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A magnetic monopole is a hypothetical elementary particle with an isolated magnetic pole. Its
existence would directly lead to the quantization of electric charges. In recent years, analogues of
magnetic monopoles, represented by topological defects in parameter spaces, have been studied in a
wide range of physical systems. These works mainly focused on Abelian Dirac monopoles in spin-1/2
or non-Abelian Yang monopoles in spin-3/2 systems. Here we propose to realize three types of spin-1
topological monopoles and study their geometric properties using the parameter space formed by
three hyperfine states of ultracold atoms coupled by radio-frequency fields. These spin-1 monopoles,
characterized by different monopole charges, possess distinct Berry curvature fields and spin textures,
which are directly measurable in experiments. The topological phase transitions between different
monopoles are accompanied by the emergence of spin “vortex”, and can be intuitively visualized
using Majorana’s stellar representation. We show how to determine the Berry curvature, hence the
geometric phase and monopole charge from dynamical effects. Our scheme provides a simple and
highly tunable platform for observing and manipulating spin-1 topological monopoles, paving the
way for exploring new topological quantum matter.

I. INTRODUCTION

In 1931, Dirac proposed the quantum theory of mag-
netic charge, which is consistent with the gauge invari-
ance of electromagnetic field. The deep relation between
charge quantization and magnetic charge is revealed by
the Dirac quantization condition [1], i.e., if any mag-
netic monopoles exist in the universe, then all electric
charges must be quantized. The magnetic monopole car-
rying a net magnetic charge ~/2e, is considered as the
source for induced magnetic field B satisfying Gauss’s
law

∮
S B · dS = nh/e, where n counts the number of

magnetic charges enclosed by a two-dimensional (2D)
integral manifold S. Although no direct experimental
evidence for magnetic (Dirac) monopoles has been re-
ported so far, analogues of magnetic monopoles have
been found in various physical systems [2–9]. In such
Dirac-like monopoles, the monopole charge is defined as
the topological invariant

C =
1

2π

∮
S

Ω · dS, Ω = ∇R × 〈ψ|i∇R|ψ〉,

i.e., the first Chern number, where R represents an ex-
tended parameter space (e.g., position, momentum, or
certain other parameters) and the Berry curvature Ω
corresponds to the effective magnetic field. In many con-
densed matter materials, such as the recently discovered
Dirac [10–13] and Weyl semimetals [14–28], topological
monopoles usually represent Berry curvature singulari-
ties in the momentum space with energy level degener-
acy. The monopole charges are topologically protected
against small perturbations and their changes indicate
topological phase transitions.
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While Dirac-like monopoles have been broadly investi-
gated in both theory and experiment for spin-1/2 systems
because of their significance for characterizing topological
quantum matter and realizing geometric quantum com-
putation [29–31], the study of topological monopoles in
higher-spin systems started to attract attentions in re-
cent years, with important experimental progress such
as the observation of non-Abelian Yang monopoles [32]
in a degenerate state space for a spin-3/2 atomic gas [33].
The high-spin systems have provided unprecedented op-
portunities for realizing exotic phases of rich internal spin
structures without analogues in solid-state systems. In
this context, spin-1 topological monopoles may be of spe-
cial interests because, unlike spin-1/2 (or spin-3/2), the
underlying 3 × 3 Hamiltonian cannot be written by (or
as direct products of) Pauli matrices, and naturally con-
tains both spin vectors and quadrupole tensors. These
spin vectors and tensors are equivalent to the so-called
Gell-Mann matrices, which form a basis of the SU(3) al-
gebra. Intuitively, the three-component quantum state
cannot be simply mapped onto a Bloch sphere, therefore
the geometric phase and monopole charge cannot be di-
rectly determined by the solid angle and covering number
on the Bloch sphere [8, 9] as in spin-1/2 case. In the mo-
mentum space, spin-1 topological monopoles correspond
to triply-degenerate band-touching points, which have
been studied in solid states [34] and cold atoms [35–37]
recently, but their experimental realization is still largely
elusive [38].

In this paper, we propose that ultracold atoms in the
parameter space formed by radio-frequency (rf) couplings
between three hyperfine atomic ground states provide a
simple and highly tunable platform for studying exotic
topological phases in spin-1 systems, in particular, spin-
1 topological monopoles. The Hamiltonian for the ultra-
cold atoms are parameterized by external parameters of
the underlying tunable rf fields. Using the mapping from
these external parameters to crystal momenta in band
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theory, we can mimic topological Hamiltonians for Bloch
bands. Similar ideas have been implemented for vari-
ous types of quantum simulations [8, 9, 33, 38, 39]. For
example, Ref. [9] utilized controllable superconducting
quantum circuits to investigate topological properties of
both non-interacting and interacting quantum systems.

For our three-level system, we find that three types of
spin-1 monopoles and their topological phase transitions
are characterized by the emergence of spin vortices, which
change the spin textures in the parameter space and can
be directly probed in experiments. These monopoles can
also be visualized using Majorana’s stellar representation
(MSR) [40] on the state space. Within this geometric rep-
resentation, different monopoles yield topologically dis-
tinct trajectories of Majorana stars on the Bloch sphere.
Finally, a dynamical protocol [41] is proposed to mea-
sure the Berry curvature in the parameter space, which
determines the geometric phase [42] associated with an
adiabatic evolution path as well as the monopole charge.
Our scheme can be easily generalized to larger-spin sys-
tems, providing a general platform for studying exotic
topological quantum matter using the parameter space
of ultracold atoms.

II. SPIN-1 TOPOLOGICAL MONOPOLES

We consider a 87Rb Bose-Einstein condensate confined
in an optical dipole trap. As illustrated in Fig. 1(a), the
three hyperfine ground levels |F = 1,mF 〉 (mF = ±1, 0)
are coupled using two rf fields, Ω12 cos(ω12t + φ12) and
Ω23 cos(ω23t+ φ23), where Ωij , ωij , and φij are the am-
plitude, frequency and phase of the driving field that
couples i-th and j-th states (|1〉 = |1, 1〉, |2〉 = |1, 0〉,
|3〉 = |1,−1〉). The driving frequency are chosen as
~ω12 = E2 − E1 + δ1, ~ω23 = E3 − E2 − δ2. Here Ei
is the energy of the i-th state, with δ1 and δ2 the detun-
ings. The effective spin Hamiltonian of the three-level
system in the rotating frame is

H =

 δ1 Ω12e
iφ12 0

Ω12e
−iφ12 0 Ω23e

iφ23

0 Ω23e
−iφ23 δ2

 , (1)

which can be further represented as

H = m · F + tzzF
2
z + txzNxz + tyzNyz, (2)

in terms of the spin-1 operators . Here F = (Fx, Fy, Fz)
is the spin-vector of F = 1, and Nij = (FiFj +
FjFi)/2 − δijF

2/3 (i, j = x, y, z) denote the rank-
2 spin quadrupole tensors. The six coupling pa-
rameters mx = (Ω12 cosφ12 + Ω23 cosφ23) /

√
2, my =

(−Ω12 sinφ12 − Ω23 sinφ23) /
√

2, mz = (δ1 − δ2) /2,

tzz = (δ1 + δ2) /2, txz =
√

2(Ω12 cosφ12 − Ω23 cosφ23),

and tyz =
√

2(−Ω12 sinφ12 + Ω23 sinφ23) can be tuned
independently by varying six parameters Ω12, Ω23, φ12,
φ23, δ1, and δ2 of the two rf fields in experiments. The
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FIG. 1: (a) Hyperfine structure of 87Rb. The three hyper-
fine ground states of |F = 1〉 are coupled by two indepen-
dent rf fields. ω12 and ω23 denote coupling frequencies of
the driving field. δ1 and δ2 are the detunings. (b) Schemat-
ics of the parameter space. The integral surface S enclos-
ing the monopoles are parameterized by spherical coordinates
(r, θ, φ), with each point labeled by vector coupling m and
tensor couplings tij . The red curve Γ represents an arbitrary
closed evolution path in the parameter space, along which a
non-trivial Berry phase accumulates.

effective fields mi and tij couple respectively with spin-
vectors and spin-tensors.

These six parameters form a six-dimensional param-
eter space. Using the mapping from these external pa-
rameters of a cold-atom system to the crystal momenta
of a Bloch band system, we can simulate Bloch Hamilto-
nians with exotic properties that may be challenging to
realize in solid-state materials. The topological phases
with all levels below the Fermi energy being occupied can
be effectively realized by sweeping the parameter space,
where topological transitions correspond to gap closings
at some points in the parameter space. By choosing suit-
able parameters, we can restrict the parameter space to
lower dimensions for studying various topological states
in 2D or 3D. For instance, by choosing Ω12 = Ω23 = Ω0,
φ12 = φ23 = φ, the couplings with Nxz and Nyz vanish,
yielding a Hamiltonian ∼ mxFx −myFy, similar to the
2D Rashba spin-orbit coupling for spin-1 systems.

In this paper, we focus on engineering spin-1 topologi-
cal monopoles in a 3D parameter space, with the coupling
fields mi, tij parameterized by the spherical coordinates
(r, θ, φ) (with 0 ≤ r, 0 ≤ θ ≤ π, 0 ≤ φ < 2π) of the 3D
parameter space. The monopoles reside at the original
point r = 0, where all mi and tij vanish and the energy
level becomes triply-degenerate. The created topologi-
cal monopoles manifest themselves by the Berry curva-
ture (or Berry flux) in this parameter space, with their
charges determined by the integral of Berry curvature
over a closed surface S, as shown in Fig. 1(b). For con-
venience, we choose the integral surface as a sphere. By
tuning the coupling coefficients m and tij , the Berry cur-
vature over the sphere changes and three types of topo-
logical monopoles with C = ±2,±1, 0 emerge for spin-
1 systems, which are different from the one-type Dirac
monopole of spin-1/2 systems with C = ±1.

I ) C = 2 monopole from a Hamiltonian H = m · F
with m = r(sin θ cosφ, sin θ sinφ, cos θ), which describes
a spin-1 atom in an effective magnetic field m emanating
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from the monopole. There is no coupling with any spin
tensors. The Hamiltonian can be simply realized using
Ω12 = Ω23 = r sin θ/

√
2, δ1 = −δ2 = r cos θ, and φ12 =

φ23 = −φ.
II ) C = 1 monopole induced by an additional term

∼ F 2
z , i.e., H = m · F + αmzF

2
z . The Hamiltonian can

be realized using the same Ωij , φij as those in I ), but
with different δ1 = r(α + 1) cos θ, δ2 = r(α − 1) cos θ.
When |α| < 1, the system is adiabatically connected to
the monopole with C = 2 in I ). While when α > 1, C = 1.
α = 1 is a topological phase transition point with level
crossing along the north pole of S, i.e., θ = 0.
III ) C = 0 monopole induced by spin-tensor Nxz or

Nyz (which is similar), i.e., H = m · F+βmxNxz. The
Hamiltonian can be realized by taking δ1 = −δ2 =
r cos θ, φ12 = − arctan tanφ

1+β/2 , φ23 = − arctan tanφ
1−β/2 ,

Ω12 = r sin θ
√

[(1 + β/2)2 cos2 φ+ sin2 ϕ]/2, and Ω23 =

r sin θ
√

[(1− β/2)2 cos2 φ+ sin2 φ]/2. For |β| < 2, C =

2, while for |β| > 2, C = 0. β = 2 is the transition point,
with level crossings at θ = π/4, φ = 0 or π.

III. SPIN TEXTURE AND SPIN VORTEX

The three types of spin-1 monopoles with different
Chern numbers possess distinct configurations of spin
textures. In Figs. 2(a) to (c), we illustrate the spin po-
larization 〈F 〉 ≡ 〈ψ|F |ψ〉 of the ground state |ψ〉 on the
surface S. Similarly, the induced effective magnetic field
(i.e., Berry curvature Ω) from the magnetic monopole
exhibit different structures as shown in Figs. 2(d) to (f).
For type-I monopoles described by H = m ·F and C = 2
[Figs. 2 (a)(d)], Ω = −〈F 〉/r2 = m/r3. Because only
spin-vectors appear in the Hamiltonian, |〈F 〉| = 1. The
Berry curvature field is antiparallel to the spin polariza-
tion and distributes uniformly on the sphere S, emanat-
ing from the monopole charge located at the center.

The inclusion of spin-tensors leads to non-uniform dis-
tributions for both 〈F 〉 and Ω. Note that unlike spin-1/2
case, |〈F 〉| is not quantized (to 1) for general spin-1 sys-
tems. The topological transitions between different types
of monopoles occur due to level crossings, which are ac-
companied by the creation or annihilation of spin “vor-
tex” structure at the level-crossing points. At the core of
the vortex, 〈F 〉 = 0, and along a small encircling loop,
the direction of spin polarization winds up 2π angle. For
C = 1 monopole, the created vortex resides at the north
pole θ = 0, as shown in Fig. 2(b). From a perturbation
analysis (up to linear term of δθ), the wave function near

the north pole is given by |ψ〉 = (0, δθe−iφ√
2(α−1)

, 1)T for α < 1

and |ψ〉 = (− δθe−iφ√
2(1+α)

, 1, δθeiφ√
2(1−α)

)T for α > 1, yield-

ing the spin polarization 〈F 〉 = ( δθ cosφ
α−1 , δθ sinφ

α−1 ,−1) ≈
(0, 0,−1) for α < 1 and 〈F 〉 = 2αδθ

1−α2 (cosφ, sinφ, 0) for
α > 1. It is clear for α > 1, a spin vortex is created at
the north pole.

FIG. 2: Sketch of different types of spin-1 monopoles. The
monopoles are located at the origin (red dots), with spin po-
larization 〈F 〉 ((a) to (c)) and Berry curvature Ω ((d) to (f))
distributed on the surface S. (a)(d) are for C = 2 monopole;
(b)(d) are for C = 1 monopole; and (c)(f) are for C = 0
monopole. The green dots on the sphere represent the emer-
gent spin vortices. (g) The z-polarization 〈Fz〉 at south pole
(SP) and north pole (NP) with respect to α; (h) The z-
polarization at θ = π/4, φ = 0.

For C = 0 monopole, two spin vortices are created
which are located at θ = π/4, φ = 0 or π respectively, as
shown in Fig. 2(c). We choose the vortex at θ = π/4,
φ = 0 as an example. Using perturbation theory, the
spin polarization near the vortex core for β > 2 is 〈F 〉 =

4β
4−β2 (δθ, δφ/2,−δθ). As 〈F 〉 ·mθ=π/4,φ=0 = 0, the spin

polarization lies on the sphere S and winds 2π along a
closed path around the vortex core.

These severe changes of spin textures 〈F 〉, in particular
the emergence of spin vortices, can be directly measured
in experiments and thus be used to determine different
types of monopoles and their phase transitions. Physi-
cally, we can interpret these topological transitions as the
transfer of singularity from the monopole charges at the
center to the emergent spin vortices on S. Experimen-
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tally, the transition between C = 2 and C = 1 monopoles
can be determined by directly measuring the spin polar-

ization along the z-direction: 〈Fz〉 = N1−N−1

N1+N0+N−1
on the

two poles of S, as shown in Fig. 2(g). Here N1, N0, and
N−1 denote the populations of corresponding hyperfine
states. For a C = 2 monopole, 〈Fz〉SP = −〈Fz〉NP = 1;
While for C = 1 case, 〈Fz〉SP = 1, 〈Fz〉NP = 0. For a
C = 0 monopole as shown in Fig. 2(c) and (f), the spin
polarization and Berry curvature field are mainly dis-
tributed near the two poles, with an in-out structures for
the Berry flux dictated by its zero monopole charge. Sim-
ilarly, the transition between C = 2 and C = 0 monopoles
can be experimentally determined by measuring the spin
polarization at θ = π/4 and φ = 0 as illustrated in Fig.

2 (h). For C = 2 case, 〈Fx〉 = 〈Fz〉 = −4/
√

32 + β2,
〈Fy〉 = 0, while for C = 0, 〈F 〉 = 0.

IV. MSR OF TOPOLOGICAL MONOPOLES

The emergence of different types of spin-1 monopoles
and their topological phase transitions (corresponding to
change of monopole charge) can be intuitively understood
and best visualized by utilizing a geometric method—
MSR [40], which projects states in high-dimensional
Hilbert space to a few points, named Majorana stars,
on the Bloch sphere. Each Majorana star corresponds
to an individual spin-1/2 state. The physical properties
are then encoded in the geometrical information of these
Majorana stars.

In a spin-1/2 system, any state can be written as the

superposition |ψ〉 = cos ξ2 | ↑〉 + eiη sin ξ
2 | ↓〉, with 0 ≤

ξ ≤ π and 0 ≤ η < 2π. The state |ψ〉 is in exact corre-
spondence with a point u = (sin ξ cos η, sin ξ sin η, cos ξ)
on the Bloch sphere, i.e., each spin-1/2 state is rep-
resented by one Majorana star. Here ξ and η denote
the colatitude and longitude in the spherical coordi-
nate. For an arbitrary three-component state |ψ〉 =
f−1|1,−1〉+ f0|1, 0〉+ f1|1, 1〉, we can use the Schwinger
boson theory [43] to rewrite the spin-1 basis by the cre-
ation and annihilation operators of two-mode bosons a†,

a, and b†, b: |1,m〉 = (a†)1+m(b†)1−m

(1+m)!(1−m)! |∅〉. The state |ψ〉 is

then factorized as

|ψ〉 =
1

N

2∏
j=1

(cos
ξj
2
a† + sin

ξj
2
eiηj b†)|∅〉, (3)

following the fundamental theorem of algebra, where N
is the normalization coefficient. Denote yj = tan

ξj
2 e

iηj

and a†|∅〉 = | ↑〉, b†|∅〉 = | ↓〉, then yj satisfies∑2
j=0

(−1)jf1−j√
(2−j)!j!

y2−j = 0. From Eq. (3), it is obvious

that any spin-1 state can be characterized by two individ-
ual Majorana stars uj = (sin ξj cos ηj , sin ξj sin ηj , cos ξj)
(j = 1, 2) on the Bloch sphere.

The trajectories of two Majorana stars on the Bloch
sphere can be used to visualize different types of spin-1

FIG. 3: Trajectories of two Majorana stars u1 (blue) and
u2 (red) on the Bloch sphere for different types of spin-1
monopoles with respect to the evolution path Γ(t). From
(a) to (d), α = 0, 0.5, 1.001, 2. (e) Berry phase of the ground
state associated with the path Γ(t). Black, blue dotted, and
green dashed lines show the total Berry phase γ, the solid
angle part γs, and the correlation part γc. The red line is
the total Berry phase extracted from the dynamical protocol.
The inset illustrates the evolution path Γ(t) in the parameter
space.

monopoles and their topological phase transitions. Here
we take type-II monopoles as an example and consider a
closed evolution path

Γ(t) : θ(t) =
π

4
cos

2πt

T
+
π

4
, φ(t) =

π

3
sin

2πt

T
. (4)

in the parameter space with Γ(t) = Γ(t+T ). In Figs. 3(a-
d), the trajectories of two Majorana stars for the ground
states at four typical α’s are drawn. At α = 0, two Ma-
jorana stars u1 and u2 coincide with each other, starting
and ending at the south pole of the Bloch sphere [Fig.
3(a)]. This corresponds to a spin-1 in a magnetic field
m of parameter space with eigenstate eiFyθeiFzφ|1,−1〉.
By increasing α, two Majorana stars start to separate,
as shown in Fig. 3(b), while still share the same starting
and ending points at the south pole. Further increas-
ing α till α = 1, the trajectories “explode” on the Bloch
sphere, accompanied by a sudden change of their topol-
ogy at α = 1 [Fig. 3(c)]. After the transition point, while
one of Majorana stars is still bonded to the south pole,
the trajectory of the other one now starts and ends at the
north pole as shown in Fig. 3(d). Two Majorana stars
only share one touching point on the equator.

Similar analysis can be performed for the type-III
monopoles and their phase transitions (See Appendix
A for the discussion of MSR of type-III monopoles).
We note that while the configurations of two Majorana
stars rely on the selection of evolution path, the change
of the topology of their trajectories is always accompa-
nied by the phase transition between different types of
monopoles, revealing their distinct geometric and topo-
logical properties.
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V. BERRY PHASE AND BERRY CURVATURE

In an adiabatic evolution over a course of cycle, Berry
phase, which results from the geometric properties of the
underlying Hamiltonian, can be represented as the inte-
gral of gauge potential: γ =

∮
Γ
A · dR ≡ i

∮
Γ
〈ψ|∇R|ψ〉 ·

dR. For a spin-1/2 system, γ is simply the solid angle
subtended by the trajectories of the single Majorana star.
While for a spin-1 system, any quantum state is repre-
sented by two Majorana stars. Fortunately, the Berry
phase accumulated along a closed path can be elegantly
formulated as [44–47]

γ = γS + γC = −
2∑
j=1

1

2

∮
(1− cos ξj)dηj

− 1

2

∮
(du1 − du2) · (u1 × u2)

3 + u1 · u2
, (5)

where the first term γS denotes the solid angles traced
out by the two Majorana stars and the second term γC
describes their correlations due to the relative motion.

In Fig. 3(e), we show the Berry phase along the path
Γ(t) with respect to α. At α = 0, the two Majorana stars
coincide with each other, hence the correlation part van-
ishes (γC = 0) and γ is twice the solid angle subtended by
each Majorana star. By increasing α, the trajectories of
the two Majorana stars are separated and their correla-
tion γC becomes nonzero. At α = 1, the three geometric
phases exhibit discontinuities due to the change of topol-
ogy of the two trajectories. After the transition point, γ
tends to zero, in consistent with that the two Majorana
stars are bonded to different poles on the Bloch sphere
[Fig. 3(d)].

The Berry phase γ can also be obtained from the Berry
curvature filed Ω through γ =

∫∫
SΓ

Ω·dS, with boundary

condition ∂SΓ = Γ. If the integral is performed on a
closed 2D manifold, it gives the monopole charge. Using
MSR, the Berry curvature takes the following form [48]:

Ωαβ = − 2

(3 + u1 · u2)2
[2
∑2

i=1
ui · (∂αui × ∂βui)

+(u1 + u2) · (∂αu1 × ∂βu2 + u1 ↔ u2)]. (6)

For type-I monopoles without spin-tensors, u1 = u2 ≡ u,
and Eq. (6) reduces to Ωαβ = −u · (∂αu×∂βu), indicat-
ing that the monopole charge is nothing but the covering
number of two Majorana stars on the Bloch sphere [35].
The spin-tensor term could in general deform the config-
urations of Majorana stars, hence change the topological
charge of the associated monopole.

For the integral sphere S in the parameter space in Fig.
1(b), the topological charge can be further rewritten as

C =
1

2π

∫ π

0

dθ

∫ 2π

0

dφ Ωθφ, (7)

where Ωθφ = Im[〈∂ψ∂θ |
∂ψ
∂φ 〉 − 〈

∂ψ
∂φ |

∂ψ
∂θ 〉] is the Berry curva-

ture in spherical coordinates.
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FIG. 4: Berry curvature and monopole charge from dynamical
effects. (a) Plot of r〈Fy〉 with respect to v. The slope in the
linear regime with small v gives Ωθφ. (b) Monopole charge
with respect to α. (c), (d), (e) show Ωθφ and 〈Fy〉 (blue solid
lines) for α = 0, 0.5, and 1.8, respectively. The red lines
are Ωθφ calculated from the dynamical effects, and the cyan
dashed lines indicate their theoretical values. r = 16π× kHz,
Tramp = 4 ms, which are in the linear regime.

VI. EXPERIMENTAL DETECTION OF
MONOPOLE CHARGE

The spin textures as well as emergence of spin vortices
in the previous discussions provide a simple experimental
signature for distinguishing different types of monopoles
and their phase transitions. However, to measure the
Berry phase and determine the monopole charge, we need
to measure the Berry curvature on each point in the pa-
rameter space. This can be done using the non-adiabatic
effect [41] during the ramping of certain related param-
eter λ as illustrated in Fig. 4. The non-adiabaticity
leads to the deflections of quantum trajectories that are
proportional to the Berry curvature in parameter space,
analogous to a charged particle moving in a magnetic
field deflected by Lorentz force. Formally, the deflection
is described by a generalized force Mµ = −〈∂µH〉, and
related to Berry curvature through

Mµ = −〈ψ0(R)|∂µH|ψ0(R)〉+ vλ ×Ωλµ +O(v2
λ). (8)

from linear response theory [41]. Here ψ0(R) is the in-
stantaneous eigenstate at R(t). The last term denotes
higher-order corrections. vλ = dλ

dt is the ramping ve-
locity of λ. It is easy to verify that the contribution
from the first term is zero for the integral on a closed
surface. Considering that adiabaticity is usually hard to
achieve in realistic laboratory condition, this relation has
the advantage of needing only a moderately slow change
of parameters with dominating linear terms.

For type-I and type-II monopoles, the Hamiltonian is
cylindrically invariant. Accordingly, the Berry curvature
must be cylindrically symmetric Ωθφ = Ωθ,φ=0. The
generalized force along the longitude direction is given
by Mφ = −〈∂φH〉 = r sin θ sinφ〈Fx〉 − r sin θ cosφ〈Fy〉.
Hence C =

∫ π
0

Ωθ,φ=0dθ =
∫
dt sin θ r〈Fy〉. We choose a
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FIG. 5: Monopole charge extracted from dynamical effects for
the transition between type-I and type-III monopoles. The
main figure shows C with respect to β. The insets show the
Berry curvatures for β = 0.5 and β = 4, respectively. r =
16π× kHz, Tramp = 4 ms.

smooth evolution path: θ = v2t2/2π with vθ = v2t/π,
which is adiabatic at t = 0 and at t = π/v, vθ = v. The
total ramping time of θ(t) from 0 to π is determined by

Tramp =
√

2π/v.
In Fig. 4(a) we show the dependence of Ωθφ (with

α = 0) at t = π/v on evolution speed v. It is clear for
small v, the dynamical evolution lies in a linear regime,
where the higher-order corrections are negligible. The
Berry curvature Ωθφ can then be extracted from the
slope of the curve, in consistent with theoretical value
Ωθφ = sin θ|t=π/v = 1 at α = 0. Now we constrain the
discussions in this linear regime. In Fig. 2(e), we plot
the Berry phase calculated from the dynamical effect,
which agrees quite well with the theoretical values ob-
tained from Eq. (5). The integrated monopole charge C
is shown in Fig. 4(b). For α < 1, C is quantized to 2 while
for α > 1, C is quantized to 1. The system undergoes a
topological phase transition at α = 1, characterized by
the change of monopole charge. Note that near the phase
transition point, C is not precisely quantized due to the
small energy gap in the evolution process.

The time-dependent magnetization 〈Fy〉 and the ex-
tracted Berry curvature for different α are shown in Figs.
4(c)-(e). At α = 0, 〈Fy〉 is linearly dependent on t with
small oscillations from dynamical effects [Fig. 4(c)]. The
extracted Berry curvature is in consistent with theoreti-
cal value Ωθφ = sin θ. With increasing α, both Ωθφ and
〈Fy〉 exhibit two peaks, accompanied by larger dynami-
cal oscillations (energy gap decreases by increasing α) as
shown in Fig. 4(d). C is still quantized to 2. Further
increasing α to the transition point, the left peak of Ωθφ
moves towards the boundary θ = 0. After that, a nega-
tive peak emerges near the same boundary as shown in
Fig. 4(e), accompanied by a sudden change of C.

For type-III monopoles of our system, we have Mφ =
−〈∂φH〉 = r sin θ sinφ

[
〈Fx〉+β〈Nxz〉

]
− r sin θ cosφ〈Fy〉.

The monopole charge can then be extracted by measuring
spin vectors 〈Fx〉, 〈Fy〉 and spin tensor 〈Nxz〉 for different

(θ,φ) in the parameter space. The main results are sum-
marized in Fig. 5. We can clearly see β = 2 is a phase
transition point, with C changing from 2 to 0. The Berry
curvature shows different behaviors for two phases. At
β < 2, four positive peaks appear at φ = nπ/2. While
across the transition point, the peaks at φ = 0, π turn
into negative peaks, cancelling the Berry curvature field
in other regions. The integrated Berry curvature then
gives C = 0 for β > 2.

VII. DISCUSSIONS

In summary, we have demonstrated a versatile ultra-
cold atomic platform for the generation, manipulation
and observation of various spin-1 topological monopoles
in parameter space. Our proposed simple experimental
system involves only two rf fields to couple three different
hyperfine states of ultracold atoms, which define relevant
parameter spaces, paving the way for exploring and en-
gineering exotic quantum matter.

Our proposed different types of spin-1 monopoles and
their distinct internal spin structures may also be ob-
served using parameter spaces formed in other atomic,
optical or solid-state systems, for instance, the supercon-
ducting quantum circuits. For example, the C = 2 spin-1
monopole (type-I) and its transition to a trivial insula-
tor has been successfully realized in a recent experiment
[38] using a transmon superconducting qutrit subject to
microwave fields. With suitable modification of the ex-
perimental setup, type-II and III spin-1 monopoles could
also be realized using superconducting qutrits.

Our proposed scheme also serves as an ideal platform
towards other interesting physics of spin-1 system, such
as the non-Abelian geometric phase [49] and topological
insulator with SU(3) spin-orbit coupling [50]. For the
latter, the three hyperfine states should be coupled in
a cyclical way by suitably choosing three coupling fields
and atomic levels. Furthermore, the present scheme using
the parameter space of rf fields can be directly general-
ized to higher-spin systems. By coupling more hyperfine
states of the underlying atomic gases, various topological
defects with exotic internal structures, such as the spin-
3/2 Rarita-Schwinger-Weyl semimetals [51], the six- and
eight-fold band crossings [34], and large-spin topological
monopoles even without counterparts in solid-state ma-
terials, can be simulated.
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Appendix A: MSR of type-III monopoles

In this section, we show the trajectories of Majorana stars using MSR and visualize the topological phase transitions
on the Bloch sphere for type-III monopoles in the main text. The evolution path is chosen as Γ2(t) : θ(t) = π

8 cos 2πt
T +

π
4 , φ(t) = π

4 sin 2πt
T + 3π

4 .

FIG. 6: Berry phase and MSR associated with evolution path Γ2(t) for type-III monopoles. Red solid, blue dotted and green
dashed lines represent the total Berry phase γ, the solid angle part γS and the correlation part γC . The insets plot the
trajectories of two Majorana stars u1 (blue) and u2 (red) at β = 0, 1, 2.01, 4.

The trajectories of two Majorana stars of the ground state are shown in Fig. 6 for four typical β. At β = 0, two
Majorana stars u1 and u2 coincide with each other, sharing the same curves on the Bloch sphere. Hence γC = 0, and
γ = γS . By increasing β, two Majorana stars start to separate, as shown in Fig. 6(b). The two trajectories share
three touching points, one of which is fixed for all β. The topological phase transition occur at β = 2. After the
transition, the two trajectories only share one common point. Correspondingly, the Berry phases γ, γS , γC exhibit
abrupt change at the transition point.
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D. S. Hall, Observation of Dirac monopole in a synthetic
magnetic field, Nature 505, 657 (2014).

[8] M. D. Schroer, et al., Measuring a topological transition
in an artificial spin-1/2 system, Phys. Rev. Lett. 113,
050402 (2014).

[9] P. Roushan et al., Observation of topological transitions
in interacting quantum circuits, Nature 515, 241 (2014).

[10] Z. J. Wang et al., Dirac semimetal and topological phase
transitions in A3Bi (A=Na, K, Rb), Phys. Rev. B 85,
195320 (2012).

[11] S. M. Young et al., Dirac semimetal in three dimensions,
Phys. Rev. Lett. 108, 140405 (2012).

[12] Z. K. Liu et al., Discovery of a three-dimensional topo-
logical Dirac semimetal, Na3Bi, Science 343, 864 (2014).

[13] Z. K. Liu et al., A stable three-dimensional topological
Dirac semimetal Cd3As2, Nat. Mater. 13, 677 (2014).

[14] G. Volovik, The Universe in a Helium Droplet (Oxford
University Press, Oxford, 2003).

[15] S. Murakami, Phase transition between the quantum spin
Hall and insulator phases in 3D: emergence of a topolog-
ical gapless phase, New J. Phys. 9, 356 (2007).

[16] A. A. Burkov and L. Balents, Weyl Semimetal in a topo-
logical insulator multilayer, Phys. Rev. Lett. 107, 127205
(2011).

[17] X. G. Wan, A. M. Turner, A. Vishwanath, and S. Y.
Savrasov, Topological semimetal and Fermi-arc surface
states in the electronic structure of pyrochlore iridates,
Phys. Rev. B 83, 205101 (2011).

[18] S.-M. Huang et al., A Weyl fermion semimetal with sur-
face Fermi arcs in the transition metal monopnictide
TaAs class, Nat. Commun. 6, 7373 (2015).

[19] B. Q. Lv et al., Experimental discovery of Weyl semimetal
TaAs, Phys. Rev. X 5, 031013 (2015).

[20] B. Q. Lv et al., Observation of Weyl points in TaAs, Nat.
Phys. 11, 724 (2015).

[21] H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and
X. Dai, Weyl semimetal phase in noncentrosymmet-
ric transition-metal monophosphides, Phys. Rev. X 5,
011029 (2015).

[22] S.-Y. Xu et al., Discovery of a Weyl fermion state with
Fermi arcs in niobium arsenide, Nat. Phys. 11, 748
(2015).

[23] S.-Y. Xu et al., Discovery of a Weyl fermion semimetal

https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1038/nature06433
https://doi.org/10.1126/science.1178868
https://doi.org/10.1126/science.1178868
https://doi.org/10.1126/science.251.4999.1336
https://doi.org/10.1126/science.251.4999.1336
https://doi.org/10.1126/science.1089408
https://doi.org/10.1126/science.1234657
https://doi.org/10.1038/nature12954
https://doi.org/10.1103/PhysRevLett.113.050402
https://doi.org/10.1103/PhysRevLett.113.050402
https://doi.org/10.1038/nature13891
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1126/science.1245085
https://doi.org/10.1038/nmat3990
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3437


8

and topological Fermi arcs, Science 349, 613 (2015).
[24] L. X. Yang et al., Weyl semimetal phase in the non-

centrosymmetric compound TaAs, Nat. Phys. 11, 728
(2015).

[25] L. Lu et al., Experimental observation of Weyl points,
Science 349, 622 (2015).

[26] A. A. Soluyanov, Type-II Weyl semimetals, Nature 527,
495 (2015).

[27] M. Gong, S. Tewari, and C. Zhang, BCS-BEC crossover
and topological phase transition in 3D spin-orbit coupled
degenerate Fermi gases, Phys. Rev. Lett. 107, 195303
(2011).

[28] Y. Xu, F. Zhang, C. Zhang, Structured Weyl points
in spin-orbit coupled Fermionic superfluids, Phys. Rev.
Lett. 115, 265304 (2015).

[29] L.-M. Duan, J. I. Cirac, P. Zoller, Geometric manipu-
lation of trapped ions for quantum computation, Science
292, 1695 (2001).

[30] D. Leibfried et al., Experimental demonstration of a ro-
bust, high-fidelity geometric two ion-qubit phase gate, Na-
ture 422, 412 (2003).

[31] M. A. Nielsen, M. R. Dowling, M. Gu, A. C. Doherty,
Quantum computation as geometry, Science 311, 1133
(2006).

[32] C. N. Yang, Generalization of Dirac’s monopole to SU2

gauge fields, J. Math. Phys. 19, 320 (1978)
[33] S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, I. B.

Spielman, Second Chern number of a quantum-simulated
non-Abelian Yang monopole, Science 360, 1429 (2018).

[34] B. Bradlyn et al., Beyond Dirac and Weyl fermions: Un-
conventional quasiparticles in conventional crystals, Sci-
ence 353, 6299 (2016).

[35] H. Hu, J. Hou, F. Zhang, and C. Zhang, Topologi-
cal Triply Degenerate Points Induced by Spin-Tensor-
Momentum Couplings, Phys. Rev. Lett. 120, 240401
(2018).

[36] I. C. Fulga, L. Fallani, and M. Burrello, Geometrically
protected triple-point crossings in an optical lattice, Phys.
Rev. B 97, 121402(R) (2018).

[37] Y.-Q. Zhu, D.-W. Zhang, H. Yan, D.-Y. Xing, and S.-
L. Zhu, Emergent pseudospin-1 Maxwell fermions with a
threefold degeneracy in optical lattices, Phys. Rev. A 96,
033634 (2017).

[38] X. S. Tan, D.-W. Zhang, Q. Liu, G. M. Xue, H.-F. Yu,

Y.-Q. Zhu, H. Yan, S.-L Zhu, and Y. Yu, Topological
Maxwell metal bands in a superconducting qutrit, Phys.
Rev. Lett. 120, 130503 (2018).

[39] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov,
Multi-terminal Josephson junctions as topological matter,
Nat. Commun. 7, 11167 (2016).

[40] E. Majorana, Atomi orientati in campo magnetico vari-
abile, Nuovo Cimento 9, 43 (1932).

[41] V. Gritsev and A. Polkovnikov, Dynamical quantum Hall
effect in the parameter space, Proc. Natl. Acad. Sci.
U.S.A. 109, 6457 (2012).

[42] M. V. Berry, Quantal phase factors accompanying adia-
batic changes, Proc. R. Soc. Lond. A 392, 45 (1984).

[43] J. Schwinger, Quantum Theory of Angular Momentum,
edited by L. C. Biendenharn and H. Van Dam (Academic
Press, New York, 1965).

[44] C. Bouchiat and G. W. Gibbons, Non-integrable quan-
tum phase in the evolution of a spin-1 system: a physical
consequence of the non-trivial topology of the quantum
state-space, J. Phys. 49, 187 (1988).

[45] J. H. Hannay, The Berry phase for spin in the Majorana
representation, J. Phys. A 31, L53 (1998).

[46] P. Bruno, Quantum geometric phase in Majorana’s
stellar representation: Mapping onto a many-body
Aharonov-Bohm phase, Phys. Rev. Lett. 108, 240402
(2012); Q. Niu, Viewpoint: A quantum constellation,
Physics 5, 65 (2012).

[47] H. D. Liu and L. B. Fu, Representation of Berry phase by
the trajectories of Majorana stars, Phys. Rev. Lett. 113,
240403 (2014).

[48] R. Barnett, D. Podolsky, and G. Refael, Geometrical ap-
proach to hydrodynamics and low-energy excitations of
spinor condensates, Phys. Rev. B 80, 024420 (2009).

[49] H. M. Bharath, M. Boguslawski, M. Barrios, X. Lin,
and M. S. Chapman, Singular loops and their non-
abelian geometric phases in spin-1 ultracold atoms,
ArXiv:1801.00586

[50] R. Barnett, G. R. Boyd, and V. Galitski, SU(3) spin-
orbit coupling in systems of ultracold atoms, Phys. Rev.
Lett. 109, 235308 (2012).

[51] L. Liang and Y. Yu, Semimetal with both Rarita-
Schwinger-Weyl and Weyl excitations, Phys. Rev. B 93,
045113 (2016).

https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1038/nphys3425
https://doi.org/10.1038/nphys3425
https://doi.org/10.1126/science.aaa9273
https://doi.org/doi:10.1038/nature15768
https://doi.org/doi:10.1038/nature15768
https://doi.org/10.1103/PhysRevLett.107.195303
https://doi.org/10.1103/PhysRevLett.107.195303
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1126/science.1058835
https://doi.org/10.1126/science.1058835
https://doi.org/10.1038/nature01492
https://doi.org/10.1038/nature01492
https://doi.org/10.1126/science.1121541
https://doi.org/10.1126/science.1121541
https://doi.org/10.1063/1.523506
https://doi.org/10.1126/science.aam9031
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1103/PhysRevLett.120.240401
https://doi.org/10.1103/PhysRevLett.120.240401
https://doi.org/10.1103/PhysRevB.97.121402
https://doi.org/10.1103/PhysRevB.97.121402
https://doi.org/10.1103/PhysRevA.96.033634
https://doi.org/10.1103/PhysRevA.96.033634
https://doi.org/10.1103/PhysRevLett.120.130503
https://doi.org/10.1103/PhysRevLett.120.130503
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1007/BF02960953
https://doi.org/10.1073/pnas.1116693109
https://doi.org/10.1073/pnas.1116693109
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1051/jphys:01988004902018700
https://doi.org/10.1088/0305-4470/31/2/002
https://doi.org/10.1103/PhysRevLett.108.240402
https://doi.org/10.1103/PhysRevLett.108.240402
https://physics.aps.org/articles/v5/65
https://doi.org/10.1103/PhysRevLett.113.240403
https://doi.org/10.1103/PhysRevLett.113.240403
https://doi.org/10.1103/PhysRevB.80.024420
https://arxiv.org/abs/1801.00586
https://doi.org/10.1103/PhysRevLett.109.235308
https://doi.org/10.1103/PhysRevLett.109.235308
https://doi.org/10.1103/PhysRevB.93.045113
https://doi.org/10.1103/PhysRevB.93.045113

	Introduction
	Spin-1 topological monopoles
	Spin texture and spin vortex
	MSR of topological monopoles
	Berry phase and Berry curvature
	Experimental detection of monopole charge
	Discussions
	Acknowledgments
	MSR of type-III monopoles
	References

