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The structure and dynamics of one-dimensional binary Bose gases forming quantum droplets is
studied by solving the corresponding amended Gross-Pitaevskii equation. Two physically different
regimes are identified, corresponding to small droplets of an approximately Gaussian shape and large
“puddles” with a prominent flat-top plateau. Small droplets collide quasi-elastically, featuring the
soliton-like behavior. On the other hand, large colliding droplets may merge or suffer fragmentation,
depending on their relative velocity. The frequency of a breathing excited state of droplets, as
predicted by the dynamical variational approximation based on the Gaussian ansatz, is found to be
in good agreement with numerical results. Finally, the stability diagram for a single droplet with
respect to shape excitations with a given wavenumber is drawn, being consistent with preservation
of the Weber number for large droplets.
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I. INTRODUCTION

One of important recent achievements in the studies
of ultracold bosonic gases and superfluids is the realiza-
tion of quantum droplets in a number of experiments
with anisotropic interactions between dipolar atoms[1–
4], as well as in two-component Bose gases with contact
isotropic interactions[5–7]. Accordingly, the attractive
and repulsive forces, whose interplay leads to the for-
mation of quantum droplets, are anisotropic for dipoles
and isotropic for the mixture of two-component gases. In
one-dimensional geometry the (slightly) repulsive mean-
field (MF) contribution to the energy per particle scales
linearly with density n of the gas, getting balanced by
the attractive beyond mean-field (BMF) as −n1/2. As
a result, the system’s energy features a minimum, corre-
sponding to the formation of a liquid droplet[8, 9]. No-
tably, its density can be tuned in a wide range, making
it possible to create extremely dilute liquids and thus re-
alize, perhaps, the most dilute liquid ever observed in
any physical setting. An additional interest in this new
class of quantum liquids, as compared to liquid helium,
is that the condensate fraction is very large, permitting
one to make accurate quantitative predictions based on
the mean-field theory amended by the BMF correction.
Indeed, the description in terms of the effective Gross-
Pitaevskii equation (GPE), used to model the dipolar
condensates[10–12], agrees with ab initio quantum Monte
Carlo calculations for dipolar droplets[13–15], and for
ones formed in the binary BEC dominated by the con-
tact interactions[16]. It was argued that the quantum
droplets may find an application to the design of a pre-
cise matter-wave interferometer[17–19].

While the present study concentrates on the proper-
ties in one-dimensional geometry, we find it instructive
to make a comparison with three-dimensional counter-
part in terms of the sign of the BMF corrections and
the value of the gas parameter where MF theory can be

applied. Indeed, one-dimensional systems might seem
counterintuitive for certain properties. Suppose we con-
sider a single-component gas with delta-interacting po-
tential V (r) = gδ(r), its potential energy per particle is
E/N = gng2(0)/2 where g2(0) is the value of the density-
density correlation function g2(r) = 〈n(r)n(0)〉/〈n〉2 at
contact position r = 0. The potential energy per parti-
cle scales linearly with the density. The potential energy
can be reduced to zero by making the particle fully im-
penetrable g2(0) = 0. On the other hand in one dimen-
sion the impenetrable condition induces kinetic energy
per particle which scales quadratically with the density,
E/N ∝ ~2n2/m. It means that in one dimension the
mean field regime, where one can neglect correlations and
set g2(0) = 1, is reached for large density. Here the mean-
field energy n becomes smaller than n2 dependence of a
strongly correlated (Tonks-Girardeau) gas which is ob-
tained when g2(0) = 0 (Pauli exclusion). This is exactly
on the opposite from the “usual” three dimensional situ-
ation where the mean-field energy ∝ n becomes energeti-
cally preferable at small densities compared to the kinetic
energy per particle due to Pauli principle ∝ ~2n2/3/m.
As a result, the regimes of the applicability of the mean-
field theory are swapped and correspond to small (3D)
and large (1D) densities.

Another important difference is the sign and the struc-
ture of the beyond-mean field terms. In three dimen-
sions the BMF correction was first calculated for a
single-component 3D hard sphere gas by Lee-Huang-
Yang[20, 21] back in 1957. The textbook derivation[22]
is based on Bogoliubov theory. In 1D, the energy of a δ-
pseudopotential gas was obtained by Lieb and Liniger[23]
in 1963 for arbitrary interaction strength by using Bethe
ansatz for the ground-state wave function and by relat-
ing the energy to an integral over solution of Love in-
tegral equations[24]. A perturbative solution to such
integral equations has shown that the Bogoliubov the-
ory reproduces correctly the leading MF and subleading
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BMF terms. Such verification is important as it justifies
the use of MF and BMF theory while strictly speaking
the condensate fraction is zero in 1D due to Hohenberg
theorem[25].

Although the BMF terms in 1D are sometimes loosely
referred to as LHY terms, actually neither of Lee, Huang
or Yang ever calculated them. It is rather curious to note
that the related expressions were obtained by Kirchhoff in
1877 in a different problem[26]. He was calculating the
capacitance of a circular capacitor as a function of the
distance between two circular plates. The capacitance
can be calculated to an integral over solution of Love in-
tegral equations[24], that is exactly the same equations as
those appearing in Bethe ansatz theory. Indeed, within
the electrostatic analogy the density n of 1D Bose gas
can be mapped to the conductance of the circular plates,
the energy E to the second moment, and the coupling
constant g is proportional to radius of each plate[27].
Kirchhoff comments that “Their computation is gener-
ally cumbersome because it requires finding solution of
entangled, transcendental equations; but it is very sim-
ple if one” takes the limit of small separation. In the
leading term, the capacitor charge is inversely propor-
tional to the separation, resulting in a linear dependence
of the energy per particle on the density. That is the
standard mean-field Gross-Pitaevskii result is recovered
with the energy per particle proportional to the den-
sity, E/N = gn/2. In the subleading order, the edges
of the condenser plates have to be considered. With
the same accuracy as Kirchhoff uses the energy per par-
ticle becomes[27] E/N = gn/2 − 2/(3π) g3/2

√
nm/~.

That is, the subleading term being negative and pro-
portional to

√
n. This correction exactly coincides with

beyond-mean-field terms as found within the Bogoliubov
theory[23] and as a 1D analog of LHY terms.

The same conclusion about the sign can be obtained by
a “hand waving” argument by noting that ∝ g(0)n, n→
∞ MF energy can be smoothly matched to ∝ n2, n → 0
Tonks-Girardeau energy if the BMF correction is neg-
ative. This corresponds to decreasing gradually g2(0)
from 1 (MF) to 0 (TG). A more rigorous explanation
for the sign is that the BMF energy is obtained in a
second-order perturbation theory which has to reduce
the energy. The situation is somewhat different in 3D
as within the second-order theory the relation between
the coupling constant g and the s-wave scattering length
must be corrected from the simple MF expression even-
tually resulting in positive LHY correction[20, 21].

The equilibrium densities of both components of the
binary condensate depend on interaction strengths and
atomic masses of the two species. The symmetric case of
equal masses and strengths of intraspecies interactions,
with equal numbers of atoms in each components, allows
a simpler and more elegant description. In this case,
the density profiles of both components coincide and
can be described by the effective three-dimensional (3D)
single-component GPE with cubic and quartic nonlinear-
ities, the latter term representing the LHY correction[8].

This possibility provides an important interdisciplinary
connection to the field of nonlinear optics[28], as con-
cerns the underlying model equations with higher-order
nonlinearities[29–31] and, possibility, controlled genera-
tion of solitons in these systems. On the other hand, in
the case when two-component features in the dynamics
are essential, they may be affected by an additional linear
interconversion between the components[32].

In three and two dimensions, quasi-1D solitons are un-
stable with respect to the transverse snake instability,
although the stability can be enhanced by imposing ro-
tation to the quantum droplets[33]. The advantage of the
proper 1D geometry, imposed by the tight confinement
in the transverse directions (cf. the experimental realiza-
tion of the Tonks-Girardeau gas[34, 35]), is that such an
instability is absent, thus permitting one to realize a very
clean and highly controllable many-body testbed which
may permit the measurement of quantum many-body ef-
fects with very high precision.

Commonly known hallmarks of solitons are being (i)
self-trapped and (ii) robust with respect to soliton-soliton
collisions. While the former feature is definitely present
in quantum droplets, the latter one should be yet verified.
It was proposed to use Gaussian ansätze for gaining an
analytical insight in physics of dipolar[12] and BEC[5]
droplets. In particular, the dynamical version of the
Gaussian-based variational approximation (VA) can be
used to predict the frequency of intrinsic oscillations of
the soliton-like objects in an excited state[36–38]. Exci-
tations in a dipolar quantum droplet have been experi-
mentally studied and a scissors mode has been observed
in it[39]. Recently, intrinsic modes were theoretically in-
vestigated in Fermi-Bose mixtures[40], spin-orbit-coupled
Bose-Einstein condensates (BECs) [41], including those
dominated by the LHY terms[42], and in a discrete BEC
model [43].

The collisions between dipolar droplets were experi-
mentally studied in Ref. [44]. The system was confined
to an elongated trap and the interactions were quenched
in such a way that the density distribution was split into
multiple pieces. The droplets which have been formed
were shown to be long lived and their dynamics was stud-
ied. Until now no similar experiment has been performed
with short-range interacting droplets although such ex-
perimental studies might be expected in the near future.
The goal of our study is to analyze the dynamic proper-
ties of ultradilute quantum droplets.

In the present work we address collisions of 1D quan-
tum droplets and intrinsic oscillations of an isolated
droplet, along with excitations generated by imprinting
onto it a density modulation with a certain wavenumber.
The article is organized as follows. First, we address
static droplets in Sec. II, where we start by introducing
the model in subsection II A. Subsection II B addresses
the asymptotic analysis in the limits of small and large
droplets. In subsection II C we develop the Gaussian
ansatz for the study of both stationary and dynamical
properties of the droplet. The conditions of applicabil-
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ity of the Gross-Pitaevskii equation for describing stat-
ical and dynamical properties are analyzed in Sec. II D.
We consider energetic and spatial properties of station-
ary states in subsection II E, minimal number of atoms in
subsection II F, and calculate the surface tension in Sub-
section II G. Section III addresses dynamical effects. In
Subsection III A we consider collisions of two droplets,
and the dynamics of a single one is considered in sub-
section III B, including intrinsic monopole oscillations in
subsubsection III B 1, and excitations generated by pe-
riodic density modulation in subsubsection III B 2. The
stability diagram for the quantum diagram is produced
in subsection III B 3. We finish by drawing conclusions
in Sec. IV.

II. STATIC QUANTUM DROPLETS

In this Section we address static equilibrium properties
of a single droplet by considering the exact solution to
the BMF-amended GPE, as well as getting an additional
insight from the Gaussian-based variational approxima-
tion (VA).

A. Model system

We consider the binary BEC with mutually symmetric
spinor components, assuming that the coupling constants
describing the repulsion between the atoms in each one
are equal, g↑↑ = g↓↓ ≡ g, and numbers of atoms in the
components are equal too. In this case, the equilibrium
densities of both components are identical, which makes
the analysis essentially easier, and results clearer.

The underlying time-dependent GPE for the one-
dimensional droplet with the symmetric components
is [9]

i~ψt = − ~2

2m
ψxx + δg|ψ|2ψ −

√
2m

π~
g3/2|ψ|ψ , (1)

where parameters δg and g are positive and are related
to the coupling constants in the two spinor components
as δg = g↑↓ +

√
g↑↑g↓↓ > 0 and g =

√
g↑↑g↓↓. The cou-

pling constant g is relevant for inducing a hard “spin”
mode while the difference δg between attractive inter-
component and repulsive intracomponent interactions is
responsible for appearance of a soft “density” mode and
condition δg � g induces a separation of scales.

In experiments it is possible to tune δg both to posi-
tive or negative values. The proper sign is chosen in such
a way that the imbalance in the mean-field terms is op-
posite to the beyond mean-field contribution and conse-
quently depends on dimensionality of the problem. In one
dimension, the beyond mean-field terms are directly ob-
tained from the second-order perturbation theory which
produces a negative correction to the energy[23]. Accord-
ingly, a positive mean-field imbalance is needed, δg > 0,

for producing am energy minimum in the equation of
state. In 3D, the BMF term includes the renormalization
correction[22] to the scattering amplitude within the sec-
ond Born approximation, resulting in the positive LHY
term and requiring δg < 0[8].

We define characteristic units of length x0, time t0 and
energy E0:

x0 =
π~2
√
δg√

2mg3/2
, (2)

t0 =
π2~3δg

2mg3
, (3)

E0 =
~2

mx2
0

=
~
t0

=
2mg3

π2~2δg
, (4)

which yield a characteristic factor for the normalization
of the wave function,

ψ0 =

√
2m

π~δg
g3/2 . (5)

We demonstrate below that

N0 = ψ2
0x0 =

√
2

π

(
g

δg

)3/2

. (6)

determines a critical number of particles separating two
different physical regimes.

Thus, rescaling

t = t0t
′, x = x0x

′, ψ = ψ0ψ
′ (7)

casts Eq. (1) in an equation without free coefficients
(where the primes are omitted):

iψt +
1

2
ψxx − |ψ|2ψ + |ψ|ψ = 0, (8)

A peculiarity of the 1D geometry is that the ground-
state solution of the GPE for the droplet, Eq. (8), can be
found in an explicit form[9]:

ψexact(x) = − 3µ exp (−iµt)

1 +
√

1 + 9µ
2 cosh(

√
−2µx2)

, (9)

with the relation between normalization N and chemical
potential µ given by

N =
4

3

ln


√
− 9

2µ+ 1√
9
2µ+ 1

−√−9

2
µ

 . (10)

The equilibrium density corresponding to the spatially
uniform state (N → ∞), and the respective chemical
potential, in units defined by Eqs. (2) and (4), are

n0

ψ2
0

=
4

9
, (11)

µ0

E0
= −2

9
. (12)
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B. Limit cases of small and large droplets

In a large finite-size droplet (“puddle”), µ approaches
the constant value (12) corresponding to the chemical
potential of an infinitely extended uniform liquid at zero
pressure. The chemical potential (10) is expanded as

µ = −2

9
+

8

9
exp

(
−2− 3

2
N

)
, (13)

and features an exponentially weak dependence on N .
On the other hand, for small droplets with small N the
dependence has a power-law form:

µ = − 1

21/332/3
N2/3 = −0.382N2/3 . (14)

In this case, the dependence on N is much stronger, as
long as |µ| is small.

The total energy E can be obtained by integrating the

chemical potential, E(N) =
∫ N

0
µ(N ′)dN ′. For small N ,

Eq. (14) results in a power-law dependence,

E = −1

5

(
3

2

)1/3

N5/3 = −0.229N5/3 , (15)

while Eq. (13) produces an asymptotically linear depen-
dence on large N :

E = − 6

27
N +

16 exp(−2)

27
− 16

27
exp

(
−2− 3

2
N

)
. (16)

A typical size of the droplet can be easily estimated in
both limits. The large droplet includes a bulk (flat-top)
region with the nearly uniform density given by Eq. (11),
with size L = N/n0. The respective mean-square size
also increases linearly with the number of particles,√

〈x2〉 =
L

2
√

3
=

N

2
√

3n0

= 0.65 . (17)

C. The variational approximation (VA) based on
the Gaussian ansatz

In this subsection we approximate the shape of the
droplet by a Gaussian and optimize its width accord-
ing to the variational principle. This simple model pro-
vides additional insight in properties of the droplets as
the number of particles varies.

The VA is based on the Lagrangian for Eq. (8),

L =

∫ +∞

−∞
Ldx, (18)

L =
i

2
(ψψ∗t − ψ∗ψt) +

1

2
|ψx|2 +

1

2
|ψ|4 − 2

3
|ψ|3. (19)

To develop the dynamical version of the VA, we adopt
the Gaussian ansatz,

ψ = A(t) exp

[
iφ(t)− x2

2 (W (t))
2 + ib(t)x2

]
, (20)

where A, φ, W , and b are real amplitude, phase, width
and chirp, respectively (in the time-independent version
of the VA, b = 0). Although the long-distance Gaus-
sian asymptotic form of wave function (20) is incompati-
ble with the exponential decay of the exact solution (9),
we demonstrate below that the overall accuracy provided
by the VA is extremely good. The normalization of the
wave function determines the number of particles in the
droplet.

N =

∫ +∞

−∞
|ψ(x)|2 dx =

√
πA2W . (21)

Substituting the ansatz in Lagrangian density (19) and
using Eq. (21) to eliminate A2 in favor of N , as A2 =
N/
√
πW , one can produce the effective Lagrangian:

LVA

N
=
dφ

dt
+
W 2

2

db

dt
+

1

4W 2
+W 2b2+

N

2
√

2πW
− 23/2

√
N

33/2π1/4
√
W

.

(22)
The Euler-Lagrange equations for variables b and W are
derived from here:

b =
1

2W

dW

dt
, (23)

d2W

dt2
=

1

W 3
+

√
1

2π

N

W 2
− 23/2N1/2

π1/4(3W )3/2
≡ −dUeff

dW
,

(24)
where the effective potential for oscillations of the soli-
ton’s width is

Ueff(W ) =
1

2W 2
+

√
1

2π

N

W
− 2

π1/4

(
2

3

)3/2
√
N

W
. (25)

This potential gives rise to a shallow well, as shown in
Fig. 1

In the framework of the VA, the stationary soliton cor-
responds to the minimum of potential (25). Its width is

determined by the cubic equation for
√
W , which follows

from condition for the potential minimum, dUeff/dW =
0, as per Eq. (24):

1 +

√
1

2π
NW − 1

π1/4

(
2

3

)3/2√
NW 3/2 = 0 . (26)

In particular, in both asymptotic limits of N → 0 and
N →∞ the width is large:

W (N → 0) ≈ 3

2
π1/6N−1/3 , (27)

W (N →∞) ≈ 27

16
√
π
N . (28)

It is also possible to find the exact minimum value of the
VA-predicted width,

Wmin =
3
√

3

23/4
≈ 3.09 (29)
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Figure 1: (Color online) The plot of the effective
potential (25) for N = 0.1 and N = 1. The minimum of

the potential defines the optimal width W of the
droplet.

which is attained at the value of the norm of the order
of one, namely

N (Wmin) =
25/4
√
π

33/2
≈ 0.81 . (30)

The mean-square size of the droplet with the Gaussian
profile is 〈x2〉 = W 2(N)/2. In the N → 0 limit, the
width is given by Eq. (27), the respective mean-square
size increasing as N−1/3:√

〈x2〉 =
3

2
√

2
π1/6N−1/3 ≈ 1.28 N−1/3 . (31)

Comparison with Eq. (17) makes it evident that the
droplet has a minimum size at N ∼ 1.

The frequencies of low-lying collective excitations are
determined by the eigenvalues of the Hessian matrix eval-
uated at the equilibrium position[37]. In the 1D system,
it reduces to the second derivative

d2Ueff(Wmin)

dx2
=

1

2
ω2 , (32)

and corresponds to the “breathing” or compression-
dilatation mode of frequency ω. For limit values of N
the frequency takes the approximate form,

ω(N → 0) =
2
√

2
3

3 3
√
π
N2/3, (33)

ω(N →∞) =
32 21/4

√
π
3

81

1

N
. (34)

The ground-state energy is obtained by evaluating the
energy functional

E =

∫ +∞

−∞

(
1

2
|ψx|2 +

1

2
|ψ|4 − 2

3
|ψ|3

)
dx, (35)

and the chemical potential is then obtained as its deriva-
tive with respect to the number of particles, µ = dE/dN .
The chemical potential of a droplet is negative and ap-
proaches zero, in the limit of N → 0, as

µ = −5N2/3

9π1/3
= −0.379N2/3 . (36)

Note that the difference of this VA-produced result with
the exact one, given by Eq. (14), is less than 1%.

D. Conditions of applicability

An important issue is to clarify the regions of applica-
bility of the GPE (1) for describing static and dynamic
properties of the droplets. The GPE has been proven to
be immensely useful for description of experiments with
single-component ultracold Bose gases, as the mean-field
description it provides is sufficient for interpretation of a
large variety of quantum effects[45]. On the other hand,
artificial incorporation of terms with higher powers of the
condensate wave function in the GPE in order to “sim-
ulate” LHY terms in the energy may lead to incorrect
dynamics of excitations in the framework of the amended
equation.

The key point here is that the dominant contribution
to the BMF energy come from distances smaller than
or comparable to the healing length ξ, defined, in terms
of the sound velocity, c, by ~2/(2mξ2) = mc2. In or-
der to treat the BMF term as a “local” contribution,
the distances at which the density profile changes should
be large compared to the healing length. In a single-
component gas this is impossible, as the density profile
changes exactly at distances ∼ ξ. In quantum droplets,
the situation is completely different, as the variation
in the density profile is governed by the “soft” healing
length

ξ− =
~√

2mc−
,

while the BMF energy is earned at the distances compa-
rable to the “hard” healing length,

ξ+ =
~√

2mc+
.

The speed of sound of the two modes is defined by
mc2± = (g±|g↑↓|)n in the symmetric case[8, 9]. Thus, the
coupling constant δg defines the speed in the soft mode,
mc2− = (δg)n, while g � δg produces a much larger
speed in the hard mode, mc2+ ≈ gn.

The large separation of scales, ξ− � ξ+, justifies the
inclusion of higher-order terms in the GPE as local ones.
Accordingly, the relatively slow dynamics, which takes
place at timescales large compared to the typical “hard”
time interval,

t+ =
2mξ2

+

~
,

is correctly described by the amended GPE (1).
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E. Static energetic and spatial properties

In this subsection we address different physical states
that can be realized in a single stationary droplet. Exact
solution (9) provides the necessary information for this.
The exact solution can be also used to verify the accuracy
of the VA.

We start by considering the spatial profile of the
droplet. A number of characteristic density profiles of
static droplets are displayed in Fig. (2). In the frame-
work of the mean-field theory, profile n(x) is governed by
a single parameter, viz., dimensionless norm N , which
is the number of particles divided by N0, see Eq. (6).
For N � 1, the shape of the droplet is essentially non-
uniform, the kinetic term (second derivative) in Eq. (1)
being relevant for determining the shape. To a certain
extent, this case is similar to that of “standard” single-
component bright solitons with the cubic nonlinearity,
where the quantum pressure balances the potential en-
ergy. As N increases, the density at the center of the soli-
ton grows monotonously until it attains the equilibrium
bulk value n0, see Eq. (11), at N ≈ 10. By increasing N
further, formation of a “puddle” with a flat plateau in its
center is observed, which is filled by the bulk phase with
density n0. The action of the kinetic term is essential
near edges of the droplet, being irrelevant in the plateau
region. The situation really reminds a classical liquid,
where a plateau in the density profile expands with the
growth of the droplet’s mass.

The peculiarity of the present model is that it admits
two distinct regimes, separated by value N ∼ 1, i.e., the
number of particles ∼ N0, see Eq. (6). For smaller N , the
quantum pressure is significant, and the density profile
is essentially non-uniform, while for larger N the above-
mentioned bulk region appears, making the pattern sim-
ilar to a “puddle” filled by the homogeneous liquid.

In addition, we have tested the density profile derived
from the Gaussian-based VA. Its prediction is shown in
Fig. 2 by the dashed line. For N = 0.1, the Gaussian
density profile is almost indistinguishable from the ex-
act solution, which justifies the use of the VA for small
droplets.

To address the energetic properties, we report the value
of the chemical potential in Fig 3 as a function of norm
N . The chemical potential is always negative, implying
that the state is self-bound in the equilibrium. One can
compare the expansions derived for small and large N
from both the exact and VA solutions. As anticipated,
for small droplets the chemical potential is very well cap-
tured by the VA, being close to values given by expansion
(14), which was obtained from the exact solution. As the
droplet’s size increases, µ attains the bulk value (12) ex-
ponentially fast, in agreement with prediction (13).

We conclude the study of static properties of the
droplets by the consideration of their size as a function of
the norm. The mean-square size

√
〈x2〉 of the droplet is

reported in Fig. 4. Measured in units of x0 [see Eq. (2)],
the droplet has a minimal size for N ≈ 1, i.e., for the

Figure 2: (Color online) Density profiles for different
values of N . Exact analytical solution (9) and

predictions produced by Gaussian ansatz (20) are
shown by solid and dashed lines, respectively. For the

smallest value, N = 0.1, the lines are indistinguishable.
For the largest values of N , the bulk region, filled by

the density with the value given by Eq. (11), is observed
at the center. For these values (N = 10 and 20), the VA

prediction are not displayed, as they are irrelevant in
that case.
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- 0 . 1 5
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Figure 3: (Color online) Chemical potential µ as a
function of norm N . The bulk value (10) of chemical

potential is shown by the horizontal line. The large-N
expansion, given by Eq. (13), is shown by the

dashed-dotted line. The small-N expansion, given by
Eq. (14), and VA prediction (36) are hardly

distinguishable.
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Figure 4: (Color online) The mean-square size
√
〈x2〉 of

the droplet vs. norm N , compared to the asymptotic
expressions given by Eqs. (17) and (31).
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number of particles close to N0. A smaller droplet fea-
tures an approximately Gaussian shape with width W
given by Eq. (29), which diverges at N → 0. In the
opposite limit, the size of large droplets grows linearly
with N . It is worthy to note that, while the VA cannot
predict the flat-top shape of the “puddle” for N � 1,
it is still able to correctly predict that the droplet’s size
increases in this regime. The location of the minimum
of the width at N ' 1 implies that N0 [see Eq. (6)] de-
termines the density at which the droplet has the most
compact form.

F. The minimal number of atoms in a droplet

In dimensions lower than three, a purely attractive po-
tential between two particles always leads to formation
of a bound state, which is very different from the 3D
case, where a finite threshold for the formation of a two-
body bound state exists. Therefore, the 3D droplets are
formed only if the number of atoms exceeds a certain
critical number. For 3He atoms, a liquid is formed for
N & 20 atoms[46], while in ultradilute quantum droplets
the necessary number may be larger[16]. Contrarily, 1D
dimers are always formed for any value of the s-wave
scattering length a↑↓. Once the dimer-dimer interaction
becomes attractive for g/|g↑↓| ≤ 2.2, a many-body bound
state gets formed[47], creating a droplet. This implies
an important advantage of low-dimensional geometry, as
experimentally there is no minimal number of atoms nec-
essary for the creation of quantum droplets.

Another relevant physical question is how the size of
a single dimer, a↑↓, composed from two atoms belonging
to the different components, compares to the mean in-
terparticle distance. Apart from numerical factors ∼ 1,

the applicability condition for the perturbative theory
assumes that n0a↑↓ ∝ (δg/g)−2 � 1, i.e., the size of a
single dimer is large compared to the typical distance to
the next particle. This means that, within the region
of applicability of the Bogoliubov theory, the dimers can
never be considered as separate single objects, and they
only contribute to the collective properties. On the other
hand, the existence of the droplets in the opposite limit of
δg/g � 1 remains an open question, which should be ad-
dressed by non-perturbative approaches (such as Monte
Carlo methods), or measured directly in some future ex-
periment.

G. The surface tension

We conclude the study of stationary droplets by eval-
uation of the effective surface tension, a concept which is
useful for understanding some of the dynamical proper-
ties which are considered below in Section III. For a 3D
droplet, the surface tension can be extracted from the
expansion of the energy density[48],

E

N
= Ev + EsN

−1/3 + EcN
−2/3 , (37)

for N−1 → 0. The coefficients in Eq. (37) define the vol-
ume, surface and curvature tension, respectively. The
surface tension τ is related to Es as τ = Es/(3πr

2
0),

where the unit-volume radius r0 is defined by condition
(4/3)πr3

0 = 1.
In the 1D system, the expansion parameter is N−1,

instead of N−1/3 in Eq. (37), and the corresponding co-
efficients can be obtained analytically. The bulk energy
density is Ev = −2/9, and the surface-energy coefficient
is Es = 16/(27e2). In one dimension, the “surface” is
reduced to two points, hence its size is independent of
the size of the droplet. The respective surface tension is

τ ≡ Es
2

=
8

27e2
= 0.040 . (38)

III. DYNAMICS OF THE DROPLETS

This section deals with collisions between droplets and
excitation of a single one. In particular, as concerns the
latter topic, we aim to produce the stability diagram in
terms of the droplet’s norm and wavenumber of the ex-
citation.

A. Collisions between two droplets

A soliton is nonuniform coherent wave self-trapped due
to the action of the nonlinear dispersion. It is capable to
maintain its shape while moving at a constant velocity.
In our case, the wave function, ψ(x), given by Eq. (9) is
shaped by the interplay of quadratic and cubic terms in
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Eq. (1) for the droplet, similarly to the shape of the usual
bright solitons. The time evolution of the wave function,
ψ(x, t) = exp(−iµt)ψ(x, t), preserves the constant den-
sity profile, n(x, t) = |ψ(x, t)|2, also in the case when the
droplet is moving at a constant velocity.

Another distinct feature of a solitons in (nearly) in-
tegrable systems is that its shape must not be altered
in a collision with another soliton. From this perspec-
tive, it is important to verify a possible persistence of
the shape of droplets involved in the pairwise collisions.
To address this issue, we simulated Eq. (8), using the
split-step method based on the fast Fourier transform.
The initial wave function was taken as a set of two coun-
terpropagating droplets,

ψ(x, t=0) = eikx/2+ϕψ1(x+x0)+e−ikx/2ψ2(x−x0) (39)

where ψ1(x) and ψ2(x) are the stationary shapes of
droplets with normalization N1 and N2, borrowed from
Eq. (9), ±x0 are their initial positions, ±k/2 are initial
momenta of the colliding droplets, and ϕ is the relative
phase.

Figure 5 shows density plots of the colliding droplets
for a number of characteristic values of the relative mo-
mentum k and norms N1, N2. The incident profile is the
nearly Gaussian or a “puddle” one, for small and large
N , respectively. In the former case, N1 = N2 = 0.1,
the shape of each droplet is precisely preserved after the
collision. At the collision point, an interference pattern
might appear [see Fig. 5(a)], being a distinctive feature
of the interplay of coherent matter waves. The interfer-
ence is well visible for k & 1/W , where W is the width of
the droplet. As shown in Section II, the droplet’s prop-
erties in this regime, N . 1, are well captured by the
Gaussian-based VA.

The situation is quite different for large droplets, see
Figs. 5(b,c). In this case, the shape of the droplet is no
longer preserved after the collision. The example shown
in Fig. 5 (b) corresponds to the collision of fast-moving
droplets (k = 1, N1 = N2 = 10), with the large momen-
tum, in comparison to the droplet’s inverse width. The
interference pattern is clearly visible at the moment of
the collision, resulting in the formation of three outgo-
ing droplets. Both incoming droplets undergo fragmen-
tation, forming an additional quiescent one. The norm
of the newly formed stationary droplet is small, with a
majority of the particles being kept in the moving ones.

In the case of slowly moving droplets (k = 0.1, N1 =
N2 = 20), shown in Fig. 5(c), a majority of the particles
stay trapped in the newly formed central droplet, with
only relatively small numbers of particles kept by the
outgoing droplets. The merged central droplet is highly
excited, showing large-amplitude oscillations. In the fol-
lowing subsection we address in more detail conditions
under which a strongly excited droplet remains stable or
suffers fragmentation.

We also analyze collisions of droplets with unequal
norms in panels (d,e) of Fig. 5. In Fig. 5(d) we examine a
scattering between two small Gaussian-like droplets. In

this case no significant excitation is visible, the droplets
rather behave as unperturbed objects. Still their scat-
tering is not fully elastic, as the trajectories are affected
by the collision. In Fig. 5(e) a large “puddle” droplet
N = 10 collides with a small droplet with N = 1. It can
be seen that the large droplet becomes highly excited,
exhibiting internal periodic vibrations. On the opposite,
the small droplet remains essentially in an unperturbed
shape, although its trajectory is deflected.

We study the effect of the relative phase on the colli-
sion. Figures 5(f,g) show example with out-of-phase scat-
tering. The phase difference of π is known to effectively
induce repulsion between solitons[49, 50]. We see that
both small (f) and large (g) droplets with equal norms
indeed bounce back at the moment of the collision, so
that the final trajectory can be interpreted as a total re-
flection. While for phase π there is no excitation of the
equal-norm droplets, this is not the case for some other
phase differences. Figure 5(h) shows two large droplets
colliding with phase difference of π/2. In this case the
outcoming droplets can be excited and are unequally dis-
tributed in terms of normalization. The larger droplet is
less deflected, similarly to the case (e) of unequal masses.
As the phase difference is decreased, the lateral outgoing
droplet becomes smaller, see Figs. 5(g,h,c). The breaking
of the symmetry between the originally identical droplets
in this case can be explained following the line of Ref. [51],
as a consequence of the mismatch between the “ampli-
tude” and “phase” centers of the two-droplet configura-
tion with a phase shift different from 0 and π. Eventually
for zero difference, see case (c), the merged becomes sta-
tionary and two lateral droplets are formed.

B. Intrinsic excitations in a single droplet

In this subsection we study density-modulation excita-
tion modes with a certain wavenumber in a single droplet,
and address their stability.

1. The breathing mode

The “breathing” or monopole mode is the lowest com-
pression mode, with the spinor components moving in-
phase, making the droplet size periodically oscillating.
We excite this mode by driving a single droplet out of
equilibrium and study the ensuing dynamics, simulating
Eq. (8). The respective initial excitation is imposed by
slightly changing the norm of stationary solution (9).

Figure 6 presents the dependence of the resultant
breathing mode on the droplet’s size. There is a
non-monotonous dependence with the largest stiffness
reached around N ≈ 1, when the droplet attains its mini-
mal size. Symbols show results of a single-frequency fit to
the density at the droplet’s center. The solid and dashed
lines show, respectively, the prediction produced by the
VA, in the form of Eq. (32), and asymptotic expansions
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Figure 5: (Color online) The density plot of the time evolution showing an interference pattern generated by
collisions of two droplets, labeled by the normalizations (N1 and N2) and the incident momentum k. All cases

correspond to the in-phase collisions (ϕ = 0), except when stated otherwise.

obtained by means of the same method. While the un-
derlying Gaussian ansatz is expected to be quantitatively
correct for N � 1, the overall agreement is remarkably
accurate even for large “puddle” droplets, whose density
profile has the flat-top shape.

In three-dimensional droplets for some parameters all
excitation modes (both breathing and surface modes)
have energy larger than the absolute value of the chemical
potential[8]. From energetic considerations for such pa-
rameters the droplet is not able to sustain any excitation
and if an excited droplet is generated, it will lose atoms
until all excitations are gone. Such “autocooling” mech-
anism was argued to generate droplets in the true ground
state, corresponding to the zero temperature[8].. Instead,
in one-dimensional geometry we find that ~ωb < |µ| for
all parameters even if this condition is only marginally
satisfied for small normalization N → 0. This implies

that the “autocooling” mechanism is no longer applica-
ble in one-dimensional geometry.

It is instructive to confront the breathing mode fre-
quency in the puddle regime with the energy of a phonon
with the minimal possible momentum. The flat top can
be excited to support linear phonons, E(k) = ~c|k|,
where c is the speed of sound of the soft mode. The
minimal momentum can be approximated as k ≈ π/L
where L = n0/N is the linear size of the droplet ap-
proximated here by the bulk density n0. This results
in ωb ∝ 1/N with the coefficient of proportionality of
the order of one (at this level of accuracy the size L is
the same as the width W of the Gaussian ansatz or the
mean-square size 〈x2〉1/2). The resulting functional de-
pendence on N is the same as for the breathing mode
in the limit of N � 1, see Eq. (34). This finding is in-
teresting as the ultradilute dipolar liquids were found to
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Figure 6: (Color online) The frequency of the
small-amplitude breathing mode excited in the single
droplet, ωb, versus norm N . Symbols represent results

of simulations of the Gross-Pitaevskii equation (8) with
the input obtained by multiplying the norm of

stationary solution (9) by perturbation factor 1.001.
The solid line depicts the prediction produced by the
VA, as per Eq. (32). The dashed and dashed-dotted

lines correspond to the expansions for small and large
N , as per Eqs. (33) and (34), respectively.

be essentially incompressible[44] while in the present set-
ting, the phonons can be excited on the flat top part of
the puddle.

2. The excitation initialized by density modulation with a
finite wavenumber, and disintegration of the droplet

Another scenario of the excitation of internal dynam-
ics of the droplet is provided by imprinting periodic den-
sity modulation onto it, with wavenumber k. The corre-
sponding initial wave function is

ψ(x, t = 0) = ψexact(x) cos(kx) , (40)

where ψexact(x) is the exact solution (9). As a result,
in direct simulations the perturbed droplet may keep its
shape entirety or suffer fragmentation, depending on N
and k.

Two possible outcomes of the evolution are illustrated
by typical examples displayed in Fig. 7. If the energy
of the excitation is much smaller than the potential bar-
rier induced by the surface tension, the droplet avoids
fragmentation, as shown in Fig. 7(a). In this case, al-
most periodic oscillations are observed in the width of
the droplet. In the opposite limit of high excitation en-
ergy, the droplet splits in two or more escaping fragments
(which are smaller droplets) which fly away, as shown in
Fig. 7(b).

Figure 7: (Color online) Density plots of the evolution
of the droplet, initiated by the density modulation,

imposed as per Eq. (40). Two characteristic examples
(survival and fragmentation of the perturbed droplet)

are shown. Both cases pertain to N = 1, and k = 0.5 in
(a), or k = 1 in (b).

To better understand the mechanism leading to the
possible disintegration of a droplet, we study its oscil-
lations following the application of the density modula-
tion momentum, see Fig. 7(a), and measure their fre-
quency and amplitude. To do so, we consider the density
at the center of the droplet as a function of time and
fit it to damped harmonic oscillations, |ψ(x = 0, t)|2 =

A cos(
√

1− ζ2ωt) exp(−ζωt) + B, where A is an ampli-
tude, B an offset, f the frequency, and 0 < ζ < 1 the
damping ratio. Typical dependencies of ω and ζ on k are
shown in Fig. 8. For small wavenumbers k, the damp-
ing is absent, ζ ≈ 0, the droplet oscillating with the fre-
quency of a small-amplitude breathing mode ωb, as shown
in Fig. 6. For larger k, the frequency starts softening, and
for k exceeding a critical one, kc, the droplet splits into
several fragments. In this case, the density oscillations
at the center exhibit strong damping, with the damping
ratio approaching its largest value, ζ ≈ 1. In the stability
region, k < kc, the oscillation amplitude increases with k
and becomes so large that the density at the center may
even vanish, thus making a hole in the condensate, which
periodically opens and closes, while the droplet does not
fall apart yet. The oscillation frequency vanishes in the
limit of k → kc, which corresponds to the infinite period,
so that, once the droplet splits in two fragments, they
never recombine.

3. The stability diagram

The stability diagram for the excited droplet in the
plane of (N, k) is displayed in Fig. 9, in which symbols
correspond to values kc extracted from systematic sim-
ulations of Eq. (8), according to the procedure outlined
in subsubsection III B 2. The droplet remains undivided
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Figure 8: (Color online) The frequency, ω (the left
axis), and damping ratio, ζ (right axis) of oscillations
following the application of the density modulation to
the droplet, as per Eq. (40), for N = 0.1. The critical
value of wavenumber, kc, above which the perturbed

droplet splits, is obtained by fitting the frequency in the
stable region to ω(k) = a

√
kc − k. The fit is shown by

the solid black line. The dashed line shows the
frequency of the breathing mode, ωb, from Fig. 6.

at k < kc. It is seen that the strongest stability corre-
sponds to N ≈ 1. The stability-threshold line may be
interpreted in terms of energy considerations, by com-
paring the collisional kinetic energy[52] associated with
the imposed wavenumber, Ekin = N~2k2/ (2m), and the
surface energy, Es, see Eq. (38). The ratio of the two
energies

We =
Ekin

Es
=
N~2k2

4mτ
(41)

is known as the (modified) Weber number [53, 54].
Curved lines in Fig. 9 correspond to We = 1, 2, and
3. We find that, for N & 4, the classical prediction based
on a fixed value of the Weber number explains the sta-
bility diagram reasonably well. On the other hand, the
stability for N . 1 is quite different. In this regime the
perturbation with wavenumber k may efficiently create
an excitation in the droplet only at k � 1/W , where W
is the width of the droplet.

IV. CONCLUSION

The main results reported in this paper are summa-
rized as follows. We have studied static and dynami-
cal properties of 1D two-component Bose gases forming
quantum droplets, in the framework of the mean-field
theory (GPEs) amended by the BMF (beyond-mean-
field) corrections. Properties of the droplets greatly dif-
fer, depending on their norm N . Small droplets with

Figure 9: (Color online) The stability diagram for a
single droplet in the plane of norm N and wavenumber
k of the initially applied density modulation (40).

Symbols show the stability border kc obtained by fitting
the oscillation frequency, cf. Fig. 8. Lines correspond to

different values of the Weber number, defined as per
Eq. (41): We = 1, 2, and 3 (dashed, dashed-dotted, and

dashed-dotted-dotted lines, respectively).
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N � 1 have an approximately Gaussian shape, being
well described by the corresponding VA (variational ap-
proximation). Collisions between small droplets do not
essentially alter their shape, hence droplets may be con-
sidered as solitons in a nearly integrable setting. On the
other hand, large “puddle” droplets with N � 1 feature
a top-flat density profile, with an approximately constant
density corresponding to its equilibrium value in the uni-
form liquid. Although the VA fails to describe the ex-
ponential decay of the density profile at large distances,
it is quite precise for small droplets and even produces
meaningful results for a number of quantities of the “pud-
dle” droplets. We have observed splitting and merger in
collision of such extended droplets, depending on the col-
lision velocity. We have produced the stability diagram
for a single droplet with respect to imprinting a spatially
periodic density modulation onto it. It demonstrates a
fragmentation threshold in large (broad) droplets, with
the critical Weber number ∼ 1.

As an extension of the present work, it may be in-
teresting to verify the validity of the mean-field theory,
amended by the BMF terms, for predicting energies, den-
sity profiles and frequencies of oscillations, by means
of the quantum Monte Carlo technique. In particular,
it will be relevant to check if the entrainment between
two superlfuid components, known as Andreev-Bashkin
effect[55, 56], can be observed in intrinsic oscillations of
the droplets.
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