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Periodic driving of a quantum system can significantly alter its energy bands and even change
the band topology, opening a completely new avenue for engineering novel quantum matter. Al-
though important progress has been made recently in measuring topological properties of Floquet
bands in different systems, direct experimental measurement of full Floquet band dispersions and
their topology change is still demanding. Here we directly measure Floquet band dispersions in a
periodically driven spin-orbit coupled ultracold Fermi gas using spin injection radio-frequency spec-
troscopy. We observe that the Dirac point originating from two dimensional spin-orbit coupling can
be manipulated to emerge at the lowest or highest two dressed bands by fast modulating Raman
laser frequencies, demonstrating topological change of Floquet bands. Our work will provide a pow-
erful tool for understanding fundamental Floquet physics as well as engineering exotic topological
quantum matter.

I. INTRODUCTION

Engineering energy band dispersions plays a crucial
role for designing quantum materials with novel function-
alities. Besides traditional methods in solid state, peri-
odic modulation of system parameters can significantly
alter the band dispersions of a quantum matter such as
turning a trivial insulator into a topological one [1–3].
Thanks to Floquet theory, such periodic driven quantum
systems can be described by an effective static Floquet
Hamiltonian, which may exhibit distinct properties com-
pared to their unmodulated counterparts. Experimen-
tally, such Floquet band engineering has been recently
investigated in atomic [4, 5], photonic [6] and solid state
systems [7].

Ultracold atomic gases, due to its unprecedented tun-
ability, provides an ideal platform for the investigation of
Floquet physics [8]. As a prominent example, by load-
ing ultracold atoms in a periodically modulated optical
honeycomb lattice, recent experiment [9] has realized the
Haldane model that exhibits anomalous quantum Hall
effect [10]. So far, cold atom experiments have mainly
focused on detecting Floquet band structures and their
properties indirectly, such as through atomic transport
[9, 11, 12] along a path in momentum space, by adia-
batically loading bosonic atoms to band minima [13–16],
or by measuring the spin textures [17]. These experi-
mental techniques may not work at band crossing points,
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which play a crucial role for determining band topology
and its phase transition, and cannot be used to explore
properties of every Floquet band, such as certain cen-
tral static bands and all Floquet sidebands. Therefore, a
direct measurement of the Floquet band dispersions, in-
cluding the sidebands, in the full momentum space and
the change of their topological properties is highly de-
manding in atomic systems.

Dirac points are topological band touching points with
linear dispersions. In two dimension (2D), the topology
of a Dirac point is characterized by the singularity of the
Berry curvature at the point and non-zero Berry phase
for a path enclosing the point in the momentum space.
Therefore Dirac points creation and annihilation show-
case one type of topological change of band dispersions
of a quantum matter [18]. 2D spin-orbit coupling (SOC),
such as Rashba SOC, naturally possesses a Dirac point
in its band dispersion. It is well known that SOC plays
a key role in many exotic topological materials [19, 20].
In ultra-cold atoms, synthetic one-dimension (1D) SOC
(an equal sum of Rashba [21] and Dresselhaus [22] SOC)
was first experimentally realized using a pair of counter-
propagating Raman lasers to dress two atomic spin states
[23–32]. Recently, by coupling three internal spin states
of ultracold 40K Fermi gases through three Raman lasers
propagating in a plane, a 2D SOC characterized by the
emergence of a Dirac point has been observed [33] (re-
cently 2D SOC was also realized using a lattice based
scheme [34]). Furthermore, an energy gap which is cru-
cial for the investigation of topological physics in ultra-
cold atomic gases can be generated at the position of
the Dirac point by tuning the polarization of the Raman
lasers [35].

In this article, we utilize 2D spin-orbit coupled Fermi
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gases as a platform to investigate Floquet band engineer-
ing. By periodically modulating the detunings of two Ra-
man lasers through their frequencies, we can manipulate
the strength and even the sign of the Raman coupling of
the effective Floquet Hamiltonian and therefore modify
the position of the Dirac point in the Floquet band. For
suitable modulations, the Dirac point initially located
at the lower two dressed bands can disappear and then
emerge at the upper two bands, indicating a topologi-
cal change of the Floquet band structure. Using spin
injection radio-frequency (rf) spectroscopy, we directly
measure the full Floquet band dispersions and observe
their topology change induced by such modulations [36]
in experiment. We find that the resulting Floquet bands
and their topology change depend strongly on the relative
phase between two modulations of two Raman laser de-
tunings. Our results showcase the 2D spin-orbit coupled
Fermi gas as a powerful platform for exploring Floquet
band engineering and exotic quantum matter [37–39].

The paper is structured as follows. In Sec. II, we
present our experimental setup and methods. In Sec. III
we discuss the effective Hamiltonian of the driven system.
Sec. IV and Sec. V show the observed Floquet band dis-
persion and the role of relative driving phase. Finally,
Sec. VI includes our concluding remarks.

II. EXPERIMENTAL SETUP

The experimental setup for generating 2D SOC is the
same as that in our previous experiment [33] (see also
Appendix A and B). As shown in Fig. 1(a), three hy-
perfine spin states of the 40K Fermi gas are coupled to
the electronic excited states by three far-detuned Raman
lasers, with the corresponding two-photon Raman cou-
pling strengths between hyperfine states |j〉 and |j′〉 de-
noted by Ωjj′ . The three Raman lasers propagate in the
x-y plane (Fig. 1(b)), thus the motion of the atoms along
z direction is decoupled from the internal degrees of free-
dom. The two-photon Raman detunings are modulated
as δ2 = δ2(0) +δm cos(ωt) and δ3 = δ3(0) +δm cos(ωt+φ0)
by varying the frequencies of the Raman lasers 2 and 3.
Here, δ2(0) (δ3(0)) corresponds to the original two-photon
Raman detuning between Raman lasers 1 and 2 (1 and
3) without the fast modulation (i.e., δ1(0) is chosen as 0),
φ0 is the initial relative phase between two modulations,
which could be tuned arbitrarily in experiment.

The three spin states are selected within the 42S1/2

ground electronic manifold with |1〉 = |F = 7/2,mF =
1/2〉, |2〉 = |9/2, 1/2〉 and |3〉 = |9/2, 3/2〉, where (F,mF )
are the quantum numbers for hyperfine spin states. The
experiment starts with a Fermi gas of N = 2 × 106

40K atoms in a crossed 1064 nm optical dipole trap at
T/TF ≈ 0.3, where TF is the Fermi temperature defined
by TF = (6N)1/3~ω/kB with ω̄ ' 2π × 80 Hz labels
the geometric trapping frequency. The fermionic atoms
are transferred into |9/2, 5/2〉 as the initial state via a
rapid adiabatic passage induced by a rf field at 19.6 G.
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FIG. 1: (a) Energy level diagram of Fermi gases 40K. Three
hyperfine spin states are coupled with the electronic ex-
cited states through three Raman lasers. The atoms are
initially prepared in the free reservoir spin state |9/2, 5/2〉.
(b) Configuration of three Raman lasers in the xy plane.
The detunings of the Raman lasers 2 and 3 are modulated
as δ2(0) + δm cos(ωt) and δ3(0) + δm cos(ωt + φ0). (c) Plot
of the product of the effective Raman coupling strengths
η = Ω′12Ω′13Ω′23 (scaled by η0 = Ω12Ω13Ω23) as a function
of the modulation parameter δm/ω. The background colors
indicate the sign of η/η0 which determines the position of
the Dirac point. (d) Band structures near the Dirac points
for different modulation parameter δm/ω. Only two bands
that exhibit Dirac point are shown, with the lower, middle
and higher bands labeled by L, M and H, respectively. The
relative phase φ0 = π/2 in (c,d).

Then a homogeneous bias magnetic field along the z axis
(gravity direction) is ramped to B0 = 121.4 G by a pair
of coils operating in the Helmholtz configuration, split-
ting the |3〉 and |2〉 Zeeman states by ∼38.7 MHz and
the |1〉 and |2〉 states by 1,293 MHz. The large Zeeman
splitting would isolate these three hyperfine spin states
from other ones in the Raman transitions. We choose
the one-photon recoil momentum ~qr and the recoil en-
ergy Er = ~2q2

r/2m = h × 8.45 kHz as the natural mo-
mentum and energy units. Here qr = 2π/λ and λ is
the wavelength of the Raman lasers. Using the acoustic-
optic modulators (AOM), the frequencies of the Raman
lasers 2 and 3 are modulated as f2(0) + δm2 cos(ωt) and
f3(0) + δm3 cos(ωt+φ0), respectively, yielding the detun-
ing modulations discussed above. The modulation fre-
quency ω = 2π × 100 kHz is much larger than the other
relevant energy scales.
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III. EFFECTIVE HAMILTONIAN

The time-dependent Hamiltonian is given by (we have
taken Er = ~2k2

r/2m and ~kr as the units for the energy
and momentum)

H =

 (k− q1)2 −Ω12

2 −Ω13

2

−Ω12

2 (k− q2)2 + δ2 −Ω23

2

−Ω13

2 −Ω23

2 (k− q3)2 + δ3

 .

(1)
Here, ~k = (~kx, ~ky) denotes the momentum of atoms
projected on the x− y plane. The wave vectors of three
lasers q1 = −qr êx, q2 = −qr êy and q3 = qr êy.

The two time-varying detunings are modulated in the

following way

δ2 = δ2(0) + δm2 cos(ωt+ α), (2)

δ3 = δ3(0) + δm3 cos(ωt+ α+ φ0), (3)

where α is the unkown initial phase of the modulation
and φ0 is the relative phase between the two modulations.

To eliminate the time-dependence of the origi-
nal Hamiltonian, one can apply a time-dependent
unitary transformation of the following form U =

diag(1, e−i
δm2
ω sin(ωt+α), e−i

δm3
ω sin(ωt+α+φ0)). The wave

function is then transformed as Ψ̃ = U−1Ψ while the
Hamiltonian is transformed as H̃ = U−1HU − iU−1 ∂U

∂t ,
i.e.,

H̃ =

 (k− q1)2 −Ω12

2 e−i
δm2
ω sin(ωt+α) −Ω13

2 e−i
δm3
ω sin(ωt+α+φ0)

−Ω12

2 ei
δm2
ω sin(ωt+α) (k− q2)2 + δ2(0) −Ω23

2 ei
δm2
ω sin(ωt+α)e−i

δm3
ω sin(ωt+α+φ0)

−Ω13

2 ei
δm3
ω sin(ωt+α+φ0) −Ω23

2 e−i
δm2
ω sin(ωt+α)ei

δm3
ω sin(ωt+α+φ0) (k− q3)2 + δ3(0)

 .

The effective Hamiltonian is defined as the time-
average of H̃ over one driving period

Heff =
ω

2π

∫ 2π/ω

0

H̃(t)dt

=

 (k− q1)2 −Ω′
12

2 −Ω′
13

2

−Ω′
12

2 (k− q2)2 + δ2(0) −
Ω′

23

2

−Ω′
13

2 −Ω′
23

2 (k− q3)2 + δ3(0)

 .(4)

Therefore, the diagonal parts of the transformed Hamil-
tonian do not change while the non-diagonal parts will be
averaged out, yielding static effective Raman couplings

Ω′12 = Ω12J0

(
δm2

ω

)
, (5)

Ω′13 = Ω13J0

(
δm3

ω

)
, (6)

Ω′23 = Ω23

[
J0

(
δm2

ω

)
J0

(
δm3

ω

)
+2

∞∑
n=1

Jn

(
δm2

ω

)
× Jn

(
δm3

ω

)
cos(nφ0)

]
. (7)

Here, Jn(x) is the n-th order Bessel function.
If δm2 = δm3 ≡ δm, then Ω′23 can be simplified to

Ω′23 = Ω23J0

(
2δm
ω

sin(φ0/2)

)
. (8)

Particularly, we find (i) Ω′23 = Ω23 for φ0 = 0; (ii) Ω′23 =

Ω23J0(
√

2δm/ω) for φ0 = π/2; (iii) Ω′23 = Ω23J0(2δm/ω)
for φ0 = π.

The effective Hamiltonian can also be derived based on
a different approach introduced in Ref. [39]. The equa-
tion is

Heff = H0 +
1

ω

∞∑
j=1

1

j
[V (j), V (−j)]

+
1

2ω2

∞∑
j

1

j2

(
[[V (j), H0], V (−j)] +H.c.

)
+ O

(
1

ω3

)
. (9)

where H0 is the time-independent part of the original
Hamiltonian and

V (±1) =

 0 0 0
0 δm2

2 e±iα 0
0 0 δm3

2 e±i(α+φ0)

 , (10)

are positive and negative frequency parts of the periodic
driving of δ2 and δ3. This method becomes cumbersome
for high order terms. But for high driving frequency
limit, we can safely keep the first several terms and find
the approximate effective Hamiltonian with good preci-
sion. Using the series expansions for Bessel functions, it
is easy to find that the expression of the effective Raman
coupling are the same (up to the order of 1/ω2) as those
derived in the previous method.

The effective 3 × 3 static Floquet Hamiltonian has
three dressed bands, and the position of the Dirac point
is determined by the sign of the quantity η/η0 where
η = Ω′12Ω′13Ω′23 and η0 = Ω12Ω13Ω23. The Dirac point
emerges at the crossing of the lower (upper) two bands
for negative (positive) η [33]. By varying the modulating
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amplitude δm and relative phase φ0, we can manipulate η
(see Fig. 1(c)) and thus alter the topology of the Floquet
band structure (Fig. 1(d)). For the measurement, we
use momentum-resolved spin injection rf spectroscopy to
study the energy-momentum dispersions of the dressed
states, in which the atoms are driven from a free spin-
polarized state (initial state) into the SOC dressed ones
(finial states).

IV. TOPOLOGY CHANGE OF FLOQUET
BAND DISPERSIONS

The wavelengths of the Raman lasers are tuned to
768.85 nm between the D1 line and D2 line, making
sign(η/η0) = −1 for the Raman coupling strengths in
the absence of the modulation δm = 0. Therefore, the
two lower energy bands touch at a Dirac point which
is observed in experiment as shown in Fig. 2(a) with
the three band dispersions measured by spin-injection
rf spectroscopy. The band dispersions are also deter-
mined theoretically by calculating the eigenenergy spec-
trum of the effective static Floquet Hamiltonian and com-
pared with the experimental results. The Berry curva-
ture diverges at the Dirac point as a delta function, and
the Berry phase is ±π along a closed loop around the
Dirac point, therefore the lower two bands are topologi-
cal, while the upper band is non-topological.

The role of the relative phase φ0 will be examined in
the last subsection. Without loss of generality in demon-
strating the band topology change, we first consider the
periodic modulations with the relative phase φ0 = π/2.
By increasing δm/ω, the three effective Raman coupling
strengths decrease, and the Dirac point moves in the
momentum space, but still within the lowest two bands
for a small δm/ω (see Fig. 2(b)). When δm/ω ≈ 1.7,

J0(
√

2δm/ω) = 0 and thus Ω′23 = 0. The two spin states
|2〉 and |3〉 decouple and the Dirac point moves to in-
finity, showing three Floquet bands which are gapped
everywhere (see Fig. 2(c)). When δm/ω is slightly larger
than 1.7, the Dirac point re-appears at the crossing of the
two upper bands because Ω′23 changes sign and becomes
positive. When δm/ω ≈ 2.4, J0(δm/ω) = 0 and thus
Ω′12 = Ω′13 = 0, the two spin states |2〉 and |3〉 are coupled
by an effective 1D SOC which does not exhibit a Dirac
point. For our experimental parameters, the uncoupled
free particle dispersion band for spin state |1〉 intersects
with the upper branch of the 1D SOC (Fig. 2(d)), where
a small gap between these two dispersions is opened due
to the finite driving frequency ω. By further increasing
δm/ω, Ω′12 and Ω′13 change sign simultaneously and thus
the Dirac point remains staying at the same crossing of
the two upper dressed bands (see Fig. 2(e)). Now the up-
per band initially without topological properties becomes
topological and the lower band becomes non-topological.

We denote k0 = (k0
x, k

0
y) as the original position of the

Dirac point in momentum space in the absence of modu-
lation. In the presence of modulation, the position of the

Dirac point is shifted to a different place and there is an
energy separation at k0 between the two crossed bands.
We characterize the three band dispersions by measuring
the energy separations between the three dressed bands
at the position of k0. In Fig. 3(a), we plot these energy
separations as a function of the modulation parameter
δm/ω. With the increase of δm/ω, the three effective Ra-
man coupling strengths are decreased, the energy separa-
tion between the lower two bands at k0 is increased (blue
line in Fig. 3(a)), while the separation between the upper
two bands is decreased (red line in Fig. 3(a)). The good
agreement between experiment and theory demonstrate
the expected modulation of the Floquet band dispersion.

In the presence of modulation, the current position of
the Dirac point k = (kx, ky) is different from k0. For
different values of δm/ω, it can be computed theoreti-
cally from the effective static Floquet Hamiltonian (4).
In Fig. 3(b), we show the trajectory of the current
Dirac point as a function of the modulation parameter
δm/ω, together with the experimental measured posi-
tions for three values of δm/ω shown in Fig. 2. Across

the points δm/ω = zn,0/
√

2 = 1.7, 3.9, 6.1, 8.3, . . ., the
Dirac point moves to infinity (Fig. 2(c)) and then reap-
pears at the crossing of the other two dressed bands
(Fig. 2(e)). Here zn,0 are the zeros of the Bessel func-
tion J0(zn,0) = 0. On the contrary, at the two sides of
δm/ω = 2.4, 5.5, 8.65, 11.8, . . ., two of the effective Raman
couplings change sign simultaneously and the position of
the Dirac point does not change. Such observed move
of the topological Dirac point between lower and upper
two bands with increasing δm/ω showcases the topology
change of Floquet band structure of driven Fermi gases.

Before concluding this section, we remark that peri-
odic driving not only modifies the band structure dras-
tically, but also induces Floquet sidebands. The mod-
ulated Fermi gas provides an ideal platform to map out
the sidebands using spin injection rf spectroscopy. In our
experiment, we are able to detect the lowest order side-
bands which are separated from the central bands by the
driving frequency ~ω = h×100kHz. The characterizaiton
and understanding of the rf spectroscopy signal for the
sidebands will leave for further invesitgation.

V. EFFECT OF RELATIVE PHASE

In the presence of multiple modulations of the system
parameters, the relative phase between these modula-
tions plays a key role in the driven dynamics and the en-
ergy dispersions of corresponding effective Hamiltonian
are usually very different. A prominent example is the
comparison between circular and linear drivings of two
components of a gauge field where the former one breaks
the time reversal symmetry and may lead to the appear-
ance of fascinating topological states while the latter one
does not [7, 9]. Here the relative phase φ0 between the
modulation of the two detunings can dramatically change
Ω′23 = J0 (2δm sin(φ0/2)/ω) and thus affect the sign of
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FIG. 2: Observation of Floquet band topological change. The upper and middle panels represent theoretically calculated and
experimentally measured 2D Floquet band dispersions, respectively. The red dots represent the Dirac points. The lower panel
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(c) 1.695, (d) 2.416, and (e) 3.3. Other parameters are Ω12 = 5.46Er, Ω13 = 4.62Er, Ω23 = −4.2Er, δ2(0) = −2.47Er, and
δ3(0) = 0.93Er. The relative phase is φ0 = π/2. Note that the orientation of the kx axes are different for better view of the
band structures.

0 1 2 3 4

m/

0

2

4

6

8

Δ
E
 (

u
n

it
s 

o
f 

E
r)

a 0 = /2

0 1 2 3 4

m/

1

0

1

b

ky

kx

Position of the Dirac point

FIG. 3: (a) Energy separations between three energy bands
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position of the Dirac point as a function of the modulation
parameter δm/ω. The magenta and cyan lines correspond to
theoretical plot of kx and ky of the Dirac point. The symbols
correspond to the positions of the experimentally measured
Dirac points. All other parameters are the same as Fig. 2.
The background colors in both panels indicate whether the
Dirac point exhibits at the crossing of the two lower (green)
or the two higher (yellow) bands.

η/η0 and the position of the Dirac point. In Figs. 4 (a,c),
we plot the band separations at the original Dirac point
k0, similar as Fig. 3(a), but with φ0 = 0 and φ0 = π, re-

spectively. The corresponding Dirac point positions are
shown in Figs. 4 (b,d). When φ0 = 0, the Raman cou-
pling Ω′23 does not change sign during the modulation.
The simultaneous change of the other two Raman cou-
pling strengths does not reverse the sign of the param-
eter η/η0, therefore the Dirac point always exhibits at
the lower two bands (Fig. 4(b)). However, similar to the
case of φ0 = π/2, η/η0 changes sign for φ0 = π, thus the
Dirac point moves from the lower two bands to the up-
per two bands and vice versa (Fig. 4(d)) with increasing
modulation amplitude δm/ω.

VI. DISCUSSION

The motion of atoms along the z direction is decoupled
from that in the xy plane, therefore the rf spectroscopy
only detects the band dispersion in the xy plane although
the Fermi gas can be 3D. For a 2D (or a fixed kz plane in
3D) Fermi gas, a topological band gap at the Dirac point
can be opened by varying the polarizations of the Raman
lasers, which induces an imaginary part for the Raman
coupling strength that corresponds to an effective per-
pendicular Zeeman field. For example, in the recent ex-
periment [35], an imaginary term iΓ has been generated
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FIG. 4: Effect of the initial relative phase φ0. The format
and parameters are the same as Fig. 3 except that φ0 = 0
for (a,b) and φ0 = π for (c,d), respectively. For φ0 = 0, the
Raman coupling Ω23 is not modulated and the Dirac point
remains at the crossing of two lower bands.

for the Raman coupling Ω12. The exhibited energy gap ∆
at the position of the original Dirac point is found to be
proportional to Γ and the Chern number of the two bands
are given by ±sign(ΓΩ13Ω23) [40]. In the presence of the
same modulations that we explored, the real and imagi-
nary parts of the Raman coupling Ω12 change sign simul-
taneously. Consequently, the Chern number of the two
gapped bands are given by ±sign(η/η0) (∓sign(η/η0))
if Γ is of the same (opposite) sign with Ω12 before the
modulations are applied. This provides a useful guide
to detect the topological properties of the driven energy
bands in the presence of an energy gap. Such topologi-
cal band gaps support the existence of exotic Majorana
fermions in 2D and Weyl fermions in 3D in the presence
of pairing interactions, while the periodic driving pro-
vides a knob of tuning topological band regions, yielding
Floquet Majorana or Weyl fermions.

In conclusion, we have directly observed the topology
change of the full Floquet band structure in a periodi-
cally driven quantum system using spin-injection rf spec-
troscopy. Our model system, periodically driven Fermi
gases with 2D SOC, provides an ideal platform for testing
and understanding rich Floquet physics and band engi-
neering novel exotic quantum materials, as well as ex-
ploring interesting many-body and few-body interacting
physics in Floquet systems.
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Appendix A: Spin-injection spectroscopy

The Raman lasers are derived from a continuous-wave
Ti-sapphire single frequency laser with the wavelength
λ = 768.85 nm which are ramped up linearly from zero
to their final intensity in 60 ms. Subsequently, a Gaussian
shape pulse with 450 µs of the rf field is applied to drive
atoms from |9/2, 5/2〉 to the final empty SOC state. Since
the spin state |9/2, 5/2〉 is coupled to the state |3〉 via rf,
spin injection rf spectroscopy will measure the weight of
the |3〉 state and obtain the energy dispersions with 2D
SOC. At last, the Raman lasers, the optical trap and the
magnetic field are switched off abruptly, and atoms freely
expand for 12 ms in a magnetic field gradient applied
along the x axis. Absorption image are taken along the z
direction. By counting the number of atoms in state |3〉
as a function of the momentum and the rf frequency from
the absorption image, the energy band structure and the
position of the Dirac point can be determined.

Appendix B: The configuration of Raman lasers

The Raman lasers are derived from a continuous-wave
Ti-sapphire single frequency laser (M Squared lasers,
SolsTiS) with the wavelength 768.85 nm as shown in
Fig. 5. The Raman laser 1 is sent through the two
double-pass acousto-optic modulators (AOM) (3200-124,
Crystal Technology, Inc) driven by two signal genera-
tors (N9310A, Agilent) and frequency shifted -212.975×4
MHz. The Raman laser 2 and 3 double-pass through
two AOM and are frequency-shifted +201.144×2 and
+220.531×2 MHz respectively. In order to periodi-
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cally drive the two-photon Raman detuning, the Raman
laser 2 and 3 are frequency modulated respectively with
f2(0)+δm2 cos(ωt) and f3(0)+δm3 cos(ωt+φ0), in which a
signal generator (AFG3252 Textronix) generates cos(ωt)
and cos(ωt+ φ0) signal outputs simultaneously to exter-
nally modulate the frequencies of two signal generators

(N5183A, Agilent) for Raman lasers 2 and 3. The modu-
lation frequency response of the frequency modulation of
the signal generator (N5183A, Agilent) may reach 3 MHz
and the maximum deviation is about 10 MHz, which can
satisfy the experimental requirement.
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