ,
given by ∆SCOSAIN = cosN (φ/2)

√
1− cos2N (φ/2).

The QFR of the collective state atomic interferom-
eter is thus, ∆ΩG

∣∣
COSAIN

= |∆Ĝ/∂ΩG〈Ĝ〉| . Un-
der quantum noise limited operation, this equals
(∆ΩG

∣∣
CRAIN

/
√
N)|
√

sec4J(φ/2)− 1/ tan(φ/2)|. There-
fore, for ΩG → 0, the rotation sensitivity of the collective
state atomic interferometer is same as that of a conven-
tional Raman atomic interferometer, which is the SQL,
assuming all the other factors remain the same. One
way of surpassing the SQL is to suppress the contribu-
tion of the constituent fringes broader than %/N . This is
precisely what happens in the Schrödinger cat atomic in-
terferometer, which makes use of a squeezed spin state of
the ensemble: |ψe〉 = e−iµJ

2
z |ŷ〉, where µ is the squeezing

parameter, and ŷ is the quantum state produced by the
first π/2-pulse.
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III. SCHRÖDINGER CAT ATOMIC
INTERFEROMETER

The Schrödinger cat atomic interferometer can be op-
erated under two different protocols, which differ by the
choice of the axis around which we apply the rotation
that maximizes the degree of observed squeezing. In one
case (Protocol A), the rotation is around the x̂ axis while
in the other (Protocol B), the rotation is around the ŷ
axis.

A. Protocol A

FIG. 1. Illustration of the Schrödinger cat atomic interferom-
eter scheme for Protocol A. For even N : (a) For µ = π/2, the
Husimi quasi probability distribution is split into two circu-
lar components located on the opposite faces normal to the
ŷ axis of the Bloch sphere. (a→b) The Husimi quasi proba-
bility distribution of the squeezed spin state (|ψe〉) is rotated
by π/2 about the x̂ axis to yield the Schrödinger cat state;
note the components on both top and bottom of the Bloch
sphere in (b). (c) Distribution of collective states in the ro-
tated squeezed spin state, showing 50% in state |E0〉 and 50%
in state |EN 〉. For odd N : (d) For µ = π/2, the Husimi quasi
probability distribution is split into two circular components
located on the opposite faces normal to the x̂ axis of the Bloch
sphere. (d→e) rotation about x̂ axis does not transform the
squeezed spin state. (f) Distribution of collective states in the
rotated squeezed spin state. These results also hold for the
case of atomic clocks, as described in Appendix B.

We first consider Protocol A, focusing initially on the
special case where the squeezing parameter µ is π/2, as
illustrated in Fig. 1, with the case of an arbitrary value of
µ to be discussed later. The one-axis-twist spin squeez-
ing effect is achieved by applying the squeezing Hamil-
tonian, HOAT = ~χJ2

z , for a duration of time τ such
that µ = χτ . For even N , HOAT transforms |ŷ〉 to
|ψe〉 = (|ŷ〉 − η |−ŷ〉)/

√
2, where η = i(−1)N/2, rep-

resenting a phase factor with unity amplitude. Rotating
|ψe〉 by an angle of ν = π/2 about the x̂ axis yields the
Schrödinger cat state |ψSC〉 = (|E0〉 + η |EN 〉)/

√
2. At

the end of the intermediate dark−π−dark sequence, the

state of the ensemble is eiφJz/2e−iπJxe−iφJz/2 |ψSC〉 =
(eiNφ/2η |EN 〉 + e−iNφ/2 |E0〉)/

√
2. As discussed above,

the interference between states with a phase difference
Nφ produces signal fringes narrowed by a factor of N .
To measure φ, we seek to undo the effect of squeezing
on the system. This is accomplished in two steps. First,
we apply another rotation ν = π/2 (rather than −π/2,
as noted earlier, due to the state inversion caused by the
π-pulse) about the x̂ axis. Thereafter, the untwisting
Hamiltonian, −HOAT is applied. Finally, the last π/2
pulse is applied to catalyze interference between the re-
sulting states. The signal arising from this interference
depends on φ as SSCAIN = 〈Ĝ〉 = sin2(Nφ/2).
When N is odd, initial squeezing produces |ψe〉 =

(|x̂〉 + ζ |−x̂〉)/
√

2, where ζ = i(−1)(N+1)/2, also rep-
resenting a phase factor with unity amplitude. For
φ = 0, the sequence e−iνJxeiφJz/2e−iπJxe−iφJz/2e−iνJx
only causes an identical phase change in each of these
states. Application of the unsqueezing Hamiltonian,
−HOAT then restores the system to |ŷ〉, and the final
π/2 pulse places the system in the |ẑ〉 state, which is
the same as the collective state |EN 〉. Since we detect
the collective state |E0〉, the whole sequence thus gen-
erates a null signal. For reasons that are not mani-
festly obvious due to the complexity of the states, but
can be verified via simulation, the same conclusion holds
for an arbitrary value of φ. Over repeated measure-
ments, the probability of N being even or odd is equal.
Thus, for M trials, the average signal of the Schrödinger
cat atomic interferometer in this regime is SSCAIN =
M sin2(Nφ/2)/2. The associated quantum projection
noise is ∆SSCAIN =

√
M/2 sin(Nφ). The QFR is thus,

∆ΩG
∣∣
SCAIN

= c2/
√

2MNωCΘ, which is a factor of
√

2
below the HL.

B. Protocol B

Next we consider Protocol B. In this protocol, the rota-
tion is always around ŷ axis while the rotation angle ν is
chosen so as to maximize (right after the squeezing inter-
action) the fluctuations along ẑ axis. For a given value of
N , ν increases with µ, reaching a maximum value of π/2
at µ = µ0 (a typical value of µ0 is 0.095π for N = 200,
for example). Once the squeezed spin state is optimally
aligned, the usual dark−π−dark sequence follows. To
undo the effect of the squeezing, we first apply another
rotation ν about ŷ axis, and then apply −HOAT . Finally,
the last π/2 pulse is applied to catalyze interference be-
tween the two paths of the interferometer.
In Fig. 2, we show the Husimi quasi probability distri-

bution evolutions for Protocol B with µ < π/2. After the
first π/2-pulse, the system is in the coherent spin state
|ŷ〉, as shown in Fig. 2 (a). Following the application
of the squeezing interaction, the quantum fluctuations
are twisted in the x-z plane, as depicted in Fig. 2 (b).
We then apply a rotation around the ŷ axis by an an-
gle ν which is chosen so as to maximize the fluctuations
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along the ẑ axis, as illustrated in Fig. 2 (c). For a given
value of N , ν increases with µ, reaching a maximum
value of π/2 at µ = µ0 (for N = 200, µ0 = 0.095π).
Once the squeezed spin state is optimally aligned, the
usual dark−π−dark sequence follows, where the first and
second dark zones each impart a phase of φ/2 to the
squeezed spin state, while the π-pulse inverts the states.
These are shown in Fig. 2 (d)-(f). To undo the effect of
the squeezing, we first apply another rotation ν about ŷ
axis, and then apply −HOAT , as depicted in Fig. 2 (g)-
(h). Finally, the last π/2 pulse is applied to catalyze
interference between the two paths of the interferometer,
as shown in Fig. 2 (i).

FIG. 2. The evolutions of Husimi quasi probability distribu-
tion for Protocol B with µ < π/2. The initial coherent spin
state |ŷ〉 (a) evolves under HOAT to (b) which is then rotated
by an angle ν (b→c) so as to maximize the fluctuations along
ẑ. (d) The first dark zone imparts a phase φ/2. (e) The Bloch
sphere is rotated to show the other face where the squeezed
spin state is situated after the π pulse. (f) The second dark
zone imparts an additional φ/2 phase. (d→g) The spins are
unrotated by the same angle ν and then (h) unsqueezed, by
applying the inverse of HOAT . (i) The final π/2 pulse causes
interference between the two paths of the interferometer.

In Fig. 3, we show the collective state population distri-
butions right after the squeezing interaction for different
values of µ, under Protocol B. For µ = 0, the squeezed
spin state has the same binomial distribution of the col-
lective states as in the original coherent spin state, as
depicted in Fig 3 (a). As µ increases, the distribution
begins to flatten out, as shown in Fig 3 (b). When µ be-
comes large enough, the distribution starts to invert, and
the relative proportion of the extremal states increases.
However, the exact state distribution depends on the par-
ity of N , as demonstrated in Fig 3 (c). At µ = π/4, the
distribution is trimodal for even values of N , as depicted
by the blue line in Fig. 3 (d). On the other hand, for odd
values of N , the distribution is bimodal, as shown by the
red line in Fig. 3 (d).

FIG. 3. Collective state population distributions right after
the squeezing interaction for different values of µ, under Pro-
tocol B. Both even (blue line) and odd (red line) values of N
are considered. These results also hold for the case of atomic
clocks, as described in Appendix B.

C. Signal fringes under the two protocols

In Fig. 4 (a), we show the signal fringes produced us-
ing Protocol A, for the special case of µ = π/2. As
described earlier, in this case, we get a purely sinusoidal
fringe pattern for even values of N , and a null signal
for odd values of N . The averaged signal, therefore, is
also purely sinusoidal. The width of these fringes is a
factor of N narrower than what is observed in a conven-
tional Raman atomic interferometer. It should be noted
that the phase factors η and ζ (as defined for the su-
perpositions of collective states generated via the first
application of one-axis-twist squeezing under Protocol A
described above) depend, respectively, on the super even
parity, representing whether N/2 is even or odd, and the
super odd parity, representing whether (N + 1)/2 is even
or odd. However, in each case, the shapes of the fringes
as well as the values of QFR, are not expected to depend
on the value of super even parity and super odd parity,
as we have verified explicitly.
The signal fringes under Protocol B are illustrated in

Fig. 4 (b)-(f), for various values of µ. The red lines are
for even values of N , and the blue (dashed or solid) lines
for odd values of N . For different values of µ (except
for µ = π/2), the central fringe as a function of φ is
essentially identical for both odd and even values of N .
Thus, for M trials, the average signal is independent of
the parity of N for the central fringe, which is the only
one relevant for metrological applications. In contrast,
the non-central fringes, averaged over the odd and even
cases, have different shapes, heights and widths. How-
ever, the central fringe always has full visibility, and its
width first decreases sharply with increasing values of µ,
and then saturates at µ = µ0. Consequently, the fluc-
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FIG. 4. Signal fringes for various values of µ. N = 200 is
indicated by red lines, N = 201 by blue (dashed or solid)
lines. Figure (a) employs Protocol A, while figures (b)-(f)
employ Protocol B. The phase span is 1/20-th of 2π; as such,
we see 10 red fringes in figure (a), thus demonstrating a factor
of N reduction in the width of fringes for Protocol A.

tuations in rotation sensitivity plummets, attaining the
minimum value ∆ΩG|SCAIN = e1/3c2/2

√
MNωCΘ, at

µ = µ0.
For the limiting case of µ = π/2, Protocol B pro-

duces very different results for odd and even values of N .
Specifically, for odd values of N , this protocol produces
uniform fringes, each with a width that is a factor of N
narrower than what is observed in a conventional Raman
atomic interferometer, thus yielding HL sensitivity. In
this case, the ideal Schrödinger Cat state is realized, in a
manner analogous to what we described above for Proto-
col A (with µ = π/2). For odd values of N , this protocol
also produces uniform fringes, but each with a width that
is the same as that observed for collective state atomic
interferometer (which is a factor of

√
N narrower than

what is observed in a conventional Raman atomic inter-
ferometer), thus yielding SQL sensitivity. The average
of these two signals, for many repeated measurements,
would produce a sensitivity that, for large N , is lower
than the HL by a factor of

√
2 [35]. In addition, due

to the mixing of the suboptimal signal contributed by
the instances corresponding to even values of N , Proto-
col B, even for µ = π/2, is not well-suited for experi-
ments aimed at studying the effects of gravity on clear
superposition of just two macroscopic states [8–11], and
realizing a matter-wave clock with very high Compton
frequency [13].

D. QFR−1 under the two protocols

In Fig. 5, we summarize the results for both protocols,
for squeezing parameters ranging from µ = 0 to µ = π/2.
Here, we show the inverse of the QFR, normalized to the
same for the HL for N = 100, as a function of µ. Hor-
izontal lines indicate the HL (black solid), and the SQL
(black dashed), where for N = 100, the HL corresponds

FIG. 5. QFR−1 of Schrödinger cat atomic interferometer as
a function of the squeezing parameter, µ, normalized to the
HL for N = 100. Note that, for this value of N , the HL
corresponds to a gain in sensitivity by a factor of 10 compared
to the SQL. Horizontal lines indicate the HL (black solid) and
the SQL (black dashed). The dashed blue lines correspond to
odd value of N (N = 101) and the red lines correspond to
even value of N (N = 100). The left(right) panel shows the
results for Protocol B(A).

to a gain in sensitivity by a factor of 10 compared to the
SQL. The dotted blue lines correspond to odd value of
N (N = 101) and the red lines correspond to even value
of N (N = 100). The left panel shows the result of using
Protocol B. The value of QFR−1 increases monotonically,
reaching a peak value at µ = µ0, and then remains flat
until getting close to µ = π/2, with virtually no differ-
ence between the odd and even values of N , as discussed
in detail earlier. Near µ = π/2, the value of QFR−1

begins to diverge, reaching the HL(SQL) for odd(even)
values of N at µ = π/2. The right panel shows the result
of using Protocol A. At µ = π/2, QFR−1 is at the HL
for even values of N , and vanishes for odd values of N .
For µ < π/2, the amplitude of the signal for even values
of N decreases rapidly, with corresponding decrease in
the value of QFR−1. It should be noted that a vanish-
ing value of QFR−1 is due simply to the vanishing of the
signal itself.

IV. EXPERIMENT CONSIDERATIONS FOR
REALIZING THE SCHRÖDINGER CAT ATOMIC

INTERFEROMETER

In this section, we describe the experimental steps en-
visioned for realizing the Schrödinger cat atomic inter-
ferometer, and discuss potential limitations. The basic
protocol is akin to that employed for the conventional Ra-
man atomic interferometer, with the addition of auxiliary
rotations, one-axis-twist squeezing and collective state
detection. In what follows, we first summarize briefly
the experimental approach for one-axis-twist squeezing
and collective state detection that are well-suited for
the Schrödinger cat atomic interferometer. This is fol-
lowed by a discussion of the complete protocol for the
Schrödinger cat atomic interferometer. We discuss both
Protocols A and B, but limit the description to the case
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of µ = π/2. The case for µ < π/2 can be easily inferred
from this discussion.

There are several experimental schemes for realizing
one-axis-twist squeezing [22–24, 26, 31, 37–41]. For con-
creteness, we consider here the approach based on cavity
feedback dynamics [22–24, 31, 38, 39]. In this approach,
a probe is passed through a cavity, at a frequency that
is tuned halfway between the two legs of a Λ transition
in which the spin-up and spin-down states are coupled
to an intermediate state. The cavity is tuned to be be-
low resonance for the probe. The energy levels of the
spin-up and spin-down states are light shifted due to the
probe, in opposite directions. The resulting dispersion
shifts the cavity resonance frequency by an amount that
is proportional to Jz, the z-component of the total spin
for all atoms. The intra-cavity probe intensity changes
linearly with this cavity shift, since it is on the side of the
resonance, thus affecting the light-shifts. The net result
is an energy shift for all the atoms that is proportional
to the square of Jz, so that the interaction Hamiltonian
can be expressed as HOAT = ~χJ2

z , where χ is a parame-
ter that determines the strength of the squeezing process.
Changing the sign of the cavity detuning reverses the sign
of the Hamiltonian, thus producing unsqueezing.

The collective state detection technique is detailed in
section IV of Ref. [14], where a null-detection scheme is
employed to measure population of one of the extremal
Dicke collective states. The probe is one of the two
counter-propagating Raman beams, which induces Ra-
man transitions within the atomic ensemble unless it is
in the desired extremal collective state. As a result, there
will be photons emitted corresponding to the other leg
of the Raman transition. The probe and the emitted
photons are combined and sent to a high speed detec-
tor, which produces a dc signal along with a beat signal.
This beat signal is at the same frequency as that of the
signal produced by the frequency synthesizer that drives
the Acousto-Optic Modulator (AOM), for example, used
to generate the beam that excites one leg of the Raman
excitation from the beam that excites the other leg of
the Raman excitation, but with a potential difference
in phase. To extract the amplitude, the beat signal is
bifurcated and one part is multiplied by the frequency
synthesizer signal, while the other is multiplied by the
frequency synthesizer signal phase shifted by 90 degrees.
The signals are then squared before being recombined
and sent through a low-pass filter to derive a dc voltage.
This dc voltage is proportional to the number of scat-
tered photons. A lower limit (ideally zero) is set for the
voltage reading, and any value recorded above it indicate
the presence of emitted photons. If no photon is emit-
ted, the voltage will be at or below the limit, indicating
that the ensemble is in the desired extremal collective
state; otherwise at least one photon will be emitted and
the ensemble will be in a combination of other collective
states. This process is then repeated many times for a
given value of φ. The fraction of events where no photons
are detected will correspond to the signal for this value

of φ. This process is then repeated for several values of
φ, producing the signal fringe.
For the complete Schrödinger cat atomic interferom-

eter experiment, we assume that the source atoms are
caught in a magneto-optic trap (MOT), followed by po-
larization gradient cooling and evaporative cooling, to a
temperature of about 0.5 µK, with a phase-space density
less than what is required for Bose-Einstein Condensa-
tion (BEC). The atoms are then pushed out, forming a
sequential beam of N atoms in each sequence. An initial
(counter-propagating) Raman pulse, corresponding to a
rotation of π/2 around the x-axis, splits each atom, origi-
nally in the spin-down state, into an equal super-position
of spin-up and spin-down states. The atoms then pass
through a transverse ring cavity set up for one-axis-twist
squeezing. The squeezing process is carried out for a
duration corresponding to µ = π/2, followed by an auxil-
iary rotation (produced by another pair of Raman beams)
by an angle of π/2 around the x-axis. This creates the
Schrödinger cat state, as a superposition of two extremal
Dicke collective states: one in which all atoms are in the
spin-down state, and another in which all atoms are in the
spin-up state. The two components in the Schrödinger
cat state get spatially separated during the first dark
zone evolution. This is followed by another Raman pulse
which produces a rotation of π around the x-axis. This
pulse redirects the velocities of the two components. Af-
ter the second dark zone, another Raman pulse is applied
for a duration that produces a rotation of π/2 around the
x-axis. This is followed by an unsqueezing pulse, of du-
ration corresponding to µ = −π/2, which is produced by
sending the atoms through a second transverse ring cav-
ity, with a cavity detuning that is equal and opposite to
the one applied in the first cavity. After the unsqueez-
ing, the final π/2 rotation around the x-axis, produced
by another Raman pulse, causes the two paths to inter-
fere. The collective state detection process is then used
to determine the population of the atoms in the collective
state in which all the atoms are in the spin-down state,
representing the signal for the Schrödinger cat atomic in-
terferometer, under Protocol A and the limiting case of
µ = π/2.
For implementing Protocol B, for µ = π/2, the basic

sequence is the same as what is described above, with
the following modifications. Note that, in the sequence
described above, there are five different pairs of Raman
beams; three of these are used for the conventional pulse
sequences necessary for a conventional Raman atomic in-
terferometer, while the other two are used for auxiliary
rotations. In the case of Protocol B, the auxiliary rota-
tions are around the y-axis. The phase of the beat signal
between the two frequencies employed for Raman exci-
tation determines the axis of rotation. Thus, this phase
for the two pairs of Raman beams used for the auxiliary
rotations has to be shifted by 90 degrees compared to
the same for the three pairs of Raman beams used for
the conventional Raman atomic interferometer pulse se-
quence. To see how this phase shift can be produced,
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we note that (as also mentioned in the discussion for the
collective state detection above) for each pair of Raman
beams, we start with a laser beam at a frequency that
excites one leg of the Λ transition. The second laser
frequency, which excites the other leg of the Λ transi-
tion, is produced by shifting the frequency of a piece of
the first laser beam by passing it through an AOM, for
example. The frequency that drives the AOM is gener-
ated from a frequency synthesizer. Thus, to generate the
phase shift needed for Protocol B, we lock the difference
between the phase of the frequency synthesizer used for
the auxiliary Raman beams and that of the frequency
synthesizer used for the conventional Raman atomic in-
terferometer Raman beams to a value of 90 degrees. As a
result, the auxilary Raman beams will produce rotations
of π/2 around the y-axis, as needed for Protocol B.

To elucidate potential practical limitations in imple-
menting the Schrödinger cat atomic interferometer pro-
tocol experimentally, as envisioned above, consider first
the situation where the one-axis-twist squeezing and un-
squeezing processes are ideal. In that case, the relevant
issues pertain to the potential imperfections in generat-
ing the ideal collective states. In references [14] and [15],
we discussed the issues that are relevant in this context,
and how these issues may limit the performance of the
collective state atomic interferometer. Essentially the
same issues are expected to constrain the performance
of the Schrödinger cat atomic interferometer. In what
follows, we summarize the findings of the analysis pre-
sented in these two references [14, 15], in the context of
the Schrödinger cat atomic interferometer, using 87Rb
atoms for specificity. First, we noted that for a Raman
excitation based atomic interferometer (such as the col-
lective state atomic interferometer and the Schrödinger
cat atomic interferometer), the collective states must be
defined in a manner so that the spin-down state repre-
sents the atom being in the ground state of the internal
energy, and in a momentum eigenstate of the center-of-
mass motion, and the spin-up state represents the atom
being in a higher-energy but metastable internal state,
and in another momentum eigenstate of the center-of-
mass motion. Since the atom is in a wavepacket with re-
spect to the center-of-mass motion, the spin-down state,
for example, is in a superposition of momentum eigen-
states. Similarly, the spin-up state is also in a superpo-
sition of momentum eigenstates, even if we assume that
the two-photon recoil imparted by the Raman beams is
exactly the same for each atom. In Section 4 of refer-
ence [15], we addressed this issue explicitly, and showed
that if the effective Rabi frequency of the off-resonant
Raman transition (i.e., the Raman Rabi frequency) is
much larger than the Doppler shift due to the center-of-
mass momentum of each of the constituent plane waves in
the ground state wavepacket, then the description of the
semi-classical collective states (which ignores the center-
of-mass motion), as employed here and in virtually all
descriptions of collective states in the literature, remains
valid. For the temperature of 0.5 µK mentioned above

for the Schrödinger cat atomic interferometer, it should
easily be possible to realize an effective Rabi frequency
large enough to satisfy this condition.
Second, we considered the effect of the variations in

the intensity profiles of the laser beams, which in turn
cause variations in the Raman Rabi frequency. The ef-
fect of this inhomogeneity can be mitigated by increas-
ing the ratio, ρ, of the diameter of the Raman beams to
the diameter of the atomic cloud. For ρ = 10, the up-
per bound of the useful value of N was found to be ∼
1.2× 105. Third, we considered the effect of the velocity
distribution, which causes variations in the two-photon
detuning. We found that at a temperature of 0.5 µK, this
inhomogeneity limits the useful value of N to ∼ 2× 104.
The useful value of N can, in principle, be increased fur-
ther by using colder atoms, as long as the phase space
density is kept below the value at which BEC occurs.
Fourth, we considered the effect of spontaneous emis-

sion, since there is a small fraction of atoms in the in-
termediate state during the application of the Raman
pulses. A proper analysis of the effect of spontaneous
emission would require the use of a density matrix based
model in the basis of the collective states. Coherent ex-
citation of the atoms only populates the (N + 1) sym-
metric collective states [15–17]. However, the total num-
ber of collective states, which include the asymmetric
ones, is 2N , the size of the Hilbert space for N two-level
atoms [15]. All of these states must be taken into ac-
count when considering the effect of spontaenous emis-
sion, which can couple to both symmetric and asymmet-
ric states. Thus, even for a modest number of N that
would be relevant for a Schrödinger cat atomic interfer-
ometer, such an analysis is intractable (as also noted in
the supplement of reference [38]). For large N , one must
rely on experiments to determine the degree to which
the generation and detection of the Schrödinger cat state
would be affected by the spontaneous emission process
during Raman excitations. However, it should be noted
that the effect of spontaneous emission can be suppressed
to a large degree by simply increasing the optical detun-
ing while also increasing the laser power. This is the
approach used, for example, in reducing the effect of ra-
diation loss of atoms in a far-off resonant trap.
Finally, we considered the effect of the fluctuations in

the value of N . In our discussion for the Schrödinger cat
atomic interferometer above, we have already assumed
an averaging over odd and even parities of atoms, for the
case where atoms are released from a trap. In addition,
one must consider the fact that the mean value of N itself
is expected to fluctuate in this case. As we have shown
in reference [14], such a fluctuation would simply cause
of the width of the fringes due to interference between
the extremal collective state to deviate from the ideal
value, which is a factor of N narrower than the fringes
in a conventional Raman atomic interferometer. Thus,
for example, a fluctuation in the value of N by 1% would
cause an ∼ 1% fluctuation in the value of the QFR−1.
We also note that, in general, these constraints are
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much less stringent for the case of the Schrödinger cat
atomic clock, as described in Appendix II, which is based
on the use of co-propagating Raman beams or a direct
microwave excitation. For example, as shown in refer-
ence [42], for the case of co-propgating Raman excita-
tion, the velocity distribution limits the useful value of
N to ∼ 2×106 even for a temperature as large as 138 µK.
Similarly, for ρ = 20, the effect of laser intensity inhome-
geneity limits the useful value of N to ∼ 2× 106 as well.

Consider next the challenge in implementing the ide-
alized one-axis-twist process as envisioned above. In
the experiments done to date, employing one-axis-twist
squeezing, such as those in references [23] and [39], the
typical maximum value of the squeezing parameter, µ, is
∼ 0.01. To the best of our knowledge, the highest value
of µ, ∼ 0.0125, was observed in references [23]. For the
protocol proposed here, the ideal value of µ that pro-
duces the Schroedinger Cat states is π/2. Under ideal
conditions, this value can be achieved by increasing the
duration of the squeezing pulse, or increasing its inten-
sity, for example. However, because of the various non-
idealities, as discussed in detail in several papers, includ-
ing the supplement of reference [38], it is clear that, for
the current experimental implementations, the quantum
state after such a strong degree of squeezing interaction
would be severely degraded. The non-idealities that de-
grade the quantum state of the ensemble include the ef-
fect of back-action due to the cavity decay, as well as due
to spontaneous emission that causes spin-flips. As noted
in reference [38], the effect of both of these non-idealities
can be suppressed by increasing the cooperativity pa-
rameters for the cavity (e.g., by making the cavity mode
small enough so that the vacuum Rabi frequency would
be much stronger than both the cavity decay rate and
the rate of spontaneous emission).

However, it should be noted that, for the one-axis-
twist Squeezing based protocols that have been consid-
ered so far, the maximum useful squeezing is produced
for very small values of µ, of the order of ∼ 0.01 for
∼ half a million atoms. Because of other non-idealities,
such as poor quantum efficiency of detection, the cur-
rently achieved values of squeezing are not limited by the
values of µ. Furthermore, under conventional protocols
employing one-axis-twist Squeezing, the Hussimi quasi
probability distribution begins to get distorted when µ is
increased beyond ∼ 0.01, and the magnitude of the nor-
malized Bloch vector starts getting smaller than unity.
In fact, the factor of improvement in sensitivity due to
squeezing drops to unity and even less than unity for
µ far below the value of π/2. As such, experimental
efforts to date have been focused on eliminating these
non-idealities, instead of constructing apparatuses that
would increase the cooperativity parameter significantly,
or exploring new schemes for one-axis-twist squeezing
that would be more robust again dephasing processes.

An important point of this paper is to show that there
is a regime of one-axis-twist squeezing (namely when
µ = π/2) that produces ideal quantum states, such as

a superposition of two extremal Dicke collective states,
without distortion and any reduction in the amplitude of
the Bloch vector. Previously, such a state has only been
demonstrated for very few ions (such as in reference [43]).
For a very large value of N , the number of particles, gen-
erating such a state requires knowing the parity of N .
Therefore, no previous study has been carried out to show
how to construct a protocol under which the Heisenberg
Limit (within a factor of

√
2) can be reached even when

averaging over both parities of N . This is the main point
of this paper. We believe that the results shown in this
paper would identify the need for, and generate an inter-
est in, developing improvements in experimental imple-
mentation of one-axis-twist squeezing in a manner that
makes it possible to reach a value of µ = π/2, without
significant degradation of coherence.

V. CONCLUSION

In this article, we have presented a protocol for an
atom interferometer that reaches the Heisenberg Limit
(HL), within a factor of ∼

√
2, via collective state detec-

tion and critical tuning of one axis twist spin squeezing.
It generates a Schrödinger cat state, as a superposition
of two collective states. When this Schrödinger Cat atom
interferometer is configured as a gyroscope, the interfer-
ence occurs at an ultrahigh Compton frequency, corre-
sponding to a mesoscopic single object with a mass of
Nm, where N is the number of particles in the ensemble,
and m is the mass of each particle. The signal for the
Schrödinger cat atomic interferometer is found to depend
critically on the parity of N . We present two variants of
the protocol. Under Protocol A, where the auxiliary ro-
tation occurs around the x-axis, the fringes are narrowed
by a factor of N for one parity, while for the other parity
the signal is zero. Under Protocol B, where the auxil-
iary rotation occurs around the y-axis, the fringes are
narrowed by a factor of N for one parity, and by a fac-
tor of

√
N for the other parity. Both protocols can be

modified in a manner that reverse the behavior of the
signals for the two parities. We describe an experimen-
tal approach where atoms are first caught in a magneto-
optic trap, followed by polarization gradient cooling and
evaporative cooling, then pushed out in a sequence, and
passed through seven interaction zones: three for the con-
ventional Raman atomic interferometer process, two for
auxiliary rotations, and two for one axis twist squeezing,
produced via interaction with a detuned probe in a cavity.
Over repeated measurements under which the probability
of being even or odd is equal, the averaged sensitivity is
smaller than the HL by a factor of ∼

√
2 for both versions

of the protocol. We describe potential limitations of the
proposed approach due to experimental constraints im-
posed by the current state of the art, for both collective
state detection and one-axis-twist squeezing. We show,
in Appendix A, the physical interpretation of why the
phase magnification in the Schrödinger cat atomic inter-
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ferometer, when configured as a gyroscope, is due to an
enhancment of the Compton frequency by a factor of N .
On the other hand, we show, also in Appendix A, that
when the Schrödinger cat interferometer is configured as
an accelerometer, the phase magnification is due to an
enhancement of the effective two-photon wave vector by
a factor of N , leading to the same degree of enhance-
ment in sensitivity. We also show that such a mesoscopic
single object can be used to increase the effective base
frequency of an atomic clock by a factor of N , with a
sensitivity that is equivalent to the HL, within a factor
of ∼

√
2. The scheme for this Schrödinger cat atomic

clock is described in Appendix B.
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Appendix A: Different Physical Interpretations for
Phase Magnification in Schrödinger cat atomic

interferometer for Different Modes: Enhancement of
Compton Frequency for Gyroscopy and

Enhancement of Effective Two-Photon Wave Vector
for Accelerometry

For a gyrosocope based on a planar Mach-Zehnder
interferometer, a rotation normal to its plane causes a
phase shift ∆φ that is proportional to the rotation rate
Ω, due to the Sagnac effect [34, 44]. To derive the phase
shift, one can compute the Sagnac path difference of the
two arms, given by ∆LS = 2AΩ/vp, where vp is the phase
velocity of the waves propagating along the two arms,
and A is the area of the interferometer. The phase shift
is then given by multiplying this path difference by the
wave vector. Alternatively, one can compute the Sagnac
time delay between the two paths, which is found to be
∆TS = 2AΩ/c2, where c is the vacuum speed of light.
It should be noted that this delay is a geometric prop-
erty of the interferometer loop [45], and the parameter c
appears in this expression due to the use of the relativis-
tic formula for addition of velocities, having nothing to
do with the velocity of the waves propagating along the
two arms [44]. The phase shift is then given by multi-
plying this time delay by the angular frequency. For an
optical gyroscope, the wave vector and the angular fre-
quency are simply related by the speed of light, and it is
easy to see the equivalence between these two methods.
However, for a matter-wave gyroscope, the relationship
between these two approaches is less obvious.

To elucidate the equivalence of these two approaches
for matter waves, note first that in this case the angular
frequency is given by the Compton frequency wc, defined
as E/~, where E is the relativistic energy of the particle,
while the wavevector is kdB , which is 2π times the inverse

of the de Broglie wavelength, and is given by p/~, where
p is the relativistic momentum of the particle. These two
quantities are related by the Lorentz transformation [13,
14, 46]. It is well-known that E/c and p form a four-
vector; as such, wc/c and kdB also form a four-vector. In
the rest frame of the particle, we have E = mc2, p = 0,
where m is the rest mass of the particle. In the frame
where the particle is moving at velocity v, using Lorentz
transformation, we have E = γmc2, p = γmv, where
γ = 1/

√
1− (v/c)2. Therefore for a moving particle, we

have wc = γmc2/~ and kdB = γmv/~. It then follows
that the phase shift for the two approaches yield the same
value: ∆φ = wc∆TS = kdB∆LS = 2mAΩ/~, where we
have assumed v � c so that γ ≈ 1.

To see transparently why the fringes are amplified by a
factor ofN for the Schrödinger cat atomic interferometer,
we recall first that the ensemble can always be viewed as a
single particle with a mass of Nm, even when there is no
entanglement, if a description based on collective states
is employed. This was illustrated in our earlier paper on
the collective state atomic interferometer [14], for which
the experimental configuration is identical to that of a
conventional Raman atomic interferometer, as discussed
in Section II. For the conventional Raman atomic inter-
ferometer as well as the collective state atomic interfer-
ometer, the sum of the quantum states of N atoms can be
expressed, equivalently, as the sum of N collective states,
each of which has a mass of Nm. The trajectory of each
of these collective states during the traversal through the
interfermeter depends on the momentum imparted to it,
which in turn depends on the fraction of atoms that are in
the spin-up state. As such, there are many closed-loops,
each with a different effective area. Thus, the fringe pat-
tern for each of these loops has a different width. The fi-
nal quantum state represents interference between all the
collective states. If the population of one of the collective
states (e.g., the one where all atoms are in the spin-down
state) is detected, as in the case of the collective state
atomic interferometer, then the resulting fringes become
akin to that of a Fabry Perot interferometer, and the cen-
tral fringe is narrowed by a factor of

√
N compared to the

width of the fringes observed in a conventional Raman
atomic interferometer. In the case of the Schrödinger cat
atomic interferometer, there is only one closed loop, be-
cause the quantum state is a superposition of only two
collective states. The area of this loop is the same as
that for each atom in a conventional Raman atomic in-
terferometer. However, the mass of each of these two col-
lective states is Nm. As such, the Compton frequency
for each of these two collective states is amplified by a
factor of N . Alternatively, the de Broglie wavelength for
each of these two collective states is reduced by a fac-
tor of N . For either view, it then follows immediately
that the phase is magnified by a factor of N . The dis-
cussion in the preceding paragraph shows that these two
views are equivalent, since the spatial phase variation due
to the de Broglie wavelength is merely a Lorentz trans-
formation induced manifestation of the temporal phase
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variation due to the Compton frequency in the rest frame
of the particle. However, the interpretation based on the
de Broglie wavelength is somewhat misleading, since the
actual phase shift does not depend on the velocity —
and, therefore the de Broglie wavelength — of the parti-
cle. The interpretation based on the Compton frequency
makes it manifestly obvious that the phase shift has no
dependence on the velocity of the particle.

Next, we note that when a conventional Raman atomic
interferometer is used for measuring acceleration rather
than rotation, the phase shift is given by ∆φ = keffgT

2,
where keff = k1 + k2 is the effective two-photon wave
vector, given by the sum of the wave vectors for the two
legs of the Λ transition, and T is the interaction time.
This result can be understood by noting that in this case
what is measured are the phases of the laser fields. In the
rotating waves picture, which is akin to the use of atoms
dressed with photons, the spin-down state is dressed by
the photon with wave vector of k1, while the spin-up state
is dressed with a counter-propagating photon with wave
vector of k2; as such, the phase difference between the
dressed spin-up state and the dressed spin-down state is
the difference of the phase variations of the two counter-
propagating photons, at the spatial rate of keff . It can
be shown that, for the Schrödinger cat atomic interfer-
ometer, the phase shift for the interferometer is amplified
by a factor of N: ∆φ = NkeffgT

2. This is because the
collective state E0 is dressed by N photons, each with a
wave vector of k1, while the collective state EN is dressed
by N photons, each with a wave vector of k2; as such, the
phase difference between the dressed collective state EN
and the dressed collective state E0 is the difference of the
phase variations of N pairs of counter-propagating pho-
tons, at the spatial rate of Nkeff . For both the conven-
tional Raman atomic interferometer and the Schrödinger
cat atomic interferometer, when used for accelerometry,
the interferometer phase shift has no dependence on the
mass of the atoms; as such, the Compton frequency plays
no role in either case.

In this context, it is relevant to note the recent contro-
versy surrounding a paper [47] in which the measurement
using a conventional Raman atomic interferometer, op-
erating as an accelerometer, was re-interpreted as a mea-
surement of gravitational redshift of a clock operating at
the Compton frequency of a single atom. While the au-
thors of references [48–51] dispute this re-interpretation,
the authors of the original paper stand by their claim [52].
If the authors of the original paper are correct, then it
follows that the Compton frequency can be used to in-
terpret the signal for a conventional Raman atomic in-
terferometer/Schrödinger cat atomic interferometer even
when measuing acceleration. On the other hand, if the
objecting authors are correct, then we conclude that the
use of the Compton frequency is irrelevant and unneces-
sary for determining the signal for the conventional Ra-
man atomic interferometer/Schrödinger cat atomic inter-
ferometer when measuring acceleration; this is in keep-
ing with the arguments we presented in the preceding

paragraph. However, either of these conclusions is irrel-
evant when considering the use of the conventional Ra-
man atomic interferometer/Schrödinger cat atomic inter-
ferometer for measuring rotation; in that case, it is clear
that the use of Compton frequency is valid, based on the
arguments we presented above.
Finally, it should be noted that, for a conventional

Raman Ramsey atomic clock (RRAC), as summarized
in Appendix B (where we describe the Raman Ram-
sey atomic clock as a background for describing the
Schrödinger cat version thereof), the phase shift is given
by ∆φ = 2πfTD, where f is the clock-detuning (in Hz),
and TD is the time separation between the two Ramsey
zones. This can be viewed as resulting from the fact that
(in the rotating waves picture, which is akin to the use
of atoms dressed with photons) the spin-down state is
dressed with a photon at frequency f1, corresponding to
one leg of the Λ transition, while the spin-up state is
dressed with a photon at frequency f2, corresponding to
the other leg of the Λ transition. As such, the clock fre-
quency is defined by the difference between the frequen-
cies of the two photons: fclk = f1−f2. At the same time,
the energy difference between the bare atom in spin-up
and spin-down states is hfatm, so that the net energy dif-
ference between the dressed spin-up state and the dressed
spin-down state is given by hf = h(fclk − fatm), which
in turn implies a clock detuning of f . As shown in detail
in Appendix B, for the Schrödinger cat atomic clock, the
phase shift is amplified by the factor N: ∆φ = 2πNfTD.
This is because the collective state E0 is dressed by N
photons, each with a frequency f1, while the collective
state EN is dressed by N photons, each with a frequency
f2. As such, the energy difference between the dressed
EN state and the dressed E0 is Nhf = Nh(fclk − fatm),
which implies a clock detuning of Nf . For both the
Raman Ramsey atomic clock and the Schrödinger cat
atomic clock, the phase shift does not depend on the
atomic mass; as such, the Compton frequency plays no
role for either version of the clock.

Appendix B: Schrödinger Cat Atomic Clock

In this appendix, we present the results obtained by
applying the proposed protocols to atomic clocks. As
mentioned in the main body of the paper, the combina-
tion of one-axis-twist spin squeezing, followed by a rota-
tion, inversion of rotation and unsqueezing, along with
collective state detection can also be used to realize a
parity-independent, mesoscopic Schrödinger cat atomic
clock with Heisenberg Limited sensitivity, within a fac-
tor of

√
2. In order to describe how the Schrödinger

cat atomic clock works, we consider first a configura-
tion where the ground states |↓〉 and |↑〉 of a three-level
atom interact with an excited state |e〉 via two coprop-
agating laser beams. One of the beams, detuned from
resonance by δ1 and with Rabi frequency Ω1, couples |↓〉
to |e〉. The other beam, with Rabi frequency Ω2 and de-
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tuning δ2, couples |e〉 to |↑〉. For δ � Ω1,Ω2,Γ, where
δ = (δ1 + δ2)/2, and Γ is the decay rate of |e〉, the inter-
action can be described as an effective two level system
excited by an effective traveling wave with a Rabi fre-
quency Ω = Ω1Ω2/2δ, and detuning ∆ = δ1 − δ2. It
should be noted that this is formally equivalent to a con-
ventional microwave atomic clock that couples |↓〉 to |↑〉.
However, since a Raman transition is needed for the de-
tection of collective states, we choose to describe it here
as a Raman clock. In practice, all results presented here
would remain valid for a conventional microwave exci-
tation, which is preferable because a Raman clock may
suffer from fluctuations in light shifts.

In a conventional Raman Ramsey atomic clock, an en-
semble of N effective two-level atoms is first prepared
in the coherent spin state, denoted as |−ẑ〉 ≡ |E0〉 =∏N
i=1 |↓i〉. The initial π/2-pulse rotates the coherent spin

state about the x̂-axis and brings it to the ŷ-axis, pro-
ducing the state e−i(π/2)Jx |−ẑ〉 = |ŷ〉 =

∏N
i=1(|↓i〉 −

i |↑i〉)/
√

2. The collective spin is then left to evolve
without any interaction for time TD, during which each
constituent spin acquires a phase φ = 2πfTD, where
f = ∆/2π is the (two-photon) detuning of the clock in
Hertz. This is equivalent to a rotation by φ about the ẑ-
axis. At this point, a second π/2-pulse is applied, which
establishes the final state, |ψ〉 =

∏N
i=1((1−eiφ) |↓〉−i(1+

eiφ) |↑〉)/2. The aim of the Raman Ramsey atomic clock
is to measure φ, and therefore, f as precisely as possible.

In an ideal Raman Ramsey atomic clock, φ is mea-
sured by mapping it onto the operator representing the
difference in spin-up and spindown populations: Ĵz. The
signal, which is a measure of the population of |↑〉 is,
therefore, SRRAC = J + 〈Ĵz〉 = N cos2(φ/2). The asso-
ciated quantum projection noise is ∆SRRAC = ∆Ĵz =√
N/4 sin(φ). The stability of the measurement of f is

an indicator of the performance of an atomic clock. The
stability of the clock is attributed to the quantum fluc-
tuation in frequency (QFF), analogous to the QFR de-
scribed in the main body of this paper. The QFF can be
written as

QFF = ∆f =
∣∣∣∣ ∆Jz
∂〈Jz〉/∂f

∣∣∣∣
=
(

2πTD
√
N
)−1
≡ γ/

√
N. (B1)

where γ is the width of the Raman Ramsey atomic clock
fringes.

As is the case for a collective state atomic interfer-
ometer, a collective state atomic clock (COSAC) differs
from a conventional Raman Ramsey atomic clock in that
the measurement of the signal is done on a collective
state of the ensemble, instead of single atom measure-
ments [42]. In the picture based on collective states
(which is equivalent to the picture based on individ-
ual atoms), the first π/2-pulse couples the initial state
|E0〉 to |E1〉, which in turn is coupled to |E2〉, and so
on, effectively causing the ensemble to split into N + 1

states. During the dark zone, the n-th collective state
|En〉 picks up a phase e−inφ. When the ensemble inter-
acts with the last π/2-pulse, each of the collective states
interfere with the rest of the states. The collective state
atomic clock can, thus, be viewed as the aggregation
of interference patterns due to

(
N+1

2
)
Raman Ramsey

atomic clocks working simultaneously. The mathemati-
cal derivation of this mechanism is discussed in detail in
Ref [42]. The narrowest constituent signal fringes are de-
rived from interferences between states with the largest
difference in phase, i.e. |E0〉 and |EN 〉. The width of
this fringe is γ/N . The widths of the rest of the sig-
nal components range from γ to γ/(N − 1). The sig-
nal, which is the measure of the population of |EN 〉, is
the result of the weighted sum of all the pairwise in-
terferences with this state. This is detected by project-
ing the final state of the ensemble, |ψ〉 on |EN 〉. Thus,
SCOSAC = 〈Q̂〉 = cos2N (φ/2), where Q̂ ≡ |EN 〉 〈EN |.
The quantum projection noise is the standard deviation
of Q̂, given by ∆SCOSAC = cosN (φ/2)

√
1− cos2N (φ/2).

The QFF of the collective state atomic clock is thus,

∆f
∣∣
COSAC

=
∣∣∣∆Q̂/∂f 〈Q̂〉∣∣∣

= (∆f
∣∣
CRAIN

/
√
N)|
√

sec4J(φ/2)− 1/ tan(φ/2)|
(B2)

Therefore, for f → 0, the frequency sensitivity of the
collective state atomic clock is the same as that of an
Raman Ramsey atomic clock, assuming that all the other
factors remain the same.
The Schrödinger cat atomic clock is based on the same

process of squeezing followed by a rotation and then
another rotation and unsqueezing as that employed for
the Schrödinger cat atomic interferometer. The coher-
ent spin state after the first π/2-pulse is squeezed via
the one-axis-twist spin squeezing Hamiltonian, HOAT =
~χJ2

z , yielding the squeezed spin state of the ensemble
|ψe〉 = e−iµJ

2
z |ŷ〉, where µ = χτ is the squeezing param-

eter, and τ is the duration of the squeezing interaction.
This squeezed spin state must be rotated by an angle ν
about an appropriate axis, the choice of which depends
on the degree of squeezing, and follows the same rules as
described in the main body of the paper.
Similar to the Schrödinger cat atomic interferometer,

the Schrödinger cat atomic clock can be operated under
two different protocols, which differ in the choice of the
axis around which we apply a rotation that maximizes
the degree of observed squeezing. In one case (Proto-
col A), the rotation is around the x̂ axis, while in the
other case (Protocol B), the rotation is around the ŷ
axis. We first consider Protocol A, focusing initially on
the special case where µ = π/2, with the case of an ar-
bitrary value of µ to be discussed later. For even N ,
HOAT transforms |ŷ〉 to |ψe〉 = (|ŷ〉−η |−ŷ〉)/

√
2, where

η = i(−1)N/2, representing a phase factor with unity
amplitude. As we noted in the main body of this pa-
per, this phase factor depends on the super even parity;
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however, the shapes of the fringes, as well as the val-
ues of QFF, are not expected to depend on the value
of the super even parity, as we have verified explicitly.
Rotating |ψe〉 by ν = π/2 about the x̂ axis yields the
Schrödinger cat state |ψSC〉 = (|E0〉 + η |EN 〉)/

√
2. At

the end of the dark zone, the state of the ensemble is
(eiNφ/2η |EN 〉 + e−iNφ/2 |E0〉)/

√
2. We now apply a ro-

tation of ν = π/2 about the x̂ axis (Ideally inversion of
the rotation would require the application of rotation of
ν = −π/2. However, we have found [35] that changing
the sign of this rotation simply inverts the final fringes.
This is also true for the Schrödinger cat atomic interfer-
ometer protocol. It should also be noted that experimen-
tally, ν = −π/2 actually corresponds to ν = 3π/2, which
requires a longer duration or more power. Therefore, for
both the Schrödinger cat atomic interferometer and the
Schrödinger cat atomic clock, we choose to use a correc-
tive rotation of π/2 rather than −π/2), followed by the
untwisting Hamiltonian, −HOAT . Finally, the last π/2
pulse is applied to catalyze interference between the re-
sulting states. The signal arising from this interference
depends on φ as SSCAC = 〈Q̂〉 = sin2(Nφ/2).
When N is odd, initial squeezing produces |ψe〉 =

(|x̂〉 + ρ |−x̂〉)/
√

2, where ρ = i(−1)(N+1)/2, represent-
ing a phase factor with unity amplitude. As noted in the
main body of the paper, this phase factor depends on the
super odd parity; however, the shapes of the fringes, as
well as the values of QFF, are not expected to depend
on the value of the super odd parity, as we have verified
explicitly. For φ = 0, the sequence e−iνJxe−iφJze−iνJx
causes a π phase-shift in each of the components of
this state. Application of the unsqueezing Hamiltonian,
−HOAT then moves the system to |−ŷ〉, and the final
π/2 pulse places the system in the |−ẑ〉 state, which is
the same as the collective state |E0〉. Since we detect
the collective state |EN 〉, the whole sequence thus gen-
erates a null signal. Again, just as in the case of the
Schrödinger cat atomic interferometer, the same con-
clusion holds for an arbitrary value of φ, for reasons
that are not manifestly obvious due to the complexity
of the states, but can be verified via simulation. Over
repeated measurements, the probability of N being even
or odd is equal. Thus, for M trials, the average sig-
nal of the Schrödinger cat atomic clock in this regime
is SSCAC = M sin2(Nφ/2)/2. The associated quantum
projection noise is ∆SSCAC =

√
M/2 sin(Nφ). The QFF

is thus, ∆f = 1/
√

2MπNTD, which is a factor of
√

2 be-
low the HL.

Next, we consider Protocol B, in which the rotation is
always around the ŷ axis while the rotation angle ν is
chosen so as to maximize (right after the squeezing in-
teraction) the fluctuations along the ẑ axis. For a given
value ofN , ν increases with µ, reaching a maximum value
of π/2 at µ = µ0 (µ0 = 0.095π for N = 200). Once the
squeezed spin state is optimally aligned, the dark zone
follows. We now apply another rotation −ν about the ŷ
axis (note that this rotation is a reversal of the original
rotation, unlike the case for Protocol B in Schrödinger cat

atomic interferometer), then apply −HOAT . Finally, the
last π/2 pulse is applied to establish the final state. The
signal fringes as a function of φ under Protocol B are il-
lustrated in Fig. 6 (a)-(e), for various values of µ. The re-
sults for even values of N (N = 200) are indicated by the
blue lines, and those for the odd values of N (N = 201)
are indicated by the orange lines. The broken black lines
indicate the average signal. Until the value of µ gets
close to π/2, the central fringe as a function of frequency
is essentially identical for both odd and even values of N .
Thus, for M trials, the average signal is independent of
the parity of N for the central fringe, which is the only
one relevant for metrological applications. For different
values of µ, the non-central fringes, averaged over the
odd and even cases, have different shapes, heights and
widths. However, the central fringe always has full vis-
ibility. Its width first decreases sharply with increasing
values of µ, and then saturates at µ = µ0. Consequently,
the fluctuations in frequency drops significantly, attain-
ing the minimum value ∆f |SCAC = e1/3/

√
M2πNTD, at

µ = µ0.

FIG. 6. Signal fringes for various values of µ, TD = 50 µs.
N = 200 is indicated by blue lines, N = 201 by red lines.
The broken black lines indicate the average signal. Figures
(a)-(e) employ Protocol B, while figure (f) employs Protocol
A. The time interval between the π/2 pulses is 50 µs, so that
the peak-to-peak width of a conventional clock fringe would
be 20 kHz. The peak-to-peak width of the blue fringes in
figure (f) is seen to be 100 kHz, corresponding to a factor of
N reduction for Protocol A.

For the limiting case of µ = π/2, Protocol B produces
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very different results for odd and even values of N , as
shown in Fig. 6 (e). Specifically, for odd values of N ,
this protocol produces uniform fringes, each with a width
that is factor of N narrower than what is observed in a
conventional Raman Ramsey atomic clock, thus yielding
HL sensitivity. In this case, the ideal Schrödinger Cat
state is realized, in a manner analogous to what we de-
scribed above for Protocol A (with µ = π/2). For odd
values of N , this protocol also produces uniform fringes,
but each with a width that is the same as that observed
for the collective state atomic clock (which is a factor of√
N narrower than what is observed in an Raman Ram-

sey atomic clock), thus yielding SQL sensitivity. The
average of these two signals, for many repeated measure-
ments, would produce a sensitivity that, for large N , is
lower than the HL by a factor of

√
2 [35]. In Fig. 6 (f),

we show the corresponding fringes produced using Pro-
tocol A, for the special case of µ = π/2. As described
earlier, in this case, we get a purely sinusoidal fringe pat-
tern for even values of N , and a null signal for odd values
of N . The averaged signal, therefore, is also purely si-
nusoidal. The width of these fringes is a factor of N
narrower than what is observed in a conventional Raman
Ramsey atomic clock.

In Fig. 7, we summarize the results for both proto-
cols, for squeezing parameters ranging from µ = 0 to
µ = π/2. The behavior is essentially identical to that
shown in Fig. 5 in the main body of the paper for the
Schrödinger cat atomic interferometer. Here, we show
the inverse of the QFF, normalized to the same for the HL
for N = 100, as a function of µ. Horizontal lines indicate
the HL (black solid), and the SQL (black dashed). The
blue lines corresponds to odd value of N (N = 101) and
the red lines corresponds to even value of N (N = 100).
The left panel shows the result of using Protocol B. The
value of QFF−1 increases monotonically, reaching a peak
value at µ = µ0, and then remains flat until getting close
to µ = π/2, with virtually no difference between the
odd and even values of N . Near µ = π/2, the value of
QFF−1 begins to diverge, reaching the HL (SQL) for odd
(even) values of N at µ = π/2. The cyan line in the left
panel shows, for comparison, the corresponding behavior

of the squeezing-unsqueezing protocol recently proposed
in Ref. [38] and demonstrated subsequently in Ref. [39].
This protocol also produces a sensitivity close to the HL,
but only for a particular value of µ, and then drops off
rapidly for both decreasing and increasing values of µ. In
contrast, the Protocol B proposed here reaches a sensi-
tivity that is slightly higher than that attainable for the
squeezing-unsqueezing protocol, and is highly insensitive
to the precise value of µ after reaching the plateau, as
shown in the left panel of Fig. 7. The right panel shows
the result of using Protocol A. At µ = π/2, QFF−1 is
at the HL for even values of N , and vanishes for even
values of N . For µ < π/2, the amplitude of the signal
for even values of N decreases rapidly, with correspond-
ing decrease in the value of QFF−1. Just as in the case
of the Schrödinger cat atomic interferometer, the vanish-
ing value of QFF−1 is due simply to the vanishing of the
signal itself.

FIG. 7. QFF−1 of Schrödinger cat atomic clock vs the squeez-
ing parameter, µ, normalized by the same for the HL for
N = 100. Horizontal lines indicate the HL (black solid), and
the SQL (black dashed). The dashed blue lines corresponds
to odd value of N (N = 101) and the red lines corresponds
to even value of N (N = 100). The left(right) panel shows
the results for Protocol B(A). The cyan line in the left panel
shows the corresponding result for the squeezing-unsqueezing
protocol proposed in Ref. [38] and demonstrated subsequently
in Ref. [39].
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