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We theoretically investigate how quasi-particle properties of an attractive Fermi polaron are af-
fected by nonzero temperature and finite impurity concentration in three dimensions and in free
space. By applying both non-self-consistent and self-consistent many-body T -matrix theories, we
calculate the polaron energy (including decay rate), effective mass and residue, as functions of tem-
perature and impurity concentration. The temperature and concentration dependences are weak
on the BCS side with a negative impurity-medium scattering length. Toward the strong attraction
regime across the unitary limit, we find sizable dependences. In particular, with increasing temper-
ature the effective mass quickly approaches the bare mass and the residue is significantly enhanced.
At temperature T ∼ 0.1TF , where TF is the Fermi temperature of the background Fermi sea, the
residual polaron-polaron interaction seems to become attractive. This leads to a notable down-shift
in the polaron energy. We show that, by taking into account the temperature and impurity concen-
tration effects, the measured polaron energy in the first Fermi polaron experiment [A. Schirotzek et

al., Phys. Rev. Lett. 102, 230402 (2009)] could be better theoretically explained.

I. INTRODUCTION

Over the past two decades, ultracold atomic gases have
provided an ideal platform to understand the intriguing
quantum many-body systems [1]. The simplest exam-
ple is probably a moving impurity immersed in a back-
ground medium that is often well understood [2, 3]. In
this so-call polaron problem, the interaction between im-
purity and medium can be tuned arbitrarily by using Fes-
hbach resonances [4]. The motion of the impurity is then
addressed by low-energy excitations of the background
medium and its fundamental properties are profoundly
affected [2]. In the case of fermionic impurity with finite
density/concentration, the emergence of a Fermi liquid
behavior is anticipated [5, 6].

Theoretically, it turns out that the polaron problem
can be well approximately solved by using a variational
ansatz that includes only one-particle-hole excitation, as
proposed by Chevy in 2006 in his seminal work [7]. For a
non-interacting single-component Fermi sea as the back-
ground medium, when the impurity-medium scattering
length a is tuned to the unitary limit (a→∞), Chevy’s
ansatz predicts a polaron energy EP ≃ −0.607εF [7, 8],
where εF is the Fermi energy of the Fermi sea, which
is very close to the exact diagrammatic Monte Carlo
(Diag-MC) result of EP = −0.615(1)εF [9–12]. This per-
fect agreement may result from a nice cancellation of the
higher-order contributions, as checked by the next order
calculation with the inclusion of two-particle-hole excita-
tions [13]. The simple variational ansatz was later used to
discover repulsive Fermi polarons in the meta-stable up-
per branch [14] and to describe Bose polarons [15]. At the
level of including two-particle-hole excitations, Chevy’s
ansatz has also been applied to the medium systems
with bosonic degrees of freedom, such as a Bose-Einstein
condensate (BEC) [16] or a Bardeen–Cooper–Schrieffer
(BCS) superfluid [17, 18]. In those cases, the interplay
between polarons and the resulting Efimov trimer was
explored [16–19].

Experimentally, the first experiment on attractive
Fermi polarons was carried out by Zwierlein group at
Massachusetts Institute of Technology (MIT) in 2009 us-
ing 6Li atoms [20]. The polaron energy and residue were
determined by using radio-frequency (rf) spectroscopy,
in the vicinity of the unitary limit and in the strong at-
traction BEC regime. The attractive polaron picture was
used later to understand the radio-frequency spectrum of
a quasi-two-dimensional Fermi gas [21]. The existence of
repulsive Fermi polarons was experimentally confirmed
in 2012 by immersing 40K impurity in a Fermi sea of 6Li
atoms near a narrow Feshbach resonance [22] or by using
40K atoms in two dimensions [23]. Most recently, a care-
ful analysis of the quasi-particle properties of repulsive
Fermi polarons in 6Li systems was performed at the Eu-
ropean Laboratory for Non-linear Spectroscopy (LENS),
Florence [24]. The experimental observation of attrac-
tive and repulsive Bose polarons has also been reported
[25, 26].

In all these experiments, the experimental data were
compared with the theoretical predictions of a single im-
purity at zero temperature [2]. The unavoidable nonzero
temperature and finite impurity concentration in real ex-
periments are anticipated to give negligible corrections.
However, those corrections have never been carefully ex-
amined, except the idealized case of 1D Fermi polarons
[27], where the exact solution is available. A possible
reason is that the current polaron theory relies heavily
on Chevy’s variational approach [7], which is unfortu-
nately difficult to handle the nonzero temperature and
finite impurity concentration [28].

The purpose of the present work is to address the ef-
fects of nonzero temperature and finite impurity con-
centration for attractive Fermi polarons in three dimen-
sions and in free space, by using both non-self-consistent
[8, 29–33] and self-consistent T -matrix theories [34–37].
In the limit of zero temperature and a single impurity
and in three dimensions, the non-self-consistent T -matrix
theory is shown to be equivalent to Chevy’s variational
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approach [8, 32]. At weak attractions on the BCS side
of the impurity and medium scattering resonance, we
find that the effects of nonzero temperature and finite
impurity concentration are indeed negligible, confirming
the previous anticipation. However, across the resonance
and toward the strong attraction regime, a nonzero tem-
perature may significantly reduce the effective mass and
enhance the residue of attractive Fermi polarons. The
polaron energy also shows a considerable temperature de-
pendence. In particular, at the typical experimental tem-
perature T ∼ 0.1TF , where TF is the Fermi temperature
of the Fermi sea, the polaron-polaron interaction may
become attractive, leading to a sizable downshift in the
polaron energy, which may be experimentally resolved.
Indeed, by taking into account the temperature and im-
purity concentration effects, we find that the measured
polaron energy in the first Fermi polaron experiment at
MIT [20] could be better theoretically understood.

II. MANY-BODY T -MATRIX THEORIES OF

ATTRACTIVE FERMI POLARONS

We consider a two-component three-dimensional Fermi
gas of mass m with a large spin polarization (i.e., n↑ =
n ≫ n↓), which is described by the model Hamiltonian
[7, 8],

H =
∑

k

[

(ǫk − µ) c†
k↑ck↑ + (ǫk − µ↓) c

†
k↓ck↓

]

+
U

V

∑

q,k,k′

c†k↑c
†
q−k↓cq−k′↓ck′↑, (1)

where ǫk ≡ ~
2k2/(2m), µ and µ↓ are the chemical po-

tentials of spin-up and spin-down atoms, respectively,
and U < 0 is the bare attractive interatomic interac-
tion strength, to be renormalized in terms of the s-wave
scattering length a, according to

1

U
=

m

4π~2a
−
∑

k

m

~2k2
. (2)

In the large spin polarization limit, we treat the spin-
down atoms as impurities and assume that, at the first
order of the impurity concentration x = n↓/n, the back-
ground medium of spin-up atoms is not affected by in-
teraction. As a result, µ can be taken as the chemical
potential µ(0)(T ) ≃ εF = ~

2(6π2n)2/3/(2m) of an ideal
Fermi gas at low temperatures and the thermal Green’s
function of spin-up atoms is

G
(0)
↑ (k, iωm) =

1

iωm − (ǫk − µ)
, (3)

with fermionic Matsubara frequencies ωm ≡ (2m +
1)πkBT for integer m. Instead, the impurity chemical
potential µ↓ < 0 and the impurity temperature Green’s
function G↓(k, iωm) strongly depend on the interatomic
interaction. For a single impurity at zero temperature,
µ↓ gives the polaron energy EP [8].

A. Many-body T -matrix theories

We solve the impurity temperature Green’s function

G↓ (k, iωm) =
1

iωm − (ǫk − µ↓)−
∑

(k, iωm)
(4)

by using the well-established many-body T -matrix theo-
ries [38–40], which amount to summing up all the ladder-
type diagrams. In this approximation, the self-energy Σ
of the impurity atom is given by [8],

Σ = kBT
∑

q,iνn

G
(0)
↑ (q− k, iνn − iωm) Γ (q, iνn) , (5)

where the vertex function Γ can be written through the
Bethe-Salpeter equation as,

Γ (q, iνn) =
1

U−1 + χ (q, iνn)
, (6)

and the pair propagator χ(q, iνn) is

χ = kBT
∑

k,iωm

G
(0)
↑ (q− k, iνn − iωm)G↓ (k, iωm) . (7)

Here, νn ≡ 2nπkBT with integer n are the bosonic Mat-
subara frequencies. Eqs. (4), (5), (6) and (7) form a
closed set of equations, which have to be solved self-
consistently. We refer to it as the self-consistent T -matrix
theory, or the “G0↑G↓” theory according to the struc-
ture in the pair propagator. We note that in a strong-
coupling theory, the self-consistency does not necessarily
guarantee a better or more accurate theory [39, 40]. For
attractive Fermi polarons, it is actually more useful to
take a non-self-consistent treatment of the many-body
T -matrix theory, as suggested by the comparison with
numerically exact Diag-MC simulations [9–11, 13] or ex-
act Bethe ansatz solutions [27]. That is, we simply use a
non-interacting impurity Green function

G
(0)
↓ (k, iωm) =

1

iωm − (ǫk − µ↓)
(8)

in the pair propagator Eq. (7). At zero temperature and
in the single-impurity limit, this non-self-consistent T -
matrix theory or the “G0↑G0↓” theory exactly recovers
Chevy’s variational approach [8].
In this work, we explore both non-self-consistent and

self-consistent T -matrix theories, as both of them are
not justified in the strong-coupling limit [39, 40]. There
is no reason to expect that the self-consistent theory
works better than the non-self-consistent approach, or
vice versa. The applicability of the two theories should
be benchmarked by numerically exact calculations such
as Diag-MC simulations or accurate experimental mea-
surements. For the polaron energy in the highly spin-
imbalanced limit, it is known that the non-self-consistent
T -matrix theory seems to work better [13]. However, for
a normal Fermi gas in the spin-balanced limit (i.e., zero
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polarization), the self-consistent T -matrix theory may
provide a better prediction for the thermodynamics [39].
Compared with the non-self-consistent theory, of

course, the self-consistent calculations are much more nu-
merically involved, since the integration over (q, iνn) in
Eq. (5) or (k, iωm) in Eq. (7) is three-dimensional. To
overcome this numerical integration difficulty, we rewrite
the self-energy and the pair propagator in real space and
in imaginary-time space [34–36]:

Σ(x, τ) = G
(0)
↑ (−x,−τ)Γ(x, τ), (9)

and

χ(x, τ) = G
(0)
↑ (x, τ)G↓(x, τ), (10)

where in the last equation G↓(x, τ) should be replaced

with G
(0)
↓ (x, τ), if we consider the non-self-consistent T -

matrix theory. Thus, it is straightforward to calculate
self-energy or pair propagator once we know the Green’s
functions and vertex function in real space. The trade-off
is that we now need to perform two Fourier transforms,
x ←→ k (or q) and τ ←→ iωm (or iνn) [34–36]. Due
to the spatial homogeneity and rotational invariance, all
the functions in real space (or momentum space) depend
on x = |x| (or k = |k|) only. Hence, the two Fourier
transforms are essentially a two-dimensional integration
and can be performed very efficiently. It turns out that
the only difficulty in our numerical calculations is the sin-
gularities of Green’s functions and vertex function near
x = 0 and τ = 0−. Fortunately, the same singularities
appear in the free Green’s function G(0) or in the first-
order iterated vertex function Γ(n=1) and thus can be
easily taken into account in an analytic way [34, 35].
We note that, at zero temperature in the single impu-

rity limit both non-self-consistent and self-consistent T -
matrix theories have been implemented as a by-product
of the Diag-MC simulations of Fermi polarons [10]. Here,
we extend these theories to the case of nonzero temper-
ature and finite impurity concentration.

B. Quasi-particle properties of Fermi polarons

Once the impurity thermal Green function is known,
we may directly extract the quasi-particle properties of
Fermi polarons, such as the polaron energy EP , residue Z
and the effective massm∗, by approximating the retarded
impurity Green’s function GR

↓ (k, ω) ≡ G↓(k, iωm → ω +

i0+) in the low-energy and long-wavelength limit as [9,
10],

GR
↓ =

Z

ω − ~2k2/(2m∗) + µ↓ − EP + iγ/2
+ · · · , (11)

where γ is the decay rate of the polaron. In the case
of a well-defined quasi-particle (i.e., γ ≪ |EP |), this
gives rise to a polaron spectral function A↓(k, ω) =

−(1/π)ImG↓(k, ω) [29, 33],

A↓ (k, ω) = Zδ

(

ω + µ↓ −
~
2k2

2m∗
− EP

)

+ · · · , (12)

which can be experimentally measured by using the
radio-frequency spectroscopy that transfers impurity
atoms to a third, empty hyperfine state [20, 24]. The
explicit expressions for the polaron energy, residue and
effective mass may be obtained by Taylor expanding the
retarded self-energy ΣR(k, ω) ≡ Σ(k, iωm → ω + i0+)
near k = 0 and ω = 0 [41]. By substituting the expan-
sion into the retarded impurity Green’s function, we find
that,

EP = (1−Z)µ↓ + ZReΣ
R(0, 0), (13)

Z =

(

1−
∂ReΣR

∂ω

)−1

, (14)

m

m∗
=

(

1 +
∂ReΣR

∂ǫk

)(

1−
∂ReΣR

∂ω

)−1

, (15)

γ = −2ZImΣR(0, 0). (16)

As the impurity concentration is given by,

n↓ =
∑

k

ˆ

dωf (ω)A↓ (k, ω) , (17)

≃
∑

k

Zf

(

EP +
~
2k2

2m∗
− µ↓

)

, (18)

where f(x) is the Fermi distribution function, it is easy to
see that at zero temperature we must have the identity
EP = µ↓ for a single impurity at a vanishingly small
density n↓ ≃ 0 [8]. By using Eq. (13), we obtain the
condition

µ↓ = ReΣR (0, 0) (19)

to determine the impurity chemical potential for a single
impurity at zero temperature [8–10].
It is worth mentioning that, numerically it is difficult

to directly take analytic continuation iωm → ω + i0+

for the retarded self-energy. At low temperatures, where
ωm ≡ (2m+1)πkBT is small for small integerm = 0, 1, 2,
we therefore Taylor expand the self-energy around zero
frequency, i.e.,

Σ (k, iωm) ≃ ΣR (k, 0) +
∂ΣR

∂ω
(iωm) , (20)

or

ReΣ (k, iωm) ≃ ReΣR (k, 0)−
∂ImΣR

∂ω
ωm, (21)

ImΣ (k, iωm) ≃ ImΣR (k, 0) +
∂ReΣR

∂ω
ωm, (22)

and obtain ΣR(k, 0) and [∂ΣR(k, ω)/∂ω]ω=0 by numeri-
cal extrapolation. An example of such an extrapolation
is shown in Fig. 1 for an attractive polaron in the unitary
limit. Consequently, we take the zero momentum limit
and calculate the numerical derivative of the retarded
self-energy with respect to ǫk at k = 0.
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FIG. 1. (color online). The Matsubara frequency depen-
dence of the self-energy of the impurity temperature Green’s
function at very small momentum k ≃ 0, calculated by us-
ing the non-self-consistent T -matrix theory. Here, we take
1/(kF a) = 0 (i.e., the unitary limit), T = 0.01TF and the
impurity chemical potential µ↓ = −0.607εF . We extrapolate
the data to zero frequency to obtain the retarded self-energy
ΣR(k, iωm → ω = 0), which is shown in the inset. The imagi-
nary part of the retarded self-energy ImΣR(k, 0) (red symbols
in the inset) is essentially zero due to low temperature.

III. FERMI POLARONS AT ZERO

TEMPERATURE: A BRIEF REVIEW

A. Polaron energy, residue and effective mass

We have calculated the polaron energy, residue and
inverse seffective mass as a function of the impurity-
medium interaction strength at nearly zero temperature,
by using both non-self-consistent and self-consistent T -
matrix theories. These results were obtained earlier as
a by-product in a zero-temperature Diag-MC simulation
[10], although the predicted polaron energy from the self-
consistent T -matrix theory was not explicitly reported.

As shown in Fig. 2, our results summarize the known
quasi-particle properties of attractive Fermi polarons at
zero temperature. For the polaron energy and residue,
the prediction of the non-self-consistent T -matrix theory
agrees well with the numerically exact result by Diag-MC
simulations [9, 10]. The self-consistent T -matrix theory
seems to underestimate the polaron energy and residue,
in particular on the BEC side with a positive scattering
length a > 0. On the other hand, the Diag-MC result of
the inverse effective mass lies between the predictions of
non-self-consistent and self-consistent T -matrix theories,
as shown in the inset at the left bottom of Fig. 2. Overall,
it is reasonable to believe that the non-self-consistent T -
matrix theory works better than the self-consistent the-
ory for attractive Fermi polarons at low temperature and
small impurity concentration. However, in some cases
the self-consistent theory may provide more useful in-
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FIG. 2. (color online). The energy of attractive Fermi
polarons (with the two-particle bound state energy ǫB =
−~

2/(ma2) < 0 subtracted on the BEC side), as a func-
tion of the interaction strength 1/(kF a), obtained by the
non-self-consistent T -matrix theory (thick black line) and self-
consistent T -matrix theory (thin brown line) at T = 0.01TF ,
and by diagrammatic Monte Carlo simulations at zero tem-
perature in 2008 (blue stars) [9] and 2013 (red circles) [10].
The upper and lower insets show the residue and (inverse)
effective mass of polarons, respectively.

formation than the non-self-consistent theory. An inter-
esting example is the polaron-molecule transition, which
has been predicted by Diag-MC simulations to occur at
about 1/(kFa)c ≃ 0.9 [9, 10].

B. Quantum phase transition to the molecular

state

Indeed, the self-consistent T -matrix theory can be used
to determine the interaction strength 1/(kFa)m for the
formation of a tightly bound molecular state of an im-
purity atom and a medium atom, due to their strong
attraction. This sets an upper bound for the absolute
instability of the polaron with respect to the transition
to a molecule state. Numerically, we find that beyond a
threshold interaction strength 1/(kFa)m ≃ 0.95, the ver-
tex function at zero momentum and frequency becomes
positive, as shown in Fig. 3 (thin lines). Our numerical
procedure for self-consistent calculations of the impurity
Green’s function and vertex function then breaks down.
Physically, it signifies the condensation of spontaneously
created molecules, following the so-called Thouless crite-
rion for superfluidity [42],

Γ (q = 0, iνn = 0) = 0, (23)

which is satisfied at the threshold temperature Tc or
threshold interaction strength 1/(kFa)m. It is interesting
that the threshold interaction strength 1/(kFa)m ≃ 0.95
predicted by the self-consistent T -matrix theory is very
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FIG. 3. (color online). The inverse of the impurity ver-
tex function at zero momentum and zero frequency at T =
0.01TF , in units of 2mkF , as a function of the interaction
strength 1/(kF a), obtained by using the non-self-consistent T -
matrix theory (thick black line) and self-consistent T -matrix
theory (thin brown line). The self-consist theory predicts a
pairing instability at the interaction strength 1/(kF a)m ≃

0.95, very close to the Diag-MC prediction 1/(kF a)c ≃ 0.9 for
the absolute instability of the polaron or the polaron-molecule
transition [9, 10]. The inset is an enlarged view near the pair-
ing instability.

close to the critical value obtained by Diag-MC simu-
lations [9, 10], 1/(kFa)c ≃ 0.9. Instead, the non-self-
consistent T -matrix theory predicts a much larger thresh-
old interaction strength (not shown in the figure) for the
formation of molecules and hence a larger critical inter-
action strength 1/(kFa)m for the polaron-molecule tran-
sition. This seems puzzling and confusing, as the non-
self-consistent theory predicts a more accurate polaron
energy than the self-consistent approach. To understand
it, we note that, the location of the molecule instabil-
ity and the effective mass of the polaron are much more
sensitive to the corrections from the two-particle-hole ex-
citations [43], which is absent in the non-self-consistent
theory. The self-consistent theory partially takes into ac-
count the two-particle-hole excitations and hence gives a
better threshold interaction strength 1/(kFa)m. In con-
trast, the polaron energy is not so sensitive to the two-
particle-hole excitations [13]. The partial two-particle-
hole excitations included in the self-consistent theory ac-
tually lead to an over-estimation of the interaction effect
and therefore a worse polaron energy [13].

IV. FERMI POLARONS AT FINITE

TEMPERATURE

We now turn to consider the quasi-particle properties
of attractive Fermi polarons at finite temperature. Fig.
4 reports the polaron energy as a function of the reduced
temperature T/TF on the BCS side (1/kFa = −0.5),
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FIG. 4. (color online) Temperature dependence of the po-
laron energy at the impurity concentration x = n↓/n = 0.01
and at 1/(kF a) = −0.5 (dashed line), 0 (solid line), and 0.5
(dot-dashed line), calculated by using the non-self-consistent
T -matrix theory (a, left panel) and self-consistent T -matrix
theory (b, right panel). The circles in (a) show the diagram-
matic Monte Carlo result in 2013 [10].

in the unitary limit (1/kFa = 0) and on the BEC
side (1/kFa = +0.5), obtained by using the non-self-
consistent (a) and self-consistent (b) T -matrix theories.
At low temperature T < 0.05TF , the polaron energy de-
creases with increasing temperature. From the viewpoint
of one-particle-hole excitation, this decrease may arise
from the enlarged phase space for particle-hole excita-
tions at low temperature and hence the impurity is more
addressed by particle-hole excitations. At a bit larger
temperature (i.e. ∼ 0.1TF ), the polaron energy increases
as the temperature increases. This increase can be clearly
seen on the BEC side by using the self-consistent T -
matrix theory, where the temperature-induced variation
of the polaron energy is about 0.1εF for T < 0.15TF .
Unfortunately, the current experimental measurement of
the polaron energy is not accurate enough to resolve this
variation. On the other hand, on the BCS side the tem-
perature dependence of the polaron energy is typically
weak and is only about a few percents of the Fermi
energy. Both non-self-consistent and self-consistent T -
matrix theories predict a similar polaron energy, due to
the weak attraction.
Figure 5 shows the temperature dependence of the in-

verse effective mass (a, b) and the residue (c, d) of Fermi
polarons. These two quantities increase with increasing
temperature, as predicted by both T -matrix theories. At
T > 0.05TF , this may be simply understood from the
fact that with increasing temperature, the polaron starts
to lose it polaronic character and becomes more like an
isolated impurity. As a result, as the temperature in-
creases, its effective mass approaches the bare mass m
and its residue becomes unity.
As a well-defined quasi-particle, an attractive Fermi

polaron has infinitely long lifetime at zero temperature,
unless a decay channel to the ground-state of molecules is
opened above the critical interaction strength 1/(kFa)c ∼
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FIG. 5. (color online) Temperature dependence of the po-
laron effective mass (a, b) and residue (c, d) at the impurity
concentration x = n↓/n = 0.01 calculated by using the non-
self-consistent T -matrix theory (left panel) and self-consistent
T -matrix theory (right panel). From top to bottom, the in-
teraction strengths are 1/(kF a) = −0.5 (dashed line), 0 (solid
line), and 0.5 (dot-dashed line). The circles in (c) show the
diagrammatic Monte Carlo result in 2013 [10].

0.9 [44]. At finite temperature, however, a Fermi polaron
could decay via thermal excitations at arbitrary inter-
action strength, where the decay rate is anticipated to
be proportional to (T/TF )

2 at low temperature [20]. In
Fig. 6, we present the temperature dependence of the de-
cay rate of Fermi polarons, calculated from the non-self-
consistent (a) and self-consistent (b) T -matrix theories.
On the BCS side or near the unitary limit, the polaron
decay rate is about a few percents of the Fermi energy at
the temperature range considered (i.e., T < 0.2TF ). In
contrast, on the BEC side, the thermal-induced decay be-
comes significant. It can be as large as 0.1εF at the typ-
ical experimental temperature of T ∼ 0.15TF . We note
that, the decay rate determined by the self-consistent
theory is larger than the one from the non-self-consistent
theory. Moreover, the non-self-consistent theory seems
to predict a threshold temperature (i.e., T ∼ 0.08TF ),
below which there is no notable decay.

V. FERMI POLARONS AT FINITE IMPURITY

DENSITY

In this section, we consider the quasi-particle proper-
ties of attractive Fermi polarons at finite impurity con-
centration/density and discuss their density dependence
at both essentially zero temperature (i.e., T = 0.01TF )
and finite temperature. At the end of the section, we
also make a possible contact with the first Fermi polaron
experiment [20]. To allow the finite impurity density, we
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0.10
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0.20

0.00 0.05 0.10 0.15 0.20
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0.20

 

 

/
F

T/TF

(a) G0 G0

0.5

0.0

1/(kFa) = + 0.5  

 

T/TF

(b) G0 G

FIG. 6. (color online) Thermal-induced polaron decay rate
at the impurity concentration x = n↓/n = 0.01 and at
1/(kF a) = −0.5 (dashed line), 0 (solid line), and 0.5 (dot-
dashed line), calculated by using the non-self-consistent T -
matrix theory (a, left panel) and self-consistent T -matrix the-
ory (b, right panel).

adjust the chemical potential µ↓ to satisfy the number
equation,

n↓ = kBT
∑

iωm

∑

k

G↓ (k, iωm) . (24)

Once we obtain the chemical potential µ↓, we determine
the quasi-particle properties using Eqs. (13)-(16). In
the following, as before we consider both the non-self-
consistent and self-consistent T -matrix theories.

A. Fermi liquid behavior

At low impurity concentration and low temperature,
Fermi polarons are believed to form a Fermi liquid [5, 6].
In the spirit of Landau Fermi liquid theory, the change in
the total energy, due to the addition of impurity atoms
with density x = n↓/n = N↓/N , where N↓ and N are
respectively the number of impurity atoms and medium
atoms, can be written in an energy functional with two
density dependent terms [5, 6],

∆E ≃ N↓EP +
3

5
NεF

[

m

m∗

(

N↓

N

)5/3

+ F
N2

↓

N2

]

, (25)

where EP (T ) and m∗(T ) are respectively the polaron
energy and effective mass of a single impurity at low
temperature T ; the term proportional to m/m∗ in the
bracket accounts for the Fermi pressure of the quasi-
particle polaron gas, while the second term with a defined
Landau parameter F may be viewed as the interaction
energy arising from the effective polaron-polaron inter-
action. By taking the derivative ∂∆E/∂N↓ = µ↓, the
impurity chemical potential is given by,

µ↓ = EP (T )+
m

m∗ (T )
x2/3εF +

6

5
F (T )xεF + · · · . (26)
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FIG. 7. (color online) The impurity chemical potential as
a function of the impurity concentration x in the unitary
limit (1/kF a = 0) and at T = 0.01TF , calculated by using
the non-self-consistent T -matrix theory (thick black line) and
the self-consistent T -matrix theory (thin brown line). The
two red dashed lines are the fitting curve of the formula,
µ↓ = EP + (m/m∗)x2/3 + (6/5)Fx, where F is the Lan-
dau parameter characterizing the polaron-polaron interaction.
The dot-dashed line illustrates the importance of the polaron-
polaron interaction term (6/5)Fx.

In Fig. 7, we check the Fermi liquid description by us-
ing the non-self-consistent (upper thick line) and self-
consistent (lower thin line) T -matrix theories in the uni-
tary limit. We fit the calculated impurity chemical poten-
tial with Eq. (26) and then extract the polaron energy
EP , inverse effective mass m/m∗ and Landau parame-
ter F . The extracted energy and effective mass agree
well with these calculated via Eq. (13) and Eq. (14) at
the same temperature T = 0.01TF . In addition, in the
case of the non-self-consistent T -matrix theory, the ex-
tracted Landau parameter F ≃ 0.15 is close to the value
of F = 0.20 calculated using the same ladder approxima-
tion [24] or the prediction F = 0.14 from the fixed-node
diffusion Monte Carlo [6].

B. Density dependence of the polaron energy, mass

and residue

We now consider the density dependence of the quasi-
particle properties of Fermi polarons at zero tempera-
ture. It is useful to note that, the impurity chemical
potential is equivalent to the polaron energy only at zero
temperature for a single impurity [8]. In general cases,
the polaron energy defined by Eq. (12) is different from
the impurity chemical potential. In particular, we an-
ticipate that in the polaron energy the many-body effect
of the Fermi pressure term, the term ∝ (m/m∗)x2/3 in
the impurity chemical potential Eq. (26), would be ab-
sent. However, the polaron energy may be affected by
the residual interaction between polarons.
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-0.4
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P 

 
B
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F
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+ 0.5

0.0

 

 

x
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1/(kFa) = 0.5

FIG. 8. (color online) The polaron energy as a function of
the impurity concentration x at T = 0.01TF and at three
different interaction strengths: 1/(kF a) = −0.5 (dashed line),
0 (solid line), and 0.5 (dot-dashed line), calculated by using
the non-self-consistent T -matrix theory (a, left panel) and
self-consistent T -matrix theory (b, right panel). The circles
in (a) show the diagrammatic Monte Carlo result in 2013 [10].

Figure 8 reports the density dependence of the po-
laron energy at three typical interaction strengths and at
T = 0.01TF , determined by using the two T -matrix the-
ories. As anticipated, the polaron energy does not show
the existence of the Fermi pressure term, which other-
wise will lead to a strong density dependence. The slight
increase in the polaron energy with increasing density,
predicted by both theories, could be attributed to the
residual polaron-polaron interaction. According to the
non-self-consistent T -matrix theory [24], with increasing
interaction parameter, the Landau parameter F is small
on the BCS side, takes a maximum at 1/(kFa) ∼ 0.6 and
finally becomes small again in the BEC limit. As shown
in Fig. 8a, the slopes of the polaron energy as a func-
tion of the density x at different interaction strengths are
consistent with the interaction dependence of the Landau
parameter F .

Figure 9 presents the density dependence of the in-
verse effective mass and residue of Fermi polarons at
T = 0.01TF . Both quantities decreases with increas-
ing density, suggesting that the polaronic character is
amplified by a finite density. A reduced polaron residue
at nonzero impurity concentration is qualitatively consis-
tent with the experimental measurement [20]. For exam-
ple, in the unitary limit it was experimentally observed
that Z = 0.39(9) at 5% impurity concentration [20],
smaller than the variational prediction of Z ≃ 0.78 for a
single impurity [7, 8]. However, our results at x = 0.05,
i.e., Z ≃ 0.74 from the non-self-consistent theory and
Z ≃ 0.60 from the self-consistent theory, can not quanti-
tatively explain the experimental finding.
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FIG. 9. (color online) The inverse effective mass (a, b) and
the residue (c, d) of attractive Fermi polarons as a function of
the impurity concentration x at T = 0.01TF and at different
interaction strengths: 1/(kF a) = −0.5 (dashed line), 0 (solid
line), and 0.5 (dot-dashed line), calculated by using the non-
self-consistent T -matrix theory (left panel) and self-consistent
T -matrix theory (right panel). The circles in (c) show the
diagrammatic Monte Carlo result in 2013 [10].
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FIG. 10. (color online) The polaron energy as a function
of the impurity concentration x in the unitary limit and at
three different temperatures: T = 0.05TF (red dashed line),
0.10TF (black solid line) and 0.15TF (blue dot-dashed line),
calculated by using the non-self-consistent T -matrix theory.
The inset shows the polaron residue.

C. Density dependence of the polaron energy and

residue at finite temperature

We now discuss the polaron quasi-particle properties at
both nonzero temperature and nonzero impurity concen-
tration. Fig. 10 shows the polaron energy (main figure)
and the residue (inset) as a function of the impurity con-
centration at three different temperatures: T = 0.05TF

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0
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B
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FIG. 11. (color online) The polaron energy at finite tem-
perature T = 0.10TF and at nonzero impurity concentra-
tion x = 0.05, determined by using the non-self-consistent
T -matrix theory (black solid line). For comparison, we show
also the diagrammatic Monte Carlo results at zero temper-
ature (red circles) [10] and the experimental data on 6Li
atoms at similar temperature and impurity concentration
(i.e., Texpt = 0.14(3)TF and xexpt ≃ 0.05, blue empty squares)
[20]. The latter is extracted from the review article [2].

(dashed line), 0.10TF (solid line) and 0.15TF (dot-dashed
line). It is interesting that the density dependence qual-
itatively changes at slightly larger temperatures. For in-
stance, at T = 0.15TF the polaron energy appears to de-
crease with increasing density, while the polaron residue
starts to increase. Physically, a reduced polaron energy
at nonzero impurity density indicates an attractive ef-
fective interaction between polarons. Thus, we conclude
that the effective polaron-polaron interaction may change
its sign with increasing temperature.

At high temperature, where the polaron becomes more
likely an individual, isolated impurity, the attractive po-
laronic interaction actually could be understood from
the induced interaction due to the exchange of medium
atoms. For a weak impurity-medium interaction U , it is
well known that such an exchange process leads to an
induced interaction [45, 46]

Uind = −U2χ(q, ω), (27)

which should be attractive. Here χ(q, ω) is the density-
density response function of the medium atoms with mo-
mentum q and frequency ω [45, 46]. Our results of a
temperature-dependent polaron-polaron interaction sug-
gest that the weak-coupling picture of induced interac-
tions should be improved close to zero temperature, in
order to accommodate a repulsive effective interaction
between polarons.
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D. Comparison with Fermi polaron experiments

An attractive polaron-polaron interaction at nonzero
temperature may lead to a sizable down-shift in the
polaron energy at finite impurity concentration. To
show this in Fig. 11 we report the polaron energy at
T = 0.10TF and x = 0.05, across the whole BCS-BEC
crossover, calculated by using the non-self-consistent T -
matrix theory. The inverse effective mass is shown in
the inset. It is readily seen that the correction due to
the combined effect of temperature and impurity con-
centration is negligible on the BCS side or in the unitary
limit. However, the correction becomes increasingly pro-
nounced on the BEC side. The down-shift in the polaron
energy is typically about 0.1 ∼ 0.2εF , and more impres-
sively the inverse effective mass m/m∗ becomes less de-
pendent on the interaction parameter 1/(kFa), staying
around 0.8 ∼ 0.9.
We now make a comparison with the first Fermi po-

laron experiment [20]. The experiment was carried out at
similar temperature (i.e., Texpt = 0.14(3)TF ) and impu-
rity concentration (xexpt ≃ 0.05). It is encouraging to see
that our theoretical prediction of the polaron energy fits
well with the measured data (empty squares with error
bars) [20], better than the Diag-MC results for a single
impurity at zero-temperature (solid circles) [10].
On the other hand, our result of an interaction-

insensitive effective mass at finite temperature is useful
to understand the weak density dependence of the rf peak
positions for the attractive branch [20]. Experimentally,
the polaron energies EP± for both attractive and repul-
sive polarons are measured from the peak position ∆± of
the rf-spectroscopy [24],

∆± = EP± −
(

1−
m

m∗

)

ε̄, (28)

where the second term on the right-hand-side of the equa-
tion reflects the different dispersion relation of impurity
in the polaron state and in the third free hyperfine state,
and ε̄ =

〈

~
2k2/(2m)

〉

is the mean kinetic energy per im-
purity due to the finite impurity concentration x 6= 0
(see Eq. (12)). Therefore, if the effective mass m∗ of
Fermi polarons differs notably from the bare massm (i.e.,
1−m/m∗ ≫ 0), one can measure m/m∗ from the depen-
dence of ∆± on ε̄. This protocol works very well for
repulsive Fermi polarons of 6Li atoms [24]. However, it
does not work for attractive Fermi polarons [20], although
the variational theory predicts small enough m/m∗ for
both repulsive and attractive Fermi polarons at about
1/(kFa) ∼ 0.6 at zero temperature [24]. As shown in
the inset of Fig. 11, the inverse effective mass of attrac-
tive Fermi polarons at finite temperature actually differs
a lot from its zero temperature value on the experimen-
tally relevant BEC side. The quantity 1−m/m∗ is close
to zero and the resulting weak dependence of ∆− on ε̄
can hardly be used to experimentally extract m/m∗.
To close this subsection, it is also worth noting that

experimentally the Fermi cloud is confined in a harmonic

trapping potential [47, 48]. The finite number of atoms
N naturally leads to a correction at the order of N−1/3

to the polaron energy [47]. For N ∼ 105, the correction
∆EP is about 0.02EF .

VI. CONCLUSIONS

In summary, we have presented a systematic investi-
gation of the effects of finite temperature and finite im-
purity concentration on the quasi-particle properties of
attractive Fermi polarons. On the BEC side beneath the
Feshbach resonance of the impurity and medium atoms,
we have found that a nonzero temperature, as small as
one-tenth of the Fermi temperature, may lead to a sizable
correction to the polaron energy. The effective mass of
attractive polarons can be reduced significantly as well,
leading to a weak dependence of the measured resonance
peak in the radio-frequency spectroscopy on the impurity
concentration. These results have been used to better un-
derstand the first Fermi polaron experiment carried out
at MIT in 2009 [20].
In the single-impurity limit, our results predicted by

the non-self-consistent T -matrix theory could be quanti-
tatively reliable, at both zero temperature and finite (but
small) temperature, since the non-self-consistent theory
takes into account the most important one-particle-hole
excitations and the effects of the higher order multi-
particle-hole excitations are believed to cancel with each
other [13]. At a finite impurity density x = n↓/n 6= 0,
the non-self-consistent T -matrix theory becomes worse.
In particular, when the impurity density is identical to
the density of the medium atoms (x = 1), it is known that
the self-consistent T -matrix theory works better than the
non-self-consistent theory. In future, it would be crucial
to determine the threshold impurity density, above which
the non-self-consistent T -matrix theory starts to lose its
quantitative predictive power. This can be done by
numerically solving a normal, spin-imbalanced strongly
interacting Fermi gas with the diagrammatic quantum
Monte Carlo approach.
It will be interesting to extend our study to the case of

repulsive Fermi polarons and consider the temperature
effect in the recent LENS experiment with 6Li atoms
[24]. To do so, we need to solve the coupled T -matrix
equations Eqs. (4), (5), (6) and (7) in the real-frequency
domain and determine the single-particle spectral func-
tion of impurity. Our many-body T -matrix theories may
also be extended to address the possible finite temper-
ature effect in Bose polarons, which have been recently
experimentally investigated [25, 26].
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Rev. A 85, 021602(R) (2012).

[33] J. E. Baarsma, J. Armaitis, R. A. Duine, and H. T. C.
Stoof, Phys. Rev. A 85, 033631 (2012).

[34] R. Haussmann, Phys. Rev. B 49, 12975 (1994).
[35] X.-J. Liu and H. Hu, Phys. Rev. A 72, 063613 (2005).
[36] R. Haussmann W. Rantner, S. Cerrito, and W. Zwerger,

Phys. Rev. A 75, 023610 (2007).
[37] S. P. Rath and R. Schmidt, Phys. Rev. A 88, 053632

(2013).
[38] V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phys.

Rep. 349, 1 (2001).
[39] H. Hu, X.-J. Liu, and P. D. Drummond, Phys. Rev. A

77, 061605 (2008).
[40] B. C. Mulkerin, K. Fenech, P. Dyke, C. J. Vale, X.-J.

Liu, and H. Hu, Phys. Rev. A 92, 063636 (2015).
[41] The retarded self-energy in the static limit ω = 0, i.e.,

the Hartree shift of the attractive Fermi polaron, has
been considered in the work, J. J. Kinnunen, Phys. Rev.
A 85, 012701 (2012).

[42] P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59,
195 (1985).

[43] R. Combescot, S. Giraud, and X. Leyronas, Europhys.
Lett. 88, 60007 (2009).

[44] G. M. Bruun and P. Massignan, Phys. Rev. Lett. 105,
020403 (2010).

[45] H. Heiselberg, C. J. Pethick, H. Smith, and L. Viverit,
Phys. Rev. Lett. 85, 2418 (2000).

[46] J. J. Kinnunen and G. M. Bruun, Phys. Rev. A 91,
041605(R) (2015).

[47] M. Ku, J. Braun, and A. Schwenk, Phys. Rev. Lett. 102,
255301 (2009).

[48] E. V. H. Doggen, A. Korolyuk, P. Törmä, and J. J. Kin-
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