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A general mechanism for the loss of conformal invariance is the merger and disappearance of an
infrared fixed point and an ultraviolet fixed point of a renormalization group flow. We show explicitly
how this mechanism works in the case of identical bosons at unitarity as the spatial dimension d is
varied. For d between the critical dimensions d1 = 2.30 and d2 = 3.76, there is loss of conformality
as evidenced by the Efimov effect in the three-body sector. The beta function for an appropriate
three-body coupling is a quadratic polynomial in that coupling. For d < d1 and for d > d2, the beta
function has two real roots that correspond to infrared and ultraviolet fixed points. As d approaches
d1 from below and as d approaches d2 from above, the fixed points merge and disappear into the
complex plane. For d1 < d < d2, the beta function has complex roots and the renormalization group
flow for the three-body coupling is a limit cycle.
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I. INTRODUCTION

In a classic paper in 1970 [1], Vitaly Efimov discovered a remarkable phenomenon that can occur in
a three-body system of nonrelativistic particles with short-range interactions if at least two of the three
pairs of particles have two-body scattering length a much larger than their range. In the unitary limit
a→ ±∞, there is a shallow two-body bound state exactly at the two-body threshold. Efimov showed that
the three-body system in the unitary limit can have infinitely many shallow three-body bound states with
an accumulation point at the three-body threshold. This phenomenon is called the Efimov effect, and the
three-body bound states are called Efimov states. As the threshold is approached, the ratio of the binding
energies of successive Efimov states approaches a universal constant that depends on the statistics and the
mass ratios of the particles. This spectrum is evidence for discrete scale invariance in the three-body system.

The renormalization group (RG) has provided deep insights into quantum field theories in condensed
matter, particle, and nuclear physics [2]. An RG flow describes how parameters that describe short-distance
scales depend on the ultraviolet (UV) cutoff Λ. The simplest attractor for an RG flow is a fixed point. At a
fixed point, the short-distance parameters are independent of the UV cutoff Λ, and this requires the system
to be scale invariant. Another possible attractor for an RG flow is an RG limit cycle, a possibility first
proposed by Wilson [3]. The RG flow at a limit cycle is around a closed loop. The RG flow completes one
cycle every time the UV cutoff Λ is changed by a specific multiplicative factor λ0. This requires the system
to have discrete scale invariance with discrete scaling factor λ0. The discrete scale invariance associated
with the Efimov effect can be interpreted in terms of the RG flow of a three-body coupling with a limit
cycle [4].

Scale invariance of a system may be compatible with a larger symmetry group of conformal transfor-
mations. For Lorentz-invariant quantum field theories in two space-time dimensions, Zamolodchikov has
proved under general assumptions that scale invariance implies conformal invariance [5]. For relativistic
quantum field theories with space-time dimension greater than two, there are no known counterexamples
to the conjecture that scale invariance implies conformal invariance [6]. In nonrelativistic quantum field
theories with Galilean invariance [7, 8], the conjecture that scale invariance implies conformal invariance
has not been proven even in two space dimensions, but again there are no known counterexamples [6]. In
this article, we will use the phrases “scale invariance” and “conformal invariance” interchangeably.

In a paper entitled “Conformality Lost” [9], Kaplan, Lee, Son, and Stephanov revealed a general mech-
anism for the loss of conformal invariance in a system. As a parameter α of a scale-invariant system
approaches a critical value α∗ where conformality is lost, an ultraviolet (UV) fixed point and an infrared
(IR) fixed point of an appropriate RG flow merge together and disappear. The RG flow near the point
where conformality is lost can be described by a simple model with a single dimensionless coupling g whose
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beta function has the form

Λ
d

dΛ
g = (α− α∗)− (g − g∗)2

, (1)

where Λ is the renormalization scale and g∗ is a constant independent of g and α. For α > α∗, the coupling
g has a UV fixed point g+ and an IR fixed point g−, which are given by

g± = g∗ ± (α− α∗)1/2
. (2)

As α decreases toward α∗, the two fixed points both approach g∗, and they merge together at α = α∗. For
α < α∗, the zeros of the beta function have disappeared into the complex plane and conformality is lost.

In Ref. [9], the authors suggested that the loss of conformality associated with Efimov physics can be
understood in terms of the merging of a UV fixed point and an IR fixed point for a three-body coupling,
but they didn’t show this explicitly. In the case of identical bosons in three spatial dimensions at unitarity
(a→ ±∞), the authors pointed out that there is no tunable parameter analogous to α in Eq. (1). In this
paper, we show explicitly how conformality is lost in the case of identical bosons at unitarity when the
spatial dimension d is the external parameter. The Efimov effect disappears at critical dimensions d1 = 2.30
and d2 = 3.76 that were first derived by Nielsen, Fedorov, Jensen, and Garrido [10]. We show that the
beta function for an appropriate three-body coupling is a quadratic polynomial analogous to Eq. (1) with
coefficients that depend on d. For d < d1 and d > d2, the beta function has real zeros that correspond to a
UV fixed point and an IR fixed point. As d enters the interval d1 < d < d2 where conformality is lost, the
zeros of the beta function disappear into the complex plane, and the RG flow for the three-body coupling
becomes a limit cycle. The continuous scaling symmetry is broken down to a discrete scaling symmetry that
manifests itself in the Efimov effect.

This article has two additional sections followed by a summary. In Section II, we consider briefly the two-
body sector for identical bosons in d dimensions. We determine the beta function for the two-body coupling.
It has a zero that corresponds to a UV fixed point associated with conformal invariance in the two-body
sector. In Section III, we consider in detail the three-body sector for identical bosons in d dimensions. We
show that the beta function for a three-body coupling is a quadratic polynomial in the coupling analogous
to Eq. (1). The behavior of its zeros as functions of d is compatible with the mechanism for the loss of
conformality in Ref. [9].

II. TWO-BODY SECTOR

Nonrelativistic particles with short-range interactions in three spatial dimensions have a nontrivial zero-
range limit in which the range of the interaction is taken to zero with the s-wave scattering length a held
fixed. In the zero-range limit, a is the only interaction parameter, at least in the two-body sector. The
unitary limit is defined by a → ±∞. In the unitary limit, the two-body system is scale invariant, because
the interactions no longer provide any length scale. The two-body scattering cross section has power-law
dependence on the collision energy E: it saturates the s-wave unitarity bound 8π/E.

We now consider identical bosons with zero-range interactions in d dimensions. The T-matrix element
T (k) for the scattering of two particles with total energy E = k2 in the center-of-momentum frame can be
derived by solving a Lippmann-Schwinger equation [11]:

T (k) =
2(4π)d/2/Γ

(
2−d

2

)
1/λ− e−iπ(d−2)/2kd−2

. (3)

For simplicity, we set h̄ = 1 and m = 1 here and in the remainder of this article. The single interaction
parameter λ that characterizes the zero-range limit is proportional to the T-matrix element at k = 0. In
d = 3, the interaction parameter is the scattering length: λ = a. The unitary limit is defined by λ→ ±∞.
In this limit, the T-matrix element in Eq. (3) has power-law dependence on the momentum: T (k) ∼ 1/kd−2.
Since the interactions no longer provide any length scale, the two-body system is scale invariant. The T-
matrix element in Eq. (3) goes to 0 as d→ 2 and as d→ 4, indicating that 2 and 4 are critical dimensions
where the theory becomes noninteracting. The upper critical dimension d = 4 was first pointed out by
Nussinov and Nussinov [12].

Identical bosons in the zero-range limit can be described by a local quantum field theory with an atom
field ψ. The Lagrangian density is

L = ψ†
(
i
∂

∂t
+

1

2
∇2

)
ψ − g2

4

(
ψ†ψ

)2 − g3

36

(
ψ†ψ

)3
, (4)

where g2 and g3 are bare couplings for the two-body and three-body contact interaction. The two-body
coupling g2 can be tuned as a function of the UV cutoff to get the desired interaction parameter λ. In three
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dimensions, the three-body coupling g3 is required to reproduce Efimov physics [13, 14]. No higher-body
couplings are required. We will determine the RG flow of g2 in d dimensions and use it to understand scale
invariance in the two-body sector in the unitary limit.

The perturbative expansion of the off-shell two-body scattering amplitude in powers of g2 is UV divergent.
The amplitude can be regularized by imposing a sharp UV cutoff Λ on loop momenta in the center-of-mass
frame.1 The bare coupling g2 must depend on Λ to compensate for the explicit dependence of the two-body
scattering amplitude on Λ. The sum of the geometric series in g2 has the same form as Eq. (3), with 1/λ
replaced by a linear combination of 1/g2 and Λd−2 with coefficients that are functions of d. In order to
reproduce the T-matrix element, g2 must be related to the interaction parameter λ via

g2(Λ) = −2(4π)d/2

Γ
(

2−d
2

) [ 1

λ
+

2 sin
(
d
2π
)

(d− 2)π
Λd−2

]−1

. (5)

We define a dimensionless two-body coupling ĝ2 by multiplying g2 by the power of the UV cutoff Λ required
by dimensional analysis:

ĝ2(Λ) =
1

(d− 2)(4π)d/2Γ
(
d
2

)Λd−2g2(Λ). (6)

The d-dependent prefactor has been introduced in order to simplify the RG equation for ĝ2(Λ) below. The
RG equation for ĝ2 can be obtained by differentiating both sides of Eq. (6) with respect to log Λ and then
eliminating Λ in favor of ĝ2(Λ):

Λ
d

dΛ
ĝ2 = (d− 2) ĝ2 (ĝ2 + 1) . (7)

Scale invariance arises at a fixed point of the RG flow for ĝ2 or, equivalently, at a zero of the beta function
defined by the right side of Eq. (7). The RG flow for ĝ2 has two fixed points: a UV fixed point ĝ+ = −1
and an IR fixed point ĝ− = 0. Using Eqs. (5) and (6), we find that the UV fixed point corresponds to the
unitary limit λ → ±∞ and the IR fixed point corresponds to the non-interacting limit λ → 0. At the UV
fixed point, there are scale-invariant interactions in the two-body sector.

III. THREE-BODY SECTOR

In 1970, Vitaly Efimov discovered that a system of three identical bosons in three spatial dimensions in
the unitary limit a→ ±∞ has a sequence of infinitely many shallow three-body bound states (Efimov states)
whose binding energies have an accumulation point at the energy of the three-body scattering threshold [1].
As they approach the threshold, the ratio of the binding energies of successive Efimov states approaches a
universal factor that is approximately 515 ≈ 22.72. The spectrum of Efimov states reflects a discrete scaling
symmetry with discrete scaling factor eπ/s0 ≈ 22.7, where s0 = 1.00624. In subsequent papers, Efimov
showed that the system of three identical bosons has universal properties characterized by discrete scaling
behavior with the discrete scaling factor eπ/s0 not only in the unitary limit but whenever the scattering
length a is much larger than the range of the interactions [16, 17].

From an RG perspective, discrete scaling behavior should be associated with an RG flow whose ultraviolet
attractor is a limit cycle. Bedaque, Hammer, and van Kolck showed that in d = 3, the renormalization of
the three-body coupling g3 in Eq. (4) is indeed governed by a limit cycle [13, 14]. Braaten and Hammer
derived the RG equation for the dimensionless coupling ĝ3 = Λ4g3/144π4 [4]:

Λ
d

dΛ
ĝ3 =

1 + s2
0

2

(
ĝ2

2 +
ĝ2

3

ĝ2
2

)
+
(
3− s2

0 + 2ĝ2

)
ĝ3. (8)

The beta function defined by the right side is a quadratic polynomial in ĝ3 with coefficients that depend
on ĝ2. This structure is reminiscent of the beta function in Eq. (1) that describes the loss of conformality.
Near the UV fixed point ĝ2 = −1 of the two-body coupling, the zeros of the beta function in Eq. (8) are

1 The same expression for the two-body amplitude can be obtained by using dimensional regularization with power divergence
subtraction [15] and with renormalization scale Λ/2, but no one has succeeded in deriving Efimov physics in the 3-body
sector using dimensional regularization.
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FIG. 1: Diagrammatic equation for the complete diatom propagator iD.

FIG. 2: Integral equation for the atom-diatom amplitude A.

complex. Thus the RG flow for ĝ2 and ĝ3 does not have a UV fixed point. Instead the coupling constants
flow in the ultraviolet to a limit cycle given by

ĝ2(Λ) = −1, ĝ3(Λ) = −cos [s0 log (Λ/Λ∗) + arctan s0]

cos [s0 log (Λ/Λ∗)− arctan s0]
, (9)

where Λ∗ is a constant momentum scale.

A. Atom-diatom amplitude

In Ref. [13, 14], Bedaque, Hammer, and van Kolck [BHvK] developed an effective field theory (EFT) to
calculate universal results for three-body observables for three identical bosons in the zero-range limit in
three spatial dimensions. We will use this EFT to describe the system in a variable spatial dimension d. The
fields in this EFT are the dynamical atom field ψ and an auxiliary diatom field ∆. The BHvK Lagrangian
density is

LBHvK = ψ†
(
i
∂

∂t
+

1

2
∇2

)
ψ +

g2

4
∆†∆− g2

4

(
∆†ψ2 + ψ†2∆

)
− g3

36
(∆ψ)

†
(∆ψ) , (10)

where g2 and g3 are bare two-body and three-body couplings. Using the equation of motion for ∆, we can
eliminate the diatom field ∆ to obtain the Lagrangian density

L = ψ†
(
i
∂

∂t
+

1

2
∇2

)
ψ − g2

4

(
ψ†ψ

)2
1− (g3/9g2)ψ†ψ

. (11)

Expanding the interaction term in powers of ψ†ψ and truncating after the
(
ψ†ψ

)3
term, we recover the

Lagrangian for identical bosons in Eq. (4). The additional operators
(
ψ†ψ

)n
with n ≥ 4 from the expansion

of the interaction potential in Eq. (11) are irrelevant operators at the UV fixed point ĝ2 = −1 for the
two-body coupling, so they can be ignored. Therefore, the quantum field theory described by the BHvK
Lagrangian density in Eq. (10) is equivalent to the quantum field theory described by the Lagrangian density
in Eq. (4).

The propagator of the auxiliary diatom field ∆ is 4i/g2. It receives quantum corrections from a geometric
series of bubble diagrams that can be obtained by iterating the diagrammatic equation in Fig. 1. The
dependence of the three-body coupling g3 on the UV cutoff Λ can be determined from the off-shell atom-
diatom amplitude A. The amplitude A satisfies the integral equation shown diagrammatically in Fig. 2. If
g3 = 0, the diagrams in the second line of Fig. 2 are zero, and the diagrammatic equation reduces to the
Skorniakov-Ter-Martirosian (STM) integral equation [18]. In the limit Λ → ∞, the solutions of the STM
equation are not ultraviolet divergent, but they depend log-periodically on Λ. Requiring the log-periodic
dependence to be cancelled by the diagrams in the second line of Fig. 2 determines the dependence of g3 on
Λ.
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To obtain the RG equation for the three-body coupling g3, we follow closely the path used in Ref. [4] to
derive the beta function in Eq. (8), except that we carry out all the steps in dimension d instead of d = 3.
The complete diatom propagator in d spatial dimensions including the quantum corrections is

iD (p0,p) = −i 8(4π)d/2

Γ
(

2−d
2

)
g2(Λ)2

[
1/λ−

(
−p0 + p2/4− iε

)(d−2)/2
]−1

. (12)

All the dependence on the UV cutoff Λ is in the multiplicative factor 1/g2
2 . In the unitary limit λ → ±∞,

the propagator in Eq. (12) has a pole in p0 at the upper critical dimension d = 4. In the center-of-mass
frame, the atom-diatom amplitude is a function of the incoming relative momentum p, the outgoing relative
momentum k, and the total energy E. The s-wave atom-diatom amplitude As(p, k;E) can be obtained by
averaging A(p,k;E) over the angle θ between p and k in d dimensions. To simplify the integral equation
satisfied by As, we also choose to multiply it by 4/g2

2 :

As(p, k;E) =
4

g2
2

Γ
(
d
2

)
Γ
(
d−1

2

)
Γ
(

1
2

) ∫ +1

−1

d cos θ
(
1− cos2 θ

)(d−3)/2A(p,k;E). (13)

The integral equation for As with a sharp UV cutoff Λ on the loop momentum in the center-of-mass frame
is

As (p, k;E) = −

[
1

E − p2 − k2 + iε
2F1

(
1
2 , 1
d
2

∣∣∣∣∣ p2k2

(E − p2 − k2 + iε)
2

)
+
Ĝ(Λ)

Λ2

]

−
4 sin

(
d
2π
)

π

∫ Λ

0

dq qd−1

[
1

E − p2 − q2 + iε
2F1

(
1
2 , 1
d
2

∣∣∣∣∣ p2q2

(E − p2 − q2 + iε)
2

)

+
Ĝ(Λ)

Λ2

]
As (q, k;E)

1/λ− (−E + 3q2/4− iε)(d−2)/2
, (14)

where Ĝ(Λ) is a dimensionless three-body coupling defined by

Ĝ(Λ) =
Λ2g3(Λ)

9g2(Λ)2
. (15)

The dependence of the amplitude As on Λ has been suppressed in Eq. (14). The dependence of Ĝ on Λ can
be determined by requiring the solutions to Eq. (14) to have well-behaved limits as Λ→∞ [13, 14]. Since

Ĝ is the only coupling in the integral equation, the beta function for Ĝ can depend only on Ĝ.

B. Asymptotic solutions

In the limit Λ→∞, the integral equation in Eq. (14) for the s-wave atom-diatom amplitude As(p, k, E)
has asymptotic solutions for large p that have power-law dependence ps−1. The possible exponents of p can
be determined by neglecting the inhomogeneous terms in Eq. (14), replacing As(p, k, E) by Aps−1, setting

E, ˆG/Λ2, and 1/λ to 0 inside the integral over q, and taking the upper endpoint Λ of the integral to ∞ [4].
After making the change of variable q = xp, the dependence on p drops out and the integral equation in
Eq. (14) reduces to

1 = −
(

4

3

) d−2
2 4 sin

(
d
2π
)

π

∫ ∞
0

dx
xs

1 + x2 2F1

(
1
2 , 1
d
2

∣∣∣∣∣ x2

(1 + x2)
2

)
. (16)

The integral can be evaluated analytically by inserting the power series definition of the hypergeometric
function 2F1. After integrating the individual terms of the power series over x and then resumming the
series, the resulting equation for s is

2 sin

(
d

2
π

)
2F1

(
d−1+s

2 , d−1−s
2

d
2

∣∣∣∣∣14
)

+ cos
(s

2
π
)

= 0. (17)

The equation is invariant under s→ −s, so it is an equation for s2.
The equation in Eq. (17) has infinitely many branches of solutions for s2 as a function of the dimension d.

The lowest branch of solutions is shown in Fig. 3. The value of s2 decreases from 1 at the endpoints d = 2, 4
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FIG. 3: The lowest branch of solutions of Eq. (17) for s2 as a function of the dimension d. The solution for s2 is
negative in the interval d1 < d < d2 between the two vertical dotted lines.

to a minimum of −1.016 at d = 3.04. The higher branches of solutions have s2 > 9. The only branch that
is physically relevant is the lowest branch. The higher branches are irrelevant, because the integral over
x in Eq. (16) is convergent at both the endpoints 0 and ∞ only if the exponent s satisfies the condition
−1 < Re (s) < 1. There are two critical dimensions at which Eq. (17) is satisfied by s2 = 0:

d1 = 2.30, d2 = 3.76. (18)

These lower and upper critical dimensions for the Efimov effect were first derived in Ref. [10]. We will focus
first on the regions 2 < d < d1 and d2 < d < 4 and then on the region d1 < d < d2.

C. Conformality

In the regions 2 < d < d1 and d2 < d < 4, the lowest branch of solutions of Eq. (17) for the exponent of
p are ±s − 1, where s is real and positive. The value of s depends on d, decreasing from 1 to 0 as d goes
from 2 to d1 and as d goes from 4 to d2. The most general asymptotic solution of the integral equation in
Eq. (14) as p→∞ is given by

As (p, k;E) −→ A+p
s−1 +A−p

−s−1, (19)

where A± are two constants that may depend on k, E, and λ. The inhomogeneous term in the integral
equation determines one of the constants and the three-body coupling determines the other constant.

The Λ dependence of the dimensionless coupling Ĝ(Λ) can be obtained by inserting the asymptotic solution
in Eq. (19) into the integral equation in Eq. (14) and requiring the integral over q to be independent of Λ
[4]. The Λ dependence of the integral is proportional to∫ Λ

dq

(
1

q2
− Ĝ(Λ)

Λ2

)(
A+q

s +A−q
−s)

=

(
A+Λs−1

s− 1
+
A−Λ−s−1

−s− 1

)
− Ĝ(Λ)

(
A+Λs−1

s+ 1
+
A−Λ−s−1

−s+ 1

)
. (20)

Setting this equal to 0 gives an expression for Ĝ(Λ) that depends on the ratio A+/A−. It can be simplified

by setting A+/A− = Λ−2s
∗ , where Λ∗ is a constant momentum scale. The resulting expression for Ĝ(Λ) is

Ĝ(Λ) = −cosh [s log (Λ/Λ∗) + arctanh s]

cosh [s log (Λ/Λ∗)− arctanh s]
. (21)



7

The RG equation for Ĝ(Λ) can be obtained by differentiating both sides of Eq. (21) with respect to log Λ

and then eliminating Λ in favor of Ĝ(Λ):

Λ
d

dΛ
Ĝ =

1− s2

2
+
(
1 + s2

)
Ĝ+

1− s2

2
Ĝ2, (22)

where s2 is the function of d defined by Eq. (17). The beta function defined by the right side of Eq. (22)

is a quadratic polynomial in Ĝ. The RG flow for Ĝ has two fixed points where the beta function is zero: a
UV fixed point Ĝ+ and an IR fixed point Ĝ− given by

Ĝ± = −1± s
1∓ s

. (23)

As d increases towards d1 or as d decreases towards d2, s approaches 0 so the two fixed points Ĝ− and Ĝ+

both approach −1. At unitarity, the two-body coupling is at its UV fixed point ĝ2 = −1. If Ĝ is also at
its UV fixed point G+, the three-body sector is scale invariant and therefore presumably also conformally
invariant.

D. Conformality lost

In the region d1 < d < d2, the lowest branch of solutions of Eq. (17) for the exponent of p are ±is0 − 1,
where s0 is real and positive. The value of s0 depends on d, increasing from 0 to 1.00812 and then decreasing
to 0 as d increases from d1 to 3.04 and then to d2. At d = 3, its value is s0 = 1.00624. The most general
asymptotic solution of the integral equation in Eq. (14) as p→∞ is given by

As (p, k;E) −→ A+p
is0−1 +A−p

−is0−1, (24)

where A± are two constants that may depend on k, E, and λ.
Using the arguments in Section III C, one can again determine the Λ dependence of the dimensionless

parameter Ĝ(Λ). Upon inserting the asymptotic solution in Eq. (24) into the integral equation in Eq. (14),
the dependence of the integral on Λ has the form in Eq. (20) with s replaced by is0. The dependence on Λ

cancels if Ĝ(Λ) has the form

Ĝ(Λ) = −cos [s0 log (Λ/Λ∗) + arctan s0]

cos [s0 log (Λ/Λ∗)− arctan s0]
, (25)

where Λ∗ is a constant momentum scale. This expression is a log-periodic function of Λ with period eπ/s0 ,
so the RG flow of Ĝ is a limit cycle. The RG equation for Ĝ can be obtained by differentiating both sides of
Eq. (25) with respect to log Λ and then eliminating Λ in favor of Ĝ(Λ). The result is just the RG equation

for Ĝ in Eq. (22) with s2 = −s2
0. Since s2 < 0, the zeros of this beta function are complex valued. At

unitarity, the two-body coupling is at its UV fixed point ĝ2 = −1, so the two-body sector is scale invariant.
However the three-body sector is not scale invariant. Instead it has discrete scale invariance with discrete
scaling factor eπ/s0 .

We can define a dimensionless three-body coupling ĝ3 by multiplying g3 with the power of UV cutoff Λ
required by dimensional analysis:

ĝ3 (Λ) =
1[

3(d− 2)(4π)d/2Γ
(
d
2

)]2 Λ2d−2g3 (Λ) . (26)

The d-dependent prefactor has been introduced in order to simplify the RG equation for ĝ3 below. The RG
equation for ĝ3 = ĝ2

2 Ĝ can be derived by using the RG equations for Ĝ(Λ) in Eq. (22) and for ĝ2 in Eq. (7):

Λ
d

dΛ
ĝ3 =

1− s2

2

(
ĝ2

2 +
ĝ2

3

ĝ2
2

)
+
(
2d− 3 + s2 + 2(d− 2)ĝ2

)
ĝ3, (27)

where s2 is the function of d defined by Eq. (17). Upon setting d = 3 and s2 = −s2
0, where s0 = 1.00624,

this reduces to the RG equation in Eq. (8) derived in Ref. [4].

IV. SUMMARY

In Ref. [9], Kaplan, Lee, Son, and Stephanov revealed a general mechanism for the loss of conformal
invariance in a system. Near the point where conformality is lost, the beta function of an appropriate
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coupling is a quadratic function of the coupling as in Eq. (1). As an external parameter is tuned to the
critical value where conformality is lost, an IR fixed point and a UV fixed point of the coupling merge
together and then disappear.

In this work, we have shown explicitly the mechanism for loss of conformal invariance associated with
Efimov physics in the case of identical bosons at unitarity with variable spatial dimension d. The beta
function for the dimensionless three-body coupling Ĝ defined in Eq. (15) is the quadratic polynomial in Ĝ
given in Eq. (22). Its coefficients depend on d through s2, which is a solution to Eq. (17). The critical
dimensions at which conformality is lost are d1 = 2.30 and d2 = 3.76 [10]. In the regions 2 < d < d1

and d2 < d < 4, the beta function for Ĝ has real zeros and its RG flow has IR and UV fixed points. As
d increases through d1 or decreases through d2, the IR and UV fixed points approach each other, merge
together, and then disappear into the complex plane. In the region d1 < d < d2 where conformality is lost,
the beta function for Ĝ has complex zeros and its RG flow is a limit cycle.

In the case of identical bosons A and an additional species B of fermion or boson, the critical dimensions
for the Efimov effect in the AAB system depend on the mass ratio mA/mB [19]. The dependence of the
critical dimensions on mA/mB is surprisingly weak, and they reduce to d1 and d2 for identical bosons at
mA/mB = 1. The beta function for the 3-body coupling that is associated with the loss of conformality
could presumably be derived in a similar way to the method we used for identical bosons.

In the case of two species A and B of fermions in 3 spatial dimensions, the ratio mA/mB of the masses
plays the role of an external parameter that controls the loss of conformality. The Efimov effect occurs in
the p-wave channel at unitarity for two heavy fermions and one light fermion when the mass ratio mA/mB

exceeds 13.6 [20]. It would be interesting to provide an RG perspective on the loss of conformality associated
with Efimov physics in this system by determining the beta function for the appropriate 3-body coupling.

The unitary Fermi gas, which consists of fermions with two spin states and infinitely large scattering
length in 3 spatial dimensions, is a challenging many-body physics problem. The most successful analytic
approach to this problem has been through interpolation in the number of spatial dimensions d using epsilon
expansions around the critical dimensions d = 2 and d = 4 [11]. The ground state energy for the unitary
Fermi gas has been calculated using next-to-next-to-leading-order epsilon expansions around both 2 and
4 [11, 21, 22]. Interpolation in d is essential because of the poor convergence properties of the epsilon
expansions around 2 and 4. The unitary Bose gas, which consists of identical bosons with infinitely large
scattering length in 3 spatial dimensions, is an even more challenging many-body physics problem because
of the Efimov effect. The epsilon expansion around the upper critical dimension 4 has been applied to the
unitary Bose gas [23]. However interpolation in d using epsilon expansions around both 2 and 4 seems to
be more promising. The understanding of the RG flow near the critical dimensions 2.30 and 3.76 for the
loss of conformality that we have presented in this paper could be essential for applying interpolation in d
to the unitary Bose gas in 3 dimensions.
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